Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2013, Article ID 849545, 9 pages
http://dx.doi.org/10.1155/2013/849545

Research Article

A Heuristic Scheduler for Port-Constrained

Floating-Point Pipelines

Zheming Jin and Jason D. Bakos

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA

Correspondence should be addressed to Jason D. Bakos; jbakos@cse.sc.edu

Received 3 October 2012; Revised 2 January 2013; Accepted 16 January 2013

Academic Editor: Miriam Leeser

Copyright © 2013 Z. Jin and J. D. Bakos. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We describe a heuristic scheduling approach for optimizing floating-point pipelines subject to input port constraints. The objective
of our technique is to maximize functional unit reuse while minimizing the following performance metrics in the generated circuit:
(1) maximum multiplexer fanin, (2) datapath fanout, (3) number of multiplexers, and (4) number of registers. For a set of systems
biology markup language (SBML) benchmark expressions, we compare the resource usages given by our method to those given by
a branch-and-bound enumeration of all valid schedules. Compared with the enumeration results, our heuristic requires on average
33.4% less multiplexer bits and 32.9% less register bits than the worse case, while only requiring 14% more multiplexer bits and 4.5%
more register bits than the optimal case. We also compare our results against those given by the state-of-art high-level synthesis
tool Xilinx AutoESL. For the most complex of our benchmark expressions, our synthesis technique requires 20% less FPGA slices

than AutoESL.

1. Introduction

Over the past twenty years there has been a wide range
of research in the field of high-level synthesis for pipelined
datapaths [1-3]. High-level synthesis methods can often be
guided by user-specified constraints that result in throughput
and area tradeoffs for the generated circuits. For example,
designers may wish to generate circuits with as few resources
as possible at the expense of increased multiplexer fan-in
that generally results in lower maximum clock frequency. On
the other hand, designers may want the generated circuits to
achieve maximum clock speed without regard to the resultant
resource requirement.

While most HLS tools consider these types of constraints,
few incorporate input port-constraints when optimizing
resource usage. In other words, many HLS tools do not allow
the designer to explicitly constrain the synthesis process for
memory bandwidth.

As an example, consider the following arithmetic expres-
sion, the phylogenetic likelihood function (PLF), which is
widely used in likelihood-based phylogenetic tools and is
shown in [4]
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Written in another way, the PLF for a single symbol can
be computed using the following line of high-level code:

out_A = (AA1I x A1+ AC1x Cl + AG1 x G1 + AT1 xT1)
X (AA2 x A2+ AC2x C2

+ AG2 x G2 + AT2 x T2).
()

This expression requires sixteen floating-point inputs.
To achieve maximum throughput when implemented as a
pipeline, all sixteen inputs must be read and fed into the
pipeline in each clock cycle. Since there are no dependencies
in this expression, this would allow one output value to be
produced every clock cycle after the pipeline fills. However,



this would require that there is sufficient memory bandwidth
to keep the pipeline supplied with data, requiring a sustained
bandwidth of sixteen floating-point values per clock. This
may require more memory bandwidth than available to
the processing element. Stated another way, the expression
contains 16 right-hand-side (RHS) variables and the corre-
sponding data flow graph (DFG) would therefore contain
16 logical input ports. When this expression is synthesized
onto a platform that presents less than 16 physical ports to
the synthesized logic due to limitations in input bandwidth,
the synthesizer is given an opportunity to optimize the
synthesized logic.

Assume that our platform does not have sufficient mem-
ory bandwidth to read all inputs in a single cycle but instead
is limited to reading only two input values per clock. This
creates a port constraint. In this case, the pipeline requires
eight cycles to read the inputs and is thus limited to a
maximum throughput of one result every eight cycles. In
other words, the pipeline has a data introduction interval
(DII) of 8. The circuit can achieve this throughput using only
two multipliers and one adder, as opposed to instancing one
functional unit for each arithmetic operator in the expression.
This is because one multiplier calculates a product each cycle,
and an adder is required for accumulation, and a second
multiplier for the outermost multiply.

