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Abstract—perfSONAR is a tool used to monitor and trou-
bleshoot problems in high-speed networks such as Science De-
militarized Zones (DMZs). It is essential to validate that data
transfers are performing as expected. However, perfSONAR
suffers from the trade-off between the measurement accuracy
and the overhead induced by its active tests.

This paper presents a scheme that offloads the traffic monitor-
ing to a programmable data plane (PDP) switch. The scheme in-
tegrates a PDP switch with perfSONAR, where the switch contin-
uously collects network measurements (e.g., latency, throughput,
packet loss rate) and periodically reports the measurements to
the perfSONAR archiver. This integration significantly enhances
the granularity, visibility, and troubleshooting capabilities of
perfSONAR. Additionally, the scheme automates the reporting
period according to the variability of the monitored measure-
ments, which eliminates the need of human intervention observed
in today’s networks. In contrast to traditional schemes that
report all measurements, the proposed approach uses the Linear
Prediction (LP) method to only report the samples that reveal a
variation on the measurements. Experimental results show that
the system reduces the number of reports by five times under
stable network conditions and sustains a relative mean error
(RME) below 0.06.

Index Terms—Programmable Data Planes, P4, Linear Predic-
tion, Adaptive Sampling, perfSONAR, Science DMZ.

I. INTRODUCTION

perfSONAR is a monitoring tool used on campus network,

Internet service providers (ISPs), research and education net-

works (RENs), and high-speed networks in general, including

Science Demilitarized Zones (DMZs) [1]. perfSONAR uses ac-

tive tests to synthetically generate end-to-end traffic and report

measurements based on these tests. The measurements are used

to infer potential network issues [2]. Despite its essential role

and widespread deployment, perfSONAR suffers from a trade-

off between the provided visibility and the induced overhead to

the network [3]. Additionally, the measurements collected by

perfSONAR are based on the synthetic traffic, which may not

accurately represent the actual network traffic. Furthermore,

the synthetic data may even interfere with the actual network

traffic, causing disruptions and artificial packet bursts.

This paper presents a scheme that offloads the traffic moni-

toring to a programmable data plane (PDP) switch, integrated

to perfSONAR. The scheme generates fine-grained measure-

ments by passively monitoring real traffic, without incurring

unnecessary overhead. Through this integration, the visibility,
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granularity, accuracy, and troubleshooting capabilities of perf-

SONAR are greatly enhanced [3].

A seamless integration between perfSONAR and the PDP

switch is accomplished by satisfying two design goals: (1)

using the perfSONAR archiver to store the measurements,

(2) using the perfSONAR configuration daemon to configure

the PDP switch at run time. To satisfy the first requirement,

the control plane of the PDP switch normalizes the raw

measurements extracted from the data plane and stores them

directly on the archiver’s database through its application pro-

gramming interfaces (APIs). To satisfy the second requirement,

a command is added to pSConfig, the configuration daemon

of perfSONAR. The PDP switch aggregates the measurements

and periodically reports them to the perfSONAR archiver. The

added command is used by the administrator to configure the

rate at which the PDP switch reports the measurements. Note

that a high reporting rate implies less aggregation, leading to

higher accuracy at the cost of increasing storage and processing

overhead. On the other hand, a low reporting rate implies more

aggregation, leading to lower accuracy but decreasing storage

and processing overhead.

The proposed system is flexible enough and allows the

network administrator to 1) adjust the reporting rate at run

time through pSConfig, or 2) automate the reporting rate

according to the variability of the monitored measurements.

The second approach uses the Linear Prediction (LP) method

[4]: instead of reporting all the measurements extracted by

the data plane, the control plane only reports the samples that

reveal a variation in the traffic.

The contributions of this paper are summarized as follows:

• Eliminating human intervention. The system enables the

administrator to adjust the reporting rate automatically.

