Publications

2013

Li, Liang, Ryan Diederick, Joseph R.V. Flora, and Nicole D. Berge. 2013. “Hydrothermal carbonization of food waste and associated packaging materials for energy source generation”. Waste Management 33 (11): 2478-92. https://doi.org/https://doi.org/10.1016/j.wasman.2013.05.025.
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes.

2012

Timmons, Jason, Young-Min Cho, Timothy Townsend, Nicole Berge, and Debra Reinhart. 2012. “Total earth pressure cells for measuring loads in a municipal solid waste landfill”. Geotechnical and Geological Engineering 30 (1): 95-105.

Commercially available hydraulic total overburden pressure cells were installed in the sand drainage layer of a municipal solid waste landfill and monitored for a period of 3,110 days. Both overburden pressure and temperature were measured in the landfill as it was filled with compacted waste. Topographic surveys of the landfill were periodically conducted to measure the height of waste above the pressure cells and to determine the landfill volume for indirect unit weight estimation. The average ratio of measured to theoretically-predicted overburden pressure was 0.6, indicating that on average the pressure cells underestimated the load. The overburden pressure measured near the toe of the landfill was greater than that predicted by the unit weight of landfilled material, while most of the overburden pressure measurements further inside the landfill were less than predicted. Several possible causes for this phenomenon are discussed, including the uneven distribution of forces resulting from the heterogeneous nature of the waste and cover soil. The earth pressure cells were capable of detecting the placement of individual waste lifts.

Lozano, Paula, and Nicole D. Berge. 2012. “Single-walled carbon nanotube behavior in representative mature leachate”. Waste Management 32 (9): 1699-1711. https://doi.org/https://doi.org/10.1016/j.wasman.2012.03.019.
Escalating production and subsequent incorporation of engineered nanomaterials in consumer products increases the likelihood of nanomaterials being discarded in landfills. Although direct measurement of particle disposal has not yet occurred, life cycle assessments suggest that over 50% of nanomaterials produced will eventually reside in landfills. Laboratory-scale experiments were conducted to evaluate how organics (humic acid: 20–800mg/L), ionic strength (100–400mM NaCl), and pH (6–8) typical of mature leachates influence carbon nanotube surface charge, relative stability, and mobility through representative solid waste environments. Results from the batch experiments suggest that the presence of high molecular weight organics, such as humic acid, acts to stabilize carbon nanotubes present in leachate, even at high ionic strengths (>100mM NaCl). These results also suggest that in mature landfill leachate, as long as humic acid is present, ionic strength (when represented as NaCl) will be a dominant factor influencing nanomaterial stability. Column experiment results indicate the carbon nanotubes may be mobile through solid waste, suggesting particle placement within landfills needs to be examined more closely.
Lu, Xiaowei, Beth Jordan, and Nicole D. Berge. 2012. “Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques”. Waste Management 32 (7): 1353-65. https://doi.org/https://doi.org/10.1016/j.wasman.2012.02.012.
Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180–350°C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45–75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO2-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

2011

Ramsburg, Andrew, and Nicole Berge. 2011. Iron-mediated remediation within nonaquous phase liquid. 13139959, issued 2011.

The present invention relates to remediation of hazardous waste sites. In particular, the present invention relates to compositions and methods for remediation of environmental contaminants in non-aqueous phase liquids (NAPLs).

Joseph, Lesley, Qammer Zaib, Iftheker A. Khan, Nicole D. Berge, Yong-Gyun Park, Navid B. Saleh, and Yeomin Yoon. 2011. “Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes”. Water Research 45 (13): 4056-68. https://doi.org/https://doi.org/10.1016/j.watres.2011.05.015.
In this study, the adsorption of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) from landfill leachate onto single-walled carbon nanotubes (SWCNTs) was investigated. Different leachate solutions were prepared by altering the pH, ionic strength, and dissolved organic carbon (DOC) in the solutions to mimic the varying water conditions that occur in leachate during the various stages of waste decomposition. The youngest and oldest leachate solutions contained varying DOC and background chemistry and were represented by leachate Type A (pH = 5.0; DOC = 2500 mg/L; conductivity = 12,500 μS/cm; [Ca2+] = 1200 mg/L; [Mg2+] = 470 mg/L) and Type E (pH = 7.5; DOC = 250 mg/L; conductivity = 3250 μS/cm; [Ca2+] = 60 mg/L; [Mg2+] = 180 mg/L). These solutions were subsequently combined in different ratios to produce intermediate solutions, labeled B–D, to replicate time-dependent changes in leachate composition. Overall, a larger fraction of EE2 was removed as compared to BPA, consistent with its higher log KOW value. The total removal of BPA and EE2 decreased in older leachate solutions, with the adsorptive capacity of SWCNTs decreasing in the order of leachate Type A > Type B > Type C > Type D > Type E. An increase in the pH from 3.5 to 11 decreased the adsorption of BPA by 22% in young leachate and by 10% in old leachate. The changes in pH did not affect the adsorption of EE2 in the young leachate, but did reduce adsorption by 32% in the old leachate. Adjusting the ionic strength using Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+ resulted in a 12% increase in the adsorption of BPA and a 19% increase in the adsorption of EE2. DOC was revealed to be the most influential parameter in this study. In the presence of hydrophilic DOC, represented by glucose in this study, adsorption of the endocrine disrupting compounds (EDCs) onto the SWCNTs was not affected. In the absence of SWCNTs, hydrophobic DOC (i.e., humic acid) adsorbed 15–20% of BPA and EE2. However, when the humic acid and SWCNTs were both present, the overall adsorptive capacity of the SWCNTs was reduced. Hydrophobic (π-π electron donor-acceptor) interactions between the EDCs and the constituents in the leachate, as well as interactions between the SWCNTs and the EDCs, are proposed as potential adsorption mechanisms for BPA and EE2 onto SWCNTs.

2010