Even when an HLS tool takes advantage of port con-
straints to minimize functional unit usage, before generating
hardware it must choose from a set of valid pipelines. Unfor-
tunately, the number of valid port constrained pipelines for
a given DFG grows exponentially as a function of scheduling
flexibility for each DFG operation. This scheduling flexibility
depends on the depth of the functional units and the structure
of the DFG, but most importantly on the degree to which
the input ports are constrained (the DII). Although all of
these pipelines generate hardware having the same functional
behavior, there can be significant differences in the logic
resources and clock speed. More specifically, the number
of register bits and degree of fan-in and fan-out will vary
depending on which schedule is chosen to generate the
pipeline.

In this paper, we describe a heuristic for generating a
port-constrained pipeline for an arbitrary acyclic DFG and
compare its results—in terms of resource overhead (outside
of the functional units) and routing complexity (in terms of
fan-in and fan-out)—against those of an exhaustive branch-
and-bound enumeration and those of a state-of-the-art com-
mercial HLS tool. Our approach is a resource-constrained
scheduling algorithm that builds upon the idea of input port
priorities, but the key novelty of our approach is the order
in which operations are scheduled and the analysis of how
this ordering affects performance metrics such as maximum
fan-in and fan-out. Note that exhaustive enumeration of all
valid schedules is not generally feasible when synthesizing
complex arithmetic expressions, but for this paper we used
this technique to provide comparative results.

The contribution of this work is a port-constrained
pipeline scheduler that employs a heuristic to reduce register
and multiplexor usage. It is capable of synthesizing program
loops containing no loop dependencies.
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2. Previous Work

HLS algorithms for synthesizing arithmetic pipelines have
been under development for 40 years. In this section we will
highlight some of the seminal works that focus on resource-
constrained scheduling.

Sehwa [5] was the first tool developed for synthesizing
a pipelined datapath and used three types of scheduling
algorithms based on time and cost constraints. Sehwa breaks
pipeline synthesis into three steps: scheduling, resource allo-
cation, and register-transfer synthesis. High-level synthesis
tools developed since continue to follow these three basic
steps. In addition, the authors of this tool derived a lower
bound to the number of functional units in case of pipeline
scheduling and implemented an allocation table to manage
the binding of the functional units.

Over the years, researchers have sought to improve the
scheduling algorithms used for high-level pipeline synthesis.
Paulin and Knight developed the force-directed scheduling
algorithm, which improved upon earlier scheduling algo-
rithms in that it was capable of balancing the number of
operations in each control step [6].

The ALPS synthesis tool formulated the scheduling prob-
lem as an integer linear programming model and was capable
of performing functional pipelining using multicycle (as
opposed to pipelined) functional units [7].

Park and Kyung described an iterative refinement method
based on the graph-bisection problem for rescheduling some
of the operations in the given schedule [8]. The method
produced near optimal results in polynomial time but did not
incorporate port constraints.

More recent work in high-level synthesis has focused
on resource sharing and loop optimizations targeting fully
pipelined functional units. Sun et al. introduced a pipeline
synthesis flow which exploits resource sharing and module
selection, yielding 2-3 times reduction in resources as com-
pared to existing approaches [9]. While most work in high-
level synthesis addresses latency-constrained and resource-
constrained scheduling problems, few consider input port
bandwidth, which limits the amount of data a circuit can
receive every clock cycle.

Scrofano et al. used one floating-point core of each oper-
ation type to evaluate an expression whose inputs arrive
sequentially [10]. The area-efficient architecture and algo-
rithm reuses the same core for a series of floating-point
computations which are dependent upon one another. How-
ever the algorithm is limited to generating pipelines that can
receive only one input every clock cycle.

Ishimori et al. assigned priority to a fixed number of
input ports based on port usage frequency, number of
successors, and divider tree coverage to address the input
data bandwidth limitation in their reconfigurable computing
platform ReCSiP [11]. In their scheduling algorithm, an input
port with higher priority will be scheduled first. They were
able to reduce FPGA resources by 17.57% on average without a
significant reduction in clock speed. Their proposed method
of port priority assignment reduced the pipeline latency and
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FIGURE 2: RTL structure of (1) with 16 input ports and maximum
resource usage.

hardware costs for most arithmetic expressions. However,
their scheduling algorithm did not produce minimum num-
ber of floating-point operators for each expression in the
benchmark set.

3. Overview of Parallel Pipeline Scheduling

In this section we give a brief overview of parallel pipeline
scheduling. We will use the PLF expression, described in
Section 1, as a motivating example.

