
FPGA Acceleration of Phylogeny Reconstruction for

Whole Genome Data

Jason D. Bakos, Panormitis E. Elenis, Jijun Tang
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC USA

{jbakos, elenis, jtang}gcse.sc.edu

Abstract-In this paper we describe our design and
characterization of a co-processor architecture to accelerate
median-based phylogenetic reconstruction for gene-
rearrangement data. Our current design performs a parallelized
version of the breakpoint median computation and achieves an
average speedup of 876 for simulated input data having a high
evolution rate. After integrating our hardware-based median
computation into the GRAPPA toolset, we have achieved an
average speedup of 189 over the entire phylogenetic re-
construction procedure. The results in this paper suggest that
FPGA-based acceleration is a promising approach for
computationally expensive phylogenetic problems that are based
on combinatorial optimization.

Keywords-FPGA; reconfigurable computing; phylogeny; high-
performance; gene-rearrangment; whole-genome; genome analysis

I. INTRODUCTION

The recent reductions in cost associated with DNA
sequencing have resulted in an explosion in the amount of
genomic data of all types. These include large collections of
isolated genes, entire prokaryotic genomes, genomes of
unknown organisms (i.e. the now famous Sargasso Sea data),
and complex eukaryotic genomes (model organisms). Making
effective use of this data, from understanding small local
changes in the genome oftumor cells to reconstructing the Tree
of Life, will require an evolutionary perspective. In particular,
the availability of fully sequenced and well-annotated
prokaryotic genomes allows us to move beyond the mere
sequence level and into the study of genomic evolution.

Once a genome has been annotated to the point where gene
homologs can be identified, each gene family can be assigned a
unique integer and each chromosome can be represented by an
ordering (a string) of signed integers (where the sign indicates
the strand). Rearrangement of genes under inversion,
transposition, and other operations such as duplications,
deletions, and insertions are known to be an important
evolutionary mechanism. Their use in reconstructing
phylogenies has been studied intensely since the pioneering
papers of Sankoff [1]. Understanding these rearrangements is
also a crucial step in comparative genomics, gene prediction,
and other analyses. Biologists have embraced this new source
of data in their phylogenetic and comparative genomics work
[2], while computer scientists are slowly solving the difficult
problems posed by the manipulations of these gene orders [3].

In the past several years, substantial progress has been
made in understanding genome rearrangements and computing
with such data. Pevzner's group provided the first
breakthrough with a solution for computing shortest sequences
of rearrangements (so-called edit distances) that would
transform one ordering into the other [4]. Subsequent work
from Moret's group gave a linear-time algorithm to compute
these edit distances [5], techniques to tackle the NP-hard
median problems [6], faster and better-scaling approaches to
phylogenetic reconstruction [7], and the software package
GRAPPA which has become one of the most accurate methods
for inversion phylogenies [8]. Moreover, the extension of
GRAPPA that uses the heuristic technique of disk-covering [9]
(DCM-GRAPPA [10]) runs quickly on large datasets with
more than 1,000 genomes.

As such, the number of taxa in the dataset is no longer the
main issue. However, scoring a candidate tree requires solving
many instances of the median computation, which may take
days or even months to finish when the involved genomes are
distant. Thus finding efficient median solvers is still desired.

Parallelizing the current methods on clusters or SMPs is
one obvious way to alleviate this problem. However, large-
scale parallel computers are extremely expensive to acquire and
maintain. As such, this approach is not feasible for many
biological and medical labs. Our approach is to apply High-
Performance Reconfigurable Computing (1HPRC) to finely
parallelize GRAPPA and achieve cluster-class performance
using an inexpensive, lightweight, and efficient desktop
platform.

In the HJPRC model, one or more Field Programmable Gate
Array (FPGA) devices are attached to a general purpose CPU
and used as an application-specific co-processor. An FPGA is
a reconfigurable logic device that can be electronically
configured (programmed) to implement any arbitrary digital
logic circuit using the FPGA's programmable logic gates and
integrated memory blocks.

Aside from the obvious differences in the way they are
programmed, developing an efficient HJPRC application is
fundamentally very similar to developing a traditional HPC
application. In both cases, the developer must explicitly
identify parallelism and extract it. However, due to the lower
communication and systems overhead, an HPRC system allows

1-4244-1509-8/07/$25.00 02007 IEEE 888

for the extraction of finer-grain parallelism as compared to an

HPC system.