• Increasing the accuracy of the reports by lowering the

aggregation at the data plane level. The control plane

can extract the measurements from the data plane at high

rates without flooding the archiver by selectively reporting

samples.

• Reducing the number of reports by five times under stable

network conditions and sustaining RME below 0.06 under

unstable network conditions.

• Publishing the P4 code that generates fine-grained mea-

surements on the PDP, and the Python implementation

that implements the adaptive model. They can be accessed

via [5].
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The remainder of the paper is organized as follows. Section

II provides background on programmable data planes, conven-

tional sampling, and adaptive sampling techniques and clarifies

how the proposed system differs from existing work. Section

III describes the proposed approach. Section IV presents the

experimental results. Section V discusses the limitations of the

proposed approach and the future work in this area. Section

VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Programmable Data Planes

Data plane programmability allows the developer to parse

custom headers, define the processing behavior of the packets,

measure the events occurring in the data plane with high

precision, and report the events to the control plane with

nanosecond resolution [6]. The Protocol Independent Switch

Architecture (PISA) is a widely adopted data plane program-

ming model [7]. It is composed of a programmable parser,

a programmable match-action pipeline, and a programmable

deparser [8]. The programmable parser operates as a state ma-

chine to parse the headers. The match-action pipeline processes

the packets based on the logic defined by the P4 program.

P4, or Programming Protocol-independent Packet Processors,

is the de-facto language to program the data plane [9]. The

programmable deparser serializes the headers and prepares

them for transmission.

B. Adaptive Sampling

Adaptive sampling methods adjust the sampling rate based

on the observed measurements. In general, adaptive techniques

are based on fuzzy logic or LP [4]. In fuzzy logic-based

systems, the sampling rate is adjusted by considering similar

past experiences [10]. On the other hand, LP-based systems

construct a model from the observed traffic. The model is then

used to predict future measurement values. If the prediction

is accurate, the sampling rate is reduced as the model has

captured the current traffic pattern. On the contrary, inaccurate

prediction increases the sampling rate to detect the new traffic

pattern [11]. A common weakness among adaptive systems

TABLE I
RULES TO DEFINE THE NEXT INTERVAL BETWEEN SAMPLES IN LP.

Current m ∆Tnext

1− σ < m < 1 + σ ∆Tcurrent

m < 1− σ max(∆Tmin,m∆Tcurrent)

m > 1 + σ min(∆Tmax,∆Tcurrent + 2)

is that they ignore the unsampled measurements, and conse-

quently, the network behavior is not monitored during the time

interval between samples [4, 12].

The proposed system deploys an adaptive sampling model

based on the LP method. It utilizes a PDP switch to have

continuous access to the measurements, such that the sampling

decision is taken on each measurement extracted from the data

plane. The main distinction between the existing work and the

proposed system is that the system considers both sampled

and unsampled measurements to adjust the adaptive model and

continuously monitors the network.

III. PROPOSED SYSTEM

A. Overview

The proposed system aims to reduce the load at the

archiver through adaptive sampling. The data plane of the

PDP switch collects per-packet measurements. It monitors

per-flow throughput, packet losses, Round Trip Time (RTT),

and the border router’s queue occupancy. The control plane

periodically extracts the measurements from the data plane.

Instead of reporting all the measurements to the archiver,

the control plane samples the measurements that reflect the

behavior of the traffic. As shown in Fig. 1, the control plane

deploys an adaptive sampling model. This model adjusts the

measurement reporting rate based on the traffic variation.

Before discussing the adaptive model, it is essential to define

some terminologies:

• Extraction rate is the rate of extracting or pulling mea-

surements from the data plane. This rate is constant.

• Observations are the measurements extracted from the

data plane.

• Samples are the observations selected by the model to be

sent to the archiver for storage.

• Reports are the samples normalized by the control plane

for the archiver to be able to ingest them.

• Reporting rate, also referred to as sampling rate, is the rate

of sending reports to the archiver. The model dynamically

adjusts this rate.