In pipeline scheduling, an arithmetic expression—
referred to as a task—is partitioned into a sequence of
subtasks. For the purpose of this discussion we assume that
each subtask is executed in one clock cycle. Consecutive
tasks are initiated at an interval of DII cycles.

Figure 1 shows an example data flow graph (DFG) of
the PLF arithmetic expression (1) described in Section 1
partitioned into four subtasks labeled as A, B, C, and D. All
the operations in a subtask are executed in parallel.

Figure 2 shows its RTL structure, including pipeline
registers (shown as gray boxes) assuming 16 input ports. This
implementation is highly parallelized, but unless all the input
data can be delivered in each clock cycle it is also inefficient
because there is no resource sharing.

4. Port-Constrained Pipeline Scheduling

In the following descriptions, we refer to logical ports—the
inputs and output of an expression’s DFG—simply as “ports.”
We refer to physical ports—the physical mechanism by which
input data is delivered to and output data is produced from
the synthesized pipeline each cycle—as “physical ports”

4.1. Lower Bound to the Number of Functional Units. In
conventional scheduling it is sufficient to provide at least one

FIGURE 3: RTL structure of PLF using two ports and minimum
functional operators.

functional unit of each required functional unit type to ensure
that a schedule exists. In case of pipelining scheduling, we
use Theorem 4 of Sehwa [5] to calculate a lower bound to
the minimum number of functional units of a functional unit
type using a ceiling function, that is, R > ceil (M/DII) where
M is the number of operators of a type in the DFG and DII the
data introduction interval described in Section 1. This lower
bound is proven to be optimal [12].

For example, assume PLF expression is to be implemented
on an FPGA whose input bandwidth is limited to accepting
only two input values per clock cycle. In this situation, the
circuit would have two physical ports reading two values per
cycle. Since the circuit requires 16 inputs when only two can
be read per cycle, the DII would therefore be 8.

A resource-constrained version of the circuit is shown
in Figure 3. It has two input ports. The multiplier labeled
as A is shared by all the multiplication operations at the
input ports and the adder labeled as BC is shared by all
the addition operations in subtasks B and C. The multiplier
labeled as D at the output is not shared. Seven registers
and two multiplexers (mux) are used in the port-constrained
datapath implementation.

4.2. Scheduling. “as soon as possible (ASAP)” and “as late
as possible (ALAP)” are two scheduling techniques widely
used in datapath synthesis. ASAP repeatedly schedules the
ready operations to a time slot in a manner of first-come-
first-served. The start time of each operation is the minimum
allowed by its dependent operations and their corresponding
latencies. In contrast, ALAP scheduling algorithm provides
the corresponding maximum values of the start times, com-
puted by reversing the directions of the edges in the DFG and
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TABLE 1: Two schedules of PLE.
Node Op S, S, Mobility
1 mul 3 3 [3,9]
2 mul 5 5 [5,11]
3 mul 7 7 (7,12]
4 mul 9 9 [9,13]
5 mul 1 1 (11, 14]
6 mul 13 13 [13,15]
7 mul 15 15 [15,16]
8 mul 17 17 17
9 add 15 8 [8,17]
10 add 14 12 [12,18]
1 add 19 16 [16,19]
12 add 20 20 20
13 add 2 17 [15,22]
14 add 23 23 23
15 mul 26 26 26

generating an ASAP schedule in reverse from the output to
the inputs.

Both scheduling techniques can be extended to handle
pipelined resources by allowing the scheduling of overlapping
operations with different start times and no data dependen-
cies.

Consider again the PLF arithmetic expression (1)
described in Section 1. The number of input-port operations
are 16 multiplications and the number of unique operation
types is two (i.e., addition and multiplication). The resource
conflict occurs when two different operations at different
scheduled times activate the same operation at the same
time. In other words, resource-sharing usage is violated
when the time interval between two operations of the same
type is an integer multiple of DII of a pipelined datapath. The
pipelined nature of the datapath requires that if the same two
operations are scheduled at time ¢, and ¢, the corresponding
arithmetic unit can be shared unless t, = t, (mod DII). In
this case, a new operator of the conflicting type is required.