In this paper, we present our new results for adapting the
breakpoint median and tree scoring algorithms to an H{PRC
platform. In our previous published work toward this goal, we
achieved a 26X average speedup for the breakpoint median and
a 23X speedup for the entire reconstruction procedure [11]. In
this paper we present our improved architecture that achieves
an 876X speedup for the breakpoint median and a 189X
speedup for the entire reconstruction procedure.

To the best of the authors' knowledge, this is the first
attempt to adapt this application to the HJPRC computational
model.

II. GENE REARRANGEMENT DATA

We assume a reference set of n genes {gl, g2, ..., gn3.
Thus, a genome can be represented by an ordering of some

multisubset of these genes and each gene is given with an

orientation that is either positive, written gi, or negative, written
-gi. A genome can be linear or circular. A linear genome is
simply a permutation on the multisubset, while a circular
genome can be represented in the same way under the implicit
assumption that the permutation closes back on itself. A
genome can undergo various rearrangement events such as

inversion, transposition, deletion, duplication, etc.

Let G be the genome with signed ordering of gl, g2, ., gn.
An inversion (also called a reversal) between indices i andj (i
<j) produces the genome with linear ordering:

g], g2 g--g1gg , gj1n gin g .+ly gn

A transposition acts on three indices i, j, and k, with i < j
and k X [i, j], picking up the interval gi, gi+l, ..., gj and
inserting it immediately after gk. Thus genome G is replaced by
(assume k >j):

gl gi-l 9gj+ gk ging1 i+Ig ..g. 1gk+Yn. gn

An inverted transposition is a transposition followed by an

inversion of the transposed subsequence (it is sometimes called
a transversion). An insertion is the addition of one or a

segment of genes, and a deletion is the loss of a section of the
chromosome.

The generalized Nadeau-Taylor model [12] postulates that
only rearrangement events namely, inversions, transpositions,
and inverted transpositions. The number of each of these three
events obeys a Poisson distribution on each edge and the
relative probabilities of each type of event are fixed across the
tree.

Methods for reconstructing trees based on genome
rearrangement data include distance-based methods (for
example neighbor-joining [13]), maximum-likelihood methods
[14], maximum parsimony methods based on encodings [15],
and direct optimization methods. The latter, pioneered by
Sankoff and Blanchette [16] in their package BPAnalysis and
improved on by GRAPPA [8] and MGR [17], are the most
accurate methods.

Direct optimization methods rely on finding median
genomes. The median problem on k genomes is to find a single
genome that minimizes the median score (sum of the pairwise
distances) between itself and each of the k given genomes. This
problem is NP-hard [18] even for three genomes.

GRAPPA (Genome Rearrangements Analysis under
Parsimony and other Phylogenetic Algorithms) is an exhaustive
search method, which moves systematically through the space
of all (2N-5) x(2N-7) Xe.. x3 possible trees on N genomes. For
each tree, the program tests a lower bound to determine
whether the tree is worth scoring. For every tree that is scored,
the program will iteratively solve the median problems at
internal vertices until convergence, as outlined in Figure 1.

As shown in Figures 2 and 3, the time required to perform a

median computation using the current algorithm is an

exponential function of the sum of edge distances between the
three input gene orders and their corresponding optimal median
(i.e. the diameter of the inputs). As a consequence, the portion
of GRAPPA's total execution time that is spent labeling the
internal vertices of candidate trees sharply increases with the
evolutionary rate the inputs. In practice, even moderately
distant input sets will cause GRAPPA's to spend over 99.9°/0 of
its total execution time computing medians.

E C

wE

L 0

uJt

Diameter of Inputs

Figure 2. Execution time for the median computation as a function
of input evolution rate.

1

-n

1J.2
o . "

-

AZuC

Diameter of Inputs

Figure 3. The relative amount of total execution time that
GRAPPA spends labeling internal vertices (performing median

computations) increases asymptotically to 100% with the diameter
ofthe input set.