B. Adaptive Model

LP is an adaptive sampling method based on the Linear

Prediction Coefficient (LPC) technique [4]. LPC is used by

the Transport Control Protocol (TCP) to predict the RTT of

the packets [13]. It employs a low pass filter that predicts

future values based on the recent value and the average of the

last observed N values, where N is the order of the filter. The

low pass filter is represented by the following formula:



xp = a ·R+ (1− a) ·Av

The equation predicts the next sample xp based on the most

recent value R and the average of the previous N samples Av,

using a coefficient a within the range of 0 to 1. Higher values

of a give more weight for the recent value.

Unlike LPC, LP does not employ the coefficient a. Besides,

LP uses the average rate of change of the last N samples

instead of their average value as indicated in the equation

below:

xp
N+1

= xN +
∆Tcurrent

N − 1

N−1∑

i=1

xi+1 − xi

ti+1 − ti

Where:

• xp
N+1

is the predicted value for the next sample.

• xN is the most recent sample.

• N is the number of samples considered.

• xi and ti represent the value and arrival time of the ith

sample, respectively.

• ∆Tcurrent is the time gap between the most recent sample

and the next sample.

When a new observation arrives, the LP model calculates

the error m between the predicted and observed values. m is

calculated by dividing the predicted value over the expected

value: m =
xp

N+1

xN+1
, where xN+1 is the observed value. If m is

within σ from 1 (i.e., 1−σ < m < 1+σ), the predicted value

is considered close enough to the actual value and the sampling

rate can be reduced. Otherwise, the recent observation does not

follow the pattern detected by the model, and the sampling rate

should increase to detect the new pattern. Table I shows how

the future intervals between samples are defined based on the

error. ∆Tnext is the time gap between the next sample and the

sample that follows (the value of the next ∆Tcurrent). ∆Tmax

and ∆Tmin are the maximum and the minimum allowed time

intervals between samples, respectively.

In the proposed system, the data extraction rate is constant,

and consequently, the inter-arrival time between consecutive

observations (∆T ) is constant. The model predicts the value

of the next observation instead of the next sample as follows:

PDP Switch

BR

: perfSONAR : DTN : TAP

Science DMZ

ISP

Fig. 2. Experimental Topology.

TABLE II
RULES TO DEFINE THE NEXT INTERVAL BETWEEN SAMPLES IN THE

PROPOSED SYSTEM.

Current m ∆Tnext

1− σ < m < 1 + σ min(∆Tmax,∆Tcurrent + 1)

m < 1− σ ∆Tmin

m > 1 + σ ∆Tmin

xp
N+1

= xN +
∆T

N − 1

N−1∑

i=1

xi+1 − xi

∆T

= xN +
xN − x1

N − 1

For each flow monitored by the data plane, the proposed

adaptive model maintains a vector x for the values of the last N

observations, t the timestamp of the last sample, ∆Tcurrent the

time difference between the recent sample and the next sample,

and xpN+1
the prediction of the next observation. When a

new flow is detected by the PDP switch, the corresponding

∆Tcurrent is set to ∆Tmin. The error m is only calculated

if N ≥ Nmin, where Nmin is a constant representing the

minimum number of observations required to predict future

values. The vector x can hold at most Nmax observations,

where Nmax is a variable dependent on σ and on the average

change of measurements.

The time intervals between samples are adjusted based

on the rules described in Table 2. If the error is within σ

from unity, ∆Tcurrent is incremented by 1 second. Otherwise,

∆Tcurrent is set to ∆Tmin and the vector x is emptied. The

time interval between samples is minimized (i.e., the sampling

rate is maximized) because a disruption in the flow behavior

is detected. The vector x is emptied because the new behavior

is assumed unrelated to the previous behavior (i.e., the worst-

case scenario is assumed). One advantage of this assumption

is that the model can adapt faster to the new behavior. Another

advantage is that anomalies are automatically discarded by the

model and not used to predict future values. Furthermore, this

assumption bounds the maximum difference between consec-

utive observations (d) used to predict future values (Appendix

- 1).