For each unscheduled DFG, there exist different sched-
ules that meet the minimum resource constraint. Each
operation in a schedule can be allocated into a time slot inside
the range of schedule cycles. With pipelined ASAP and ALAP
scheduling we can determine the range of scheduled cycles
for every operation in the schedule. We refer to the range
of scheduled cycles of an operation as the mobility of an
operation. Note that the number of possible schedules can be
estimated as the product of the mobilities of all the operators
in the DFG.

Table 1 shows two valid, arbitrarily chosen schedules S,
and S, of the PLF expression subject to the constraints of one
input port (DII = 16) and minimum resource usage (one
adder and one multiplier). Note that the example in Figure 3
assumed two input ports and therefore required an additional
multiplier. For this example we assume the latency of both
operations is one. For example, the mobility of node 9 is from
cycle 8 to cycle 17 while the mobility of node 10 is from cycle
12 to cycle 18.
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Any schedule can be obtained by scheduling one oper-
ation at a time. An operation can be moved into an early
or later time slot as long as it does not violate the data
dependence constraints. However, different schedules will
affect the resource usage (e.g., maximum fanin, number of
multiplexers and registers) of a circuit synthesized from the
schedule.

Figures 4 and 5 illustrate the diagrams of datapaths
synthesized from schedules S; and S, listed in Table 1.

In Figure 4, the datapath requires six multiplexers, the
maximum fanin of which is 6. The number of registers
allocated is 7 (excluding the output register). The output of
the mux with maximum fanin goes to the left input port of
the adder. Though the adder is shared by all six additions in
the DFG, the delay of scheduling the add nodes in S; reduces
the availability of the adder’s inputs for sharing.

In Figure 5, there are four multiplexers. The maximum
mux fanin is 2 and the number of registers is 6.

4.3. Proposed Scheduling Approach. Our proposed method
is shown as Algorithm 1. The proposed algorithm only con-
siders fixed, maximume-rate (i.e., minimum DII) pipelining
and its goal is to achieve maximum hardware utilization,
minimum resource requirement, and high throughput. As
DII is a function of the number of physical ports, the pro-
posed method considers minimum DII for a given number of
physical ports. More resources are required when the design
has more physical ports and the maximum-rate pipelining
is considered. We assume that the inputs and operators are
single precision floating point. We also assume that there are
no control flow or loop dependencies in the DFG.

Before the scheduling operation begins, we assign port
priority to all input port operators. This procedure associates
a scheduling step within the data introduction interval in
which each input arrives at the physical ports of the pipeline.
This procedure is performed according to the port constraints
as defined by the user, and the port priorities are assigned
using the method of Ishimori et al. [11].

To minimize the total number of pipelined floating-
point functional unit, we calculate the lower bound for each
function unit type and instance only this many. Then, we
schedule each operation in the DFG, inserting delay into
the schedule to resolve any resource conflicts among the
operations in the schedule. Our secondary objective is to
reduce the overheads, in terms of data path multiplexors and
pipeline registers, required for the sharing of functional units.
This is accomplished by load balancing the functional units—
attempting to assign each functional units an equal number
of DFG operations.

Next, the algorithm schedules each operator in the DFG,
one at a time, after all of the operators upon which it depends
have been scheduled. For each operator to be scheduled, the
algorithm searches for the earliest control step in which it
can be scheduled without requiring that additional functional
units be added. Once an operator is scheduled, its position
within the schedule is locked in the scheduling table.

Note that our approach differs from conventional ASAP
scheduling. Conventional ASAP schedules the operations
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V=V -{vk
end

while V#0 do

else

end
end
end
end

break;
end
L = Next(L);
end
if L =0 then
return false;
end
end
return true;

for each port vertexv € V' do
e(v) = Port_Sched(v, P, F);

for each operation vertex v € V' do
if Prev_Sched (Pred(v), E) then
if Conflict(E, RAT(o,), DII) then
e(v) =e() +1;

e(v) = MAX (Pred(v), E);
UpdateRAT (v, 0, e(v));
e(v) =e(v) + D,;
V=V-{uv}

Conflict(E, RAT(o,), DII)
for each functional unit r € R do
L =RAT(o,,7);
while L+ 0 do
if e(v) = First(L) (mod DII) then

ALGORITHM 1: Heuristic minimum-resource schedule.

in a topological order without incorporating any resource
constraints. In the proposed approach, we schedule the
inputs according to port priority (which affects the operator
schedule) and minimize the number of functional units
using the lower bound and delay insertion. A functional
unit binding step is simultaneously performed that assigns
the scheduled operator to a functional unit using a resource
allocation table.