1-4244-1509-8/07/$25.00 02007 IEEE

Initially label all internal nodes with gene orders
Repeat

For each internal node v with neighbors A, B and C, do
Solve median problem on A, B, C to yieldm
Ifrelabeling v with m improves the tree score, then do it

Until no change occurs

Figure 1. Tree Scoring Algorithm.

%J .

889

So far, GRAPPA provides several median solvers to choose
from, including several breakpoint median solvers as well as
Caprara's [19] and Siepel's [6] inversion median solver. The
breakpoint median is generally considered to be an outdated
technique for computing ancestral genomes. However, because
both the inversion median and the breakpoint median rely on
the same fundamental class of computation, we have decided to
target the breakpoint median in our initial study. This will
serve to demonstrate whether FPGA acceleration can yield
significant performance benefits for such computations without
the immediate need to implement the additional complexity of
the inversion median. In the next phase of our work we will
implement a hardware design for a parallelized inversion
median using similar techniques to the ones we present in this
paper. We expect the performance characteristics of the
hardware breakpoint median to closely match those of the
inversion median.

III. HIGH-PERFORMANCE RECONFIGURABLE COMPUTING
In the past several years, high-performance reconfigurable

computing (HPRC) has emerged as a promising new direction
for providing inexpensive and efficient HPC platforms. In the
IHPRC computational model, often repeated computations are
off-loaded to an FPGA-based application co-processor.
Historically, FPGAs provide a technique for improving the
performance of applications that contain more inherent fine-
grain parallelism than can be exploited by the fixed number of
functional units within a general-purpose microprocessor.

HPRC research has yielded many achievements over the
years. For example, many control-independent dataflow-based
arithmetic computations (such as FFTs [20],
convolution/filtering [21], matrix multiplication [22], and
encryption [23]) have been implemented on FPGAs and have
been shown to achieve an order of IOOX to 1000X speedup
relative to a software-only implementation.

IHPRC techniques have not, as of yet, been widely applied
to computational biology, but there has been recent work in
adapting sequence alignment for FPGA implementation (i.e.
[24]). There is also recent commercial interest in applying
IHPRC to computational biology. Progeniq [25] has recently
launched its BioBoost line of add-on FPGA boards which

I
-1 +2 -4 -3

-1 -2 + +4

-2 + +4 +1

4

I
I-.

claim to achieve a 1OOX speedup for applications such as
ClustalW, SmithWaterman, HIMM, and BLAST. Although
these applications analyze sequence data only, it does indicate
interest in applying IHPRC to computational biology.

IV. BREAKPOINT MEDIAN ALGORITHM

The breakpoint distance between genomes A and B is
defined as the number of adjacent gene-pairs gh that appear in
A when neither gh nor -h-g appear in B. For example,
(circular) genomes A=(1 -2 -3 4) and B=(4 2 -1 -3) have a
breakpoint distance of 2, because gene pairs (-2 -3) and (4 1)
appear in A but neither {(-2 -3) or (3 2)3 nor {(4 1) or (-1 -4)3
appear in B.

As shown in Figure 4, computing a breakpoint median for
three genomes requires solving a traveling salesman problem
(TSP) formulated in the following way [10]. Given genomes
A, B, and C, each consisting of an ordering of n signed genes,
construct a fully-connected undirected graph having vertices =

(-gn, -ga, gl, ..., gn) where w(g, h) is defined as the weight of
(undirected) edge (g,h). For each gene g, w(g,-g) = -C>o,
guaranteeing that each gene will appear alongside its reverse
polarity counterpart in the TSP solution. Define u(g,h) to be
the number of times vertices -g and h are adjacent in the three
genomes, and define w(g, h) = 3 - u(g, h). If SI, -S1, S2, -S2, ..., Sn,
-Sn is the solution of the TSP, then the resultant breakpoint
median is m = sl, S2, ..., Sn. This solution guarantees that
d(A, m) + d(B, m) + d(C, m) is optimally minimal where d(a, b) is
the breakpoint distance.

As shown in Figure 5, the breakpoint median algorithm
bundled with GRAPPA performs a depth-first branch-and-
bound search of the space of all possible paths through the
graph formed by the three input genomes. Its implementation
was carefully designed to utilize the small number of choices
for the pairwise costs, thus further significant speed-up on the
software implementation is very difficult.