The adaptive model aims to minimize the number of sam-

pled measurements while sustaining low relative mean error

(RME). RME measures the difference between sampled values

and the total values compared to the average of all total values.

Denote by xN+1 the next observation to be sampled by the

adaptive model. For each xN+1, its RME is calculated as

follows:

| xN+1 − µ |

µ

where µ =
N+1∑
i=1

xi

N+1 . If the observation xN+1 is reported

based on ∆Tcurrent, the upper bound on the RME is deter-
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Fig. 3. The number of samples and RME with respect to different values of σ.

mined by N, σ, and x1 (Appendix - 4). If the observation xN+1

is sampled because its error m is not within σ from unity, then:

| dN+1 |≰ max(|
xN−x1

N
+ σxN

1− σ
|, |

xN−x1

N
− σxN

1 + σ
|)

and consequently, (Appendix - 4) does not hold.

C. Proactive Rate Adjustment

Reactive adaptive systems adjust the sampling rate after the

pattern of traffic changes. On the other hand, proactive adaptive

systems adjust the sampling rate before the deviation in the

traffic pattern is observed. LP method is a reactive system as it

adjusts the sampling rate based on the observed error between

the predicted value and the real value.

A main feature of the proposed system is that the adaptive

model has access to the recent N observations rather than the

recent N samples. If observation xN+1 reveals a deviation

in the traffic behavior, the model can send the previously

unreported observations from vector x, imitating the proactive

functionality. Although reporting the elements of vector x (i.e.,

recent N observations) is equivalent to proactively adjusting

the data reporting rate to ∆Tmin before observing the deviation

in the behavior, it imposes unnecessary utilization of resources.

From any vector x, at most three elements have been

reported to the archiver. In the best-case scenario, xN is the last

reported element. In such a case, no further action is required

as the previous traffic pattern has already been reported, and

the RME is bound from above by (Appendix - 4). In the worst-

case scenario, xNmin
is the last reported element (x1 is the first

element in the current traffic pattern). In such a case, reporting

xN suffices to construct the pattern of the last N−3 unreported

measurements.

IV. EXPERIMENTATION

A. Topology Setup

The experimental topology is depicted in Fig. 2. It consists

of a Science DMZ connected to a WAN via two Juniper

MX 204 routers [14] (denoted by BR and ISP in the figure).

The science DMZ and the WAN have one DTN for data

exchange and one perfSONAR node to monitor and archive

network performance. Two optical TAPs are connected to the

ingress and egress ports of the BR. The TAPs are provided by

Fiber Instrument Sales that can handle speeds up to 100Gbps

[15]. They duplicate the packets to the PDP switch. The PDP

switch is Edgecore Wedge100BF-32X switch (Intel Tofino)

[16]. It passively collects the measurements and reports them

to the perfSONAR node. iPerf3 tool is utilized to generate the

traffic. ∆Tmin and ∆Tmax are set to one and five seconds,

respectively.

B. Evaluating the Impact of σ

A two-minute test is performed between the DTNs to

evaluate how different values of σ affect the number of samples

and the RME. The results of the experiment are depicted in

Fig. 3. The ground truth throughput is the throughput without

sampling. The upper left graph shows that the number of

samples is 96, and the RME is around zero when σ is set to

0.025. The upper middle graph shows that the RME slightly

increases, and the number of samples reduces by 25% with σ

being 0.05 compared to 0.025. The same behavior is observed

with σ being 0.075 compared to 0.05, such that the increase

in the RME and the reduction in the number of samples are

higher compared to the change from σ being 0.05 to 0.025.

As the value of σ increases above 0.075, the RME becomes

significant. The model fails to detect the fluctuation in the

throughput because σ is