4.4. Scheduling Algorithm. The input to the scheduling is a
data flow graph (DFG), a directed acyclic graph G (V, E),
which is defined as follows. V is a set of vertices comprised of
logical input ports and operators. Each vertex v is associated
with one or more outgoing edges.

The scheduling will have each edge annotated with the
control step in which its corresponding result of vertex v is
available in the schedule. In order to track the utilization of
each functional unit, we create a data structure called the
resource allocation table (RAT). The number of rows in the
table corresponds to the number of unique operator types in
the DFG. The number of columns for each operation row is
calculated using the lower bound of the number of functional

units as described in Section 3. Each cell of the table is a list
that records the control steps in which each resource is busy.

O is the set of all operations. Each vertex v € V represents
either an input port or an operation. For each operation
vertex v, its type is defined as o, (e.g., ADD, MUL) where o, €
O. Each operation o, can be executed in D, control steps. The
set of immediate predecessors of v—the vertices that produce
intermediate results used as an operand to v—is denoted by
Pred(v). e(v) € E represents the scheduled control step,
which is the clock cycle in which the operator v produces a
result in the pipeline. R(o,,) represents the minimum number
of functional units of type o,,.

Port_Sched(v, P, F) returns the scheduled step for an
input port constrained by the number of physical ports P
and the port priority F. Prev_Sched(Pred(v), E) returns true
if all the nodes in set Pred (v) are scheduled. The function
MAX(Pred(v), E) returns the earliest control step that v can
be scheduled. First(L) returns the first variable in list L and
Next(L) returns the following variable in list L.

The first for loop in the algorithm initializes the outgoing
edges of all the port nodes in the DFG. In the following while
loop, each iteration determines the nodes that have all their
predecessors scheduled. For each schedulable operation node



FIGURE 4: RTL structure of (1) from a PLF schedule S,. It has one
port and uses minimum functional units.

F1GURE 5: RTL structure of (1) from a PLF schedule S,. It has one
port and uses minimum functional units.

v, function Conflict(E, RAT(o,), DII) looks up the row of the
table RAT(o,) to examine if the current control step can be
allocated without causing resource conflict with the list of the
control steps in RAT(o,, r) where r = {1,2,...,R(0,)}.

If there are any conflicts, the node v cannot be sched-
uled to the current control step and its scheduling will be
delayed to the next control step. If there is no conflict,
then the vertex v is assigned to the earliest possible step.
UpdateRAT (v, 0, e(v)) updates the resource allocation for
vertex v of operation o, along with the scheduled control
step. As the number of functional units of each type is fixed,
UpdateRAT (v, 0,, e(v)) selects the current least used func-
tional unit r to achieve a balanced global binding between
the operations in DFG and the functional units.

5. Experimental Results

The proposed scheduling method is implemented in the C
language and the generated pipelines are described in Verilog
Hardware Description Language.

Since Ishimori et al. only briefly described their mod-
ified list scheduling algorithm, we instead implemented a
modified branch-and-bound method that enumerates all the
feasible schedules given the constraint of minimum number
of functional units [11, 13]. In order to evaluate our pro-
posed approach we used a set of SBML ordinary differential
equation (ODE) rate law expressions as benchmarks. These
are a subset of the most complex expressions (in terms of
number of inputs and operators) from Ishimori’s work. We
chose these benchmarks because they represent typical ODE
expressions in that they have multiple inputs and no loop-
carried dependencies. All of the experiments assume that the
pipelines are generated in the most highly constrained way
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possible, in which only one input can be read each cycle and
therefore the circuit has maximum DII given the number
of inputs. We made this decision because this situation
presents the largest search space to a scheduler that supports
functional unit sharing, and thus the generated pipelines will
have the highest variation in performance depending on the
details of the scheduler implementation.