The search algorithm begins by reading the input genomes
and constructing the resultant graph. By definition, each edge
in the graph has weight -oo, 0, 1, 2, or 3. Once this is complete,
it organizes the weight 0, 1, and 2 edges into a list sorted by
edge weights. Note that a weight-0 edge is equivalent to three

I
cost = -illUx

t+iw cost= 0

cost= 1 --

cost = 2

-
d

\,i

Edges not slioNl have
c-osft = 3

I-.-/

An optiiwial Sollltioi1
conrespondii1g to goleoie

+1 +2 -3 -4

Figure 4. Breakpoint median TSP formulation.

1-4244-1509-8/07/$25.00 02007 IEEE

"Ai r 3

890

Ak Ah
"W 'WI

Figure 5. Graphical representation of a breakpoint median TSP depth-first search tree and associated data structures. Pruned edges are excluded from the
lower bound computation from the level they are pruned to the bottom of the tree, the "otherEnd" array stores TSP path end-points to prevent cycles that do

not include all vertices, and the "used" array keeps track of which vertices in the current solution state have degree 2.

parallel weight-2 edges and a weight-I edge is equivalent to
two parallel weight-2 edges. As such, in this representation,
more distant input genomes yield longer sorted edge lists and
thus require more searching time to find an optimal
combination of edges. Note that the relative ordering of equal-
weight edges dictates the search order of the algorithm, and
these orderings have a significant impact on the runtime of the
search. Unfortunately, to our knowledge it is not possible to
determine the most optimal relative ordering of equal-weight
edges

The algorithm creates an empty edge set to serve as the
current search state, which we refer to as the partial solution.
All the edges with weight -oo are assumed to be included in this
set, making every vertex have a degree of one in the current
partial solution.

The search iterates through the sorted edge list in order and
adds any edge to the solution set that obeys two conditions.
First, the edge must not cause any of the vertices in the graph
implied by the current partial solution to have a degree of

greater than two (since the salesman tour must not contain
branches). Second, the edge must not create a cycle in the
current partial solution unless the addition of this edge results
in a full tour.

If no edges remain that satisfy these conditions from the
current point forward in the list, the algorithm will record the
path implied by the partial solution as a best-found-so-far
solution if its score (including any weight-3 edges that must be
included to complete the tour) is less then the current upper
bound. Either way, the search prunes the last added edge and
begins iterating from the edge immediately following the last
added edge in the list. The search terminates when it exhausts
the search space.

Each time the search adds a new edge, it computes a lower
bound for the partial solution. If the lower bound exceeds the
score of the upper bound, it prunes the last added edge.

The search computes the lower bound using the following
technique [16]. First, initialize the lower bound to zero. Then,
for each vertex that currently has a degree of one in the current

1-4244-1509-8/07/$25.00 02007 IEEE 891

PCI-X

Figure 6. Simplified block diagram for the breakpoint median core.
The core design is a large sequential logic circuit that establishes

datapaths among several memory elements in each clock cycle. Static
interconnects between memory elements are shown, while multiplexed

interconnects among memory elements are established through the
control unit (integrated within its output logic). Note that the resource

requirements shown assume two lower bound units.

partial solution, add the weight of the lowest weight edge that
leads to another vertex of degree one. This technique adds
twice as many edges as required, so after adding all valid
edges, divide this value by two and add this value to the cost of
the current partial solution.

The lower bound computation disregards any edges that
were previously pruned at or above the current level in the
search tree. It also disregards any edges that would result in a
tour cycle if that edge were added to the partial solution (unless
the cycle includes all vertices).

Each time the search prunes an edge, the search re-
computes the lower bound because the exclusion of the pruned
edge constitutes information that was not available before the
search added the pruned edge originally.

V. BREAKPOINT MEDIAN CoRE DESIGN

Although there has been previous work in designing FPGA
architectures for the TSP problem, to our knowledge all of this
work involved approximate solvers (i.e. [26]). Since our goal
is to find exact solutions of the breakpoint medians using
branch-and-bound searches, this previous work is not
applicable to this application.

FPGA designs are implemented by writing code in a high-
level programming language called hardware description
language (HDL). HDL differs from traditional high-level
languages in that it has concurrent semantics, where each

Figure 7. Finite state machine representation of median core controller.

statement is executed when the value of any inputs change
regardless of the statement's relative location in the code. In
addition, verifying the functionality of HDL follows the same
model as verifying a digital logic circuit -- a discrete-event
simulator is used with a waveform-based interface.

We used custom-written VHDL to design our breakpoint
median core. It. implements the same basic breakpoint median
algorithm as the one bundled with GRAPPA with a few notable
differences. GRAPPA's breakpoint median core relies on
recursion such that its depth-first search is realized using the
program activation stack. In order to achieve similar run-time
behavior, we have implemented a stack memory using an on-
chip block RAM (BRAM). The median core uses this stack to
keep track of the information required to restore the state of the
search when a branch of the search tree is pruned. This
includes the added edge indices, excluded (pruned) edges, and
the previous state for the "otherEnd" memory.

As shown in Figures 6 and 7, the median core design
consists of a single block of control logic that is interconnected
to a set of on-chip block RAMs (BRAMs) and registers that are
used to store the state of the search. The controller is designed
as a finite state machine (sequential logic circuit) with
integrated multiplexers that establish datapaths among the set
of BRAMs and registers. The median core is capable of
computing breakpoint medians of any reasonable size using
only on-chip memory.

Before the median core begins operation, the host system
performs various startup tasks in software. These include the
computation of the initial upper bound, construction of the TSP
graph from the input genomes, and organizing the weight-O,
weight-1, and weight-2 edges in the sorted edge list. The

1-4244-1509-8/07/$25.00 02007 IEEE 892

wer bound unit.

TSP graph representation:.
1 (1,-4)w=O

-1 (-1x9)xw=1 (-1,25)w=s2
2 1(2 11);w2 (2;--19);w=2 (2;--49) w=2

-2 (-2,17)}w=2 (-2,20),wr=1

-19 (-192)rw=2 (-19 -4)4wr-=2 (-19r1Q) wP=2

IALIID TEIGHTS= 0

Ifused(e = 0 and

otherEnd

table excludedi(v) I= then

add weight to VIALID JEIGHfT

end loop

table

if 1ID UTIGHTSaS empty

edge _cour
tnhirr

lower bound = lower bound + 3

lower-bound = min(A-LIDIJUTIGHS)(-19

f2

Figure 8. Illustration of the operation of a lower bound unit and a portion of the TSP group focusing on vertex 2. During the lower bound computation, the
TSP graph (contructed from the sorted edge list) is scanned in parallel by mutliple lower bound units. In this example, a lower bound unit is inspecting vertex

2, which has three weight-2 edges to verteces 11, -19, and -49. Since vertex 2 is unused in the current solution state, the lower bound unit must add to the
lower bound value the minimum edge weight of the edges that (1) lead to another vertex that is not used, (2) do not form a tour cycle (unless the cycle

includes all verteces), and has not been excluded (pruned at or above the current level in the search tree).

software driver then uses a programmed I/0 write operation to
transmit the sorted edge list and initial upper bound into a

specific set of on-chip memory corresponding to a specific
median core on the FPGA (the core will later reconstruct the
graph from the sorted edge list, as this extra initialization is less
expensive than the additional I/0 overhead of transferring the
graph to the core). Using a programmed I/0 read operation,
the host can poll any core to determine its execution state,
allowing the host to determine when any specific core has
completed computation. When this occurs, the host performs
another programmed 1/0 read operation to read the result
genome from the core.

VI. EXTRACTING PARALLELISM FROM THE BREAKPOINT
MEDIAN

FPGAs allow fine-grain parallelism to be extracted from
applications. In many cases, this involves performing many
independent arithmetic operations in parallel, as is naturally
possible when performing many types of matrix operations.
FPGAs can also exploit course-grain parallelism. In this case,
the FPGA implements multiple independent "cores" that each
execute a thread, as is the case for SMP and cluster machines.
In this application, we exploit both fine- and course-grain
parallelism.

A. Fine-Grain Parallelism
In the breakpoint median algorithm, adding or pruning an

edge is an inexpensive operation and requires a small, fixed

amount of time (2-8 clock cycles for the median core).
However, after any edge is added or pruned, the core must
perform a lower bound computation that requires a traversal of
the entire TSP graph.