For each benchmark in Table 2, we list the number
of operations of each type, DII (assuming a platform with
one physical port), the number of fully pipelined Xilinx
floating-point functional units [14], multiplexer (MUX) fanin
and datapath fanout, the total number of MUX inputs, and
the total number of registers required by the synthesized
datapath. Note that MUX inputs and registers are counted in
bits. The latency of the pipelined functional units is 11, 6, and
28 for adder, multiplier and divider, respectively.

Table 2 also shows the results given by synthesizing
using our proposed method (P) compared with the best and
worst results given by exhaustive enumeration of all minimal
functional unit schedules. Since the enumeration space is the
product of the mobilities of all operations, approximately one
million samples are used for the expressions ordbbr, ordbur,
and ppbr to avoid fully exploring their enumeration spaces
that are extremely huge in practice. However, the enumera-
tion spaces of the other expressions are fully explored.

5.1. Register Usage. For each arithmetic expression, Table 2
shows that the pipeline generated with our heuristic requires
close-to-minimum (4.5% more) number of registers, while
the average increase from the best case to the worst case is
56%. Registers are used to buffer intermediate results within
the pipeline between functional units that produce the results
and functional units that consume the results. Registers are
connected serially to move the result from the cycle where
it is produced to the cycle when it is needed. In other words,
when there is a dependency between two operations, the steps
at which the dependent operations are scheduled affects the
amount of registers needed for keeping the results between
the operations.

There are several methods for mapping intermediate
values to registers in the generated pipeline. The left edge
algorithm [15] uses the minimum number of registers but
does not always lead to efficient MUX usage. A register
allocation algorithm based on weighted bipartite matching
(WBM) was proposed to reduce the MUX cost introduced
in register allocation [16]. Chen et al. used a modified WBM
method to show that register binding has great influence
on the number of MUXs after scheduling and functional
unit binding are fixed [17]. Later Chen and Cong presented
two algorithms, register binding and port assignment for
multiplexer reduction in large designs [18]. Although their
proposed algorithms of multiplexer reduction were able to
achieve much better results for large designs, they did not
explore the use of their methods for a pipelined design.

We extended WBM to perform pipelined register binding
after scheduling and functional unit bindings are finished.
The ASAP nature of our scheduler schedules the dependent
operations as close as possible to reduce the total number of
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TABLE 2: Synthesis results of SMBL arithmetic expressions.

System with one input port Max fan-in Max fan-out MUX inputs (bits)  Registers (bits)

Expression + X + DII Min P Max Min P Max Min P Max Min P Max
ucti
v = (V x S/Km)/ 3 25 5 4 4 3 4 5 480 480 742 726 790 1148
(1+ Ka/Ac + (S/Km)(1 + Ka/Ac))
uuci

2 2 4 5 4 4 3 4 5 416 480 716 659 691 1081
v=(VxS/Km)/(1 +(S/Km)(1 + I/Ki))
uaii

2 1 4 5 4 4 4 4 5 448 512 640 538 583 810
v=(VxSKm)/(l+S/Km+ Ka/Ac)
ordbbr

v = (Vf(Ax B- P x Q/Keq))/
(AxB(1+P/KiP+ KmB(A+ KiA)+ KmA X B) +

El) 116 7 14
where E1 = [Vf/(Vr x Keq)] x [KmQ x P(1 +

A/KiA) + Q x E2), E2 =

Kmp[1+KmA x B/(KiA x KmB) + P(1+ B/KiB)]

12 14 7 9 14 1344 1772 2700 1771 1803 2980

ordbur

v = (Vf(A x B - P/Keq))/

([AX B+ KmA x B+ KmBx A+ [Vf/(Vr x
Keq)](KmP + P(1 + A/KiA)])

6 8 6 6 10 928 992 1606 1474 1476 2172

ppbr

v = (Vf(AxB-PxQ/Keq))/

(AxB+KmBx A+KmAxB(1+Q/KiQ+E3))8 12 5 13
where E3 = [Vf/(Vr x Keq)][KmQ x P(1 +

AJKiA) + QKmP + P)]

8 12 6 7 13 1056 1248 2054 1246 1282 1850

registers. Furthermore, we reduced the number of registers
needed at each point of intermediate result buffering based
on the register binding algorithms. Assume two dependent
operations o; and o; are scheduled at time ¢, and t;, (¢, > t,,),
respectively, then the minimum number of registers needed
for buffering the intermediate results is the ceiling function
of the difference of schedule time divided by DII, that is,
ceil((t, — t,)/DII). That is to say, the number of registers
needed is less than t;, — t,.

5.2. Multiplexers Usage. In Table 2, the average increase from
the best case to the worst case is 72% in the number of MUX
input bits. The total number of MUX inputs required by the
pipelines generated with our heuristic is, on average, 14.4%
more than the best cases and 33.4% less than the worst cases.

We find that there is a relatively small variance in MUX
fanin and datapath fanout but a large variance in the number
of MUX inputs. Just as the minimum number of functional
units is a function of DII, MUX fanin and datapath fanout
are also a function of DII.

Multiplexers in a datapath can be broken down into
MUXRs and MUXPs. MUXRs represent a multiplexer intro-
duced before a register when more than one functional unit
produces results and stores them into a shared register, as
shown in Figure 6(a). MUXP is a multiplexer used to share
a port of a functional unit when more than one register feeds
data into the same port, as shown in Figure 6(b).

Table 3 compares the MUXPs and MUXRs usage of the
proposed method to the best and worst results. On average,

2 2 2 \:

Functional Functional
unit unit

()

| Register | | Register |

MUXP

(b)

FIGURE 6: (a) Multiplexer introduced before a register (b) Multi-
plexer introduced before a functional unit port.

the proposed method uses 15% less MUXPs and 71% less
MUXRs compared to the worst case.

5.3. Fanin and Fanout. Comparing the results of our method
with the best and worst cases of the branch-and-bound
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TABLE 3: Number of MUXPs and MUXRs.

Exp. Number of MUXPs (bits) Number of MUXRs (bits)

Min Proposed Max Min Proposed Max
ucti 352 480 512 0 64 224
uuci 288 416 448 0 64 288
uaii 288 384 384 64 128 256
ordbbr 1184 1440 2016 0 320 832
ordbur 832 928 1152 0 64 512
ppbr 1024 1120 1568 0 128 608

TABLE 4: Maximum fan-in and number of multiplexers given by
AutoESL and the proposed.

Exp. Max fan-in MUX Inputs (bits)
AutoESL Proposed AutoESL Proposed
ucti 4 4 533 480
uuci 4 4 469 480
uaii 4 4 405 512
ordbbr 14 12 1984 1772
ordbur 7 6 1104 992
ppbr 1 8 1532 1248

TaBLE 5: Implementation results given by AutoESL and the pro-
posed.

AutoESL

Slice Slice regs Slice luts F, . Slice Slice regs Slice luts F, .

ucti 840 2525 1599 352 844 2501 1483 376
uuci 784 2429 1558 350 798 2337 1461 356
uaii 807 2459 1597 351 861 2391 1497 363
ordbbr 1417 3826 2783 270 980 2955 2349 350
ordburl094 3091 2129 343 910 2752 1915 351
ppbr 1197 3440 2207 250 1050 2833 2072 353

Exp. Proposed

method, maximum fanin and maximum fanout using the
proposed method are, on average, 20% more than the best
case and 21% less than the worst case found in the exhaustive
search. The operation binding using RAT gives a balanced
usage of functional units. Scheduling the operations in the
ASAP manner helps register binding algorithm reduce the
chance of adding more registers for buffering conflicting
intermediate results in a resource-constrained pipeline. The
pipelined WBM takes into account the interconnection cost
and further optimizes the register and multiplexer usage. For
these reasons, we can assume that pipelines generated with
our heuristic can be implemented with a clock speed that is
close to the optimal schedule with minimal functional unit
usage.

5.4. Comparison with Commercial HLS Tools. We also com-
pare our results to those given by the commercial tool Xilinx
AutoESL version 2012.1. We also evaluated three other com-
mercial high-level synthesis tools, ImpulseC CoDeveloper
[19], Synopsys Synphony C compiler [20], and Cadence’s
C-to-Silicon compiler [21], but none of these were suitable
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for comparison. ImpulseC does not incorporate knowledge
of the port constraint to facilitate floating-point functional
unit sharing. Synopsys Synphony C compiler incorporates
functional unit sharing, but only when sharing the functional
unit would result in it being used to compute a result less
frequently than the pipeline’s DII. However, since Synphony
C does not support floating-point operations, we had to
determine this using integer functional units. Cadence’s C-
to-Silicon compiler does not natively support floating-point
operations.