Aside from the FPGA-host communication overheads
(which can be significant), the median core spends nearly all of
its execution time performing the lower bound computation.
Fortunately, as described above, the lower bound computation
consists of a bounded loop and each loop iteration is data-
independent. As such, the lower bound contains much fine-
grain parallelism that we exploit in the median core design.

As illustrated in Figure 8,, the lower bound computation is
parallelized by duplicating both the TSP graph and the search
state into multiple memories that can be read in parallel.
Essentially, we parallelized the lower bound computation by
"unrolling" the lower bound loop and inspecting multiple graph
vertices in each clock cycle. Since each ofthe FPGA's on-chip
memories has two ports, we need to replicate copies of the
necessary memories nl2 times (each memory maintained as

exact copies), allowing the design to perform n reads per clock
cycle. We refer this as a core having n "lower bound units".

This approach can technically be scaled up to the point
where all graph vertices are read simultaneously, allowing the
lower bound to be computed in a single clock cycle (assuming
sufficient memory resources). However, we have found that
scaling beyond twenty lower bound units adds significant
routing complexity. Therefore, we use twenty lower bound
units in our current design.

1-4244-1509-8/07/$25.00 02007 IEEE

used
table

I~9

893

B. Course-Grain Parallelism
The median computation also has potential for course-grain

parallelism, i.e. the ability to use parallel median cores to
perform a single median computation. Our current technique
for exploiting course-grain parallelism relies on two concepts.

The first concept is to force each core to explore an
identical TSP search space using a unique search order. To do
this, we initialize each core with a consistent sorted edge list
but with a unique ordering. In other words, each sorted edge
list represents the same graph and is sorted by edge weight, but
in each list equal-weight edges are arranged in different relative
orders.

The second concept is to allow the cores to communicate
with each other in order to maintain a global minimum upper
bound value. Before each core computes its lower bound, it
compares its current local upper bound with the minimum
upper bound among all parallel cores. If this global upper
bound is less than the core's local upper bound, the core adjusts
its local upper bound to become the global upper bound plus
one. Adding one to the local copy of the global minimum
prevents any core from pruning the optimal solution. In this
case, all cores will eventually find the optimal solution, so the
FPGA-based median computation is considered complete when
the first core completes its search

Although we are able to synthesize four cores on our
current FPGA, our experimental results indicate that we cannot
achieve further performance benefit beyond two cores using
our current technique to extract course-grain parallelism.

VII. CHARACTERIZING THE BREAKPOINT MEDIAN CORE
Our test system consists of a Dell Precision 650 server

containing a 3.06 GHz Intel Pentium Xeon- processor. The
FPGA accelerator card is an Annapolis Microsystems Wild-
Star II Pro card with a single Xilinx Virtex-2 Pro 100 FPGA. It
is connected to the host though a PCI-X interconnect.

In order to determine the hardware speedup, we generated
1000 random three-leaf phylogenies and extracted the leaves to
use as median inputs. The number of rearrangement events
along each edge for each phylogeny is chosen from a uniform
random distribution with range distance +/- 2, where distance
is a parameter. We performed these tests for a genome size of
100 genes.

For each set of genomes, we invoke GRAPPA's breakpoint
median routine bbtsp and record its execution time. We then
dispatch the same three genomes to the FPGA's breakpoint
median architecture and record its execution time. Note the
FPGA execution time includes the CPU-to-FPGA
communication time and the time required for the host to
construct the TSP graph, construct the corresponding sorted
edge list(s), and compute the initial best score (all of which
occurs in software).

Speedup is measured in the traditional way, i.e. times,,
timeh,. A speedup of 1 would indicate equivalent performance
between the software median computation and hardware
median computation. Our results list the arithmetic mean of

the individual speedups relative to software for the set of 1000
individual median computations for each input distance:

1000 time,, (i)

speedup il timehW (I) where timehW(i) represents the
1000

hardware execution time of input data i. Table 1 lists these
results.

TABLE I. PERFORMANCE RESULTS FOR THE MEDIAN CORE.