AutoESL supports floating-point operations. The tool
accepts, as input, a C-based design description with directives
and constraints [22]. It has a built-in technology library
that specifies the timing and area details of all supported
Xilinx devices. We set the timing constraint to 350 MHz
in AutoESL to make AutoESL generate maximum-latency
Xilinx floating-point operators. The latency of floating-
point addition, multiplication and division is 11, 6, and 28
respectively. AutoESLs FIFO interface is used for its interface,
which allowed us to tightly control the input bandwidth. The
optimization directive “set_directive_pipeline” is specified to
enable AutoESL to synthesize a pipeline with DII equal to
1. We also specify the input port’s data read order in the C-
based loop with Ishimori’s port priority. We discover this
is an effective scheduling guide for AutoESL to generate a
schedule with low pipeline latency. To automate generation
of place-and-route and timing results of all the proposed and
AutoESLs designs in Xilinx ISE 13.2, we used a Tcl-based
command script that contains the same synthesis, map, place
and route and timing settings. In addition, for each design
obtained by AutoESL we removed the combinational logics
that drive the clock-enable input of the Xilinx floating-point
operators and the primary output port, ap_ready. All these
settings are suitable for a fair comparison with our proposed
synthesis results.

The target FPGA device is Xilinx Virtex5 LX330-FF1760-
2 [23]. The datapath width of all the generated designs is
32 bit. The pipeline output rate is defined as the number of
cycles between the time a task produces a result and the
time the next task produces a result. As the pipeline output
rate is equal to DI, it is not shown in Table 2. The resource
usage is broken down into the required number of floating-
point functional units of each type and FPGA resources in
terms of slices, slice registers, and slice LUTs. The pipeline
performance is estimated using DII, FPGA slices and design
frequency in MHz. Each design is generated to have one
physical port in order to evaluate the capability of resource
sharing and resource usages of registers and multiplexers. The
design accepts input data every clock cycle if data is ready.

Table 4 compares maximum fanin and multiplexer inputs
of each synthesized design from AutoESL and our proposed
approach. On average, our maximum fanin and multiplexer
inputs are 8% and 3% less than AutoESLs synthesis results,
respectively.

Table 5 compares FPGA results of AutoESL and ours
for the benchmark expressions. For all the benchmarks, we
obtain, by averaging all the results, 10% less slice registers
and 8.5% less slice luts than AutoESLs results. We use, on
average, 3% more slices for ucti, uuci, and uaii whereas 20%
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less slices for ordbbr, ordbur, and ppbr. The designs meet
the timing requirement of 350 MHz. AutoESLs results do
not meet the timing constraint for ordbbr, ordbur, and ppbr
though the tool takes advantage of the timing specification
of the target Xilinx device in its synthesis flow. When the
complexity of the expression increases, maximum resource
sharing requires many control states to manage pipelined
register update and the execution of floating-point operations
in the RTL datapath. High fanout from the control path to
the datapath and high multiplexer fanin make the circuits
obtained by AutoESL unable to meet the timing.

6. Conclusion

Implementation of arithmetic expressions is a building block
in many large applications. Automatic synthesis of a complex
arithmetic expression with fine-granularity optimizations in
area and throughput gives designers the options to meet
the increasing demands of design productivity, high perfor-
mance, limited memory bandwidth, and FPGA resources.

In this paper, we proposed a heuristic scheduling with
port constraints. This heuristic is able to generate a datapath
that achieves near-minimal register usage and low multi-
plexer usage. The introduction of delay into the schedule
resolves the conflicts of immediate usage of floating-point
units and helps achieve minimum number of functional
units. A least-used resource binding in the schedule tries to
achieve a balanced number of MUX inputs.

Compared to the results of executing the time-consuming
branch-and-bound method, the heuristic approach gives us
a fast and resource-efficient design. Compared to the results
of the commercial synthesis tools, we use less resource usage
and achieve the timing constraint. The bandwidth-aware
and resource-constrained approach addresses the practical
limitations to the platform-dependent memory bandwidth
and hardware resource budget.
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