Average
Events

per Edge
17
18
19
20
21
22
23
24
25

Average
Median
Speedup
11.468
12.833
21.730
44.799
5 1.936
90.871
136.28
153.724
876.304

Our performance results indicate that the median speedup
increases exponentially with the evolutionary rate of the inputs,
with lower-rate inputs achieving a one order-of-magnitude
speedup and higher rate inputs achieving a two-order-of-
magnitude speedup. It is clear from these results that the
median architecture has a faster search rate (when searching for
the optimal TSP tour), but suffers a high penalty in host-FPGA
communication overhead. Since this overhead is fixed for any
inputs, median computations that require longer searches spend
a larger relative amount of time searching and thus enjoy a
higher speedup. This relative amount of time increases
exponentially with the number of non-weight-3 graph edges,
which is a function of the evolutionary rate of the inputs.

VIII. AcCELERATED-GRAPPA
We made several modifications to the GRAPPA code to

accelerate the tree scoring procedure by forcing it to dispatch
its median computations to the median cores on the FPGA.

Table 2 shows our average speedups for entire GRAPPA
runs over 10 unique 8-leaf, 100-gene synthetic datasets. The
input sets were produced by synthesizing phylogenies using a
specified average edge distance. The leaves are extracted for
use as inputs. The speedup for each experimental run was
computed as timesw I timeHw). The results shown are the
arithmetic mean of the individual speedups relative to software
over each set of 10 GRAPPA runs for each input distance, as
described for the breakpoint median performance results.

As with the breakpoint median performance results, the
results show a clear trend where the average speedup increases
with the evolution rate of the input set. However, these results
are even more sensitive to the input set's evolution rate. There
are two reasons for this. First, higher evolutionary rate input
sets force GRAPPA to spend higher portions of its execution

1-4244-1509-8/07/$25.00 02007 IEEE 894

time computing medians. In other words, more difficult data
sets force the median computation to become more significant
a bottleneck. Thus accelerating the median computation has a
higher impact on overall application speedup. Second, the
median computations themselves are more greatly accelerated
as the diameter of the median inputs increase. Speedup results
range from 5X to 189X as the average input diameter increases.

TABLE II. PERFORMANCE RESULTS FOR AcCELERATED-GRAPPA.

Average
Events

per Edge
10
11
12
13

Average
Application
Speedup
5.604
9.43 1
129.097
189.273

IX. CONCLUSIONS AND FUTURE WORK

Our results indicate that Accelerated GRAPPA is capable
of achieving an order 100 speedup for input sets that have a
relatively large diameter (high evolution rate).

We are currently developing a tree generation and bounding
core that performs tree space exploration. Our current design
requires only two BRAMs, indicating that it is possible to
implement approximately 100 parallel tree generation cores on
a single Virtex-2 Pro 100. Since this organization matches the
behavior of GRAPPA in cluster mode, we refer to this
approach as "cluster-on-a-chip". Our next goal is to combine
tree generation and bounding cores with median cores on a
single FPGA, allowing candidate trees from any of the tree
generation and bounding cores to be scored with median cores
on the same FPGA.

REFERENCES

[1] M. Blanchette, T. Kunisawa, and D. Sankoff, "Parametric genome
rearrangement," Gene, 172, GC1 1--GC 17, 1996.

[2] J. Felsenstein, J.,"The number of evolutionary trees," Systematic
Zoology 27, 27-33, 1978.

[3] R.Olmstead, J. Palmer, "Chloroplast DNA systematics: a review of
methods and data analysis," Amer. J. Bot. 81, 1205-1224, 1994.

[4] G. Bourque, P. Pevzner, "Genome-scale evolution: Reconstructing gene
orders in the ancestral species," Genome Research 12, 26-36, 2002.

[5] D.A. Bader, B.M.E. Moret, M. Yan, "A fast linear-time algorithm for
inversion distance with an experimental comparison," J. Comput. Biol.
85, 483-491.

[6] A. Siepel, B.M.E. Moret, "Finding an optimal inversion median:
experimental results," 1st Workshop on Algs. in Bioinformatics
(WABI'01), Volume 2149 of Lecture Notes in Computer Science, 189--
203.

[7] B.M.E Moret, J. Tang, L.-S. Wang, T. Warnow, "Steps toward accurate
reconstructions of phylogenies from gene-order data," Comput. Syst.
Sci., 65(3), 508-525, 2002.

[8] B.M.E. Moret, J. Tang, T. Warnow, "Reconstructing phylogenies from
gene-content and gene-order data," Mathematics of Evolution and
Phylogeny, 0. Gascuel, ed., Oxford Univ. Press, 321--352, 2005.

[9] D. Huson, S. Nettles, and T. Warnow, "Disk-covering, a fast converging
method for phylogenetic tree reconstruction," J. Comput. Biol. 6(3),
369 386, 1999.

[10] J. Tang, B.M.E. Moret, "Scaling up accurate phylogenetic reconstruction
from gene-order data," Proc. 11th Conf. on Intelligent Systems for Mol.
Biol. ISMB'03, in Bioinformatics 19, i305-i312.

[11] Jason D. Bakos, "FPGA Acceleration of Gene Rearrangement
Analysis," IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2007), April 23-25, 2007.

[12] J.H. Nadeau, B.A. Taylor, "Lengths of chromosome segments conserved
since divergence of man and mouse," Proc. Nat'l Acad. Sci. USA 81
(1984), 814-818.

[13] N. Saitou, N. Nei, "The neighbor-joining method: A new method for
reconstrucing phylogenetic trees," Mol. Biol. & Evol., 4:406-425, 1987.

[14] F. Ronquist, J. P. Huelsenbeck, "MrBayes 3: Bayesian phylogenetic
inference under mixed models," Bioinformatics Vol. 19 no. 12 2003, pp
1572-1574.

[15] L. Wang, R. Jansen, B. Moret, L. Raubeson, T. Warnow. "Fast
phylogenetic methods for genome rearrangement evolution: An
empirical study," Proc. 7th Pacific Symp. On Biocomputing (PSB'02),
524--535. World Scientific Pub.

[16] M. Blanchette, G. Bourque, D. Sankoff, "Breakpoint phylogenies," S.
Miyano and T. Takagi, editors, Genome Informatics 1997, pages 25-34,
Univ. Academy Press, Tokyo, 1997.

[17] G. Bourque and P. Pevzner, "Genome-scale evolution: Reconstructing
gene orders in the ancestral species," Genome Research 12, 26 36
2002.

[18] I. Pe'er, R. Shamir,"The median problems for breakpoints are NP-
complete," Elec. Colloq. on Comput. Complexity, 71, 1998.

[19] A. Caprara, "On the practical solution of the reversal median problem,"
Proc. 1st Workshop on Algorithms in Bioinformatics, (WABI'01),
Volume 2149 of LectureNotes in Computer Science, 238-251, 2001.

[20] K.S. Hemmert, K.D. Underwood, "An analysis of the double-precision
floating-point FFT on FPGAs," Proc. 13th Annual IEEE Symp. on Field-
Programmable Custom Computing Machines, 2005. FCCM 2005, 18-20
April 2005 p. 171 - 180.

[21] F. Cardells-Tormo, P.-L. Molinet, "Area-efficient 2-D shift-variant
convolvers for FPGA-based digital image processing," IEEE Trans. on
Circuits and Systems II: Express Briefs, Vol. 53, Issue 2, Feb. 2006 p.
105 - 109.

[22] J.-W. Jang, S.B. Choi, V.K. Prasanna, "Energy- and time-efficient
matrix multiplication on FPGAs," IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, Vol. 13, Issue 11, Nov. 2005, p. 1305 -
13 19.

[23] E. Allen Michalski, D.A. Buell, "The Scalable Architecture for RSA
Cryptography on Large FPGAs," Proc. 16th Int'l Conf. on Field Prog.
Logic and Appl. (FPL 2006), Madrid, Spain, August 28-30, 2006.

[24] E. Sotiriades, C. Kozanitis, A. Dollas, "FPGA based architecture for
DNA sequence comparison and database search," 20th International
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006, 25-
29 April 2006.

[25]
[26]

http://www.progeniq.com, Feb. 2007.
I. Skliarova, A. B. Ferrari, "FPGA-Based Implementation of Genetic
Algorithm for the Traveling Salesman Problem and Its Industrial
Application," Proc. Applications of Artificial Intelligence and Expert
Systems, IEA/AIE 2002, Cairns, Australia, June 17-20, 2002.

1-4244-1509-8/07/$25.00 02007 IEEE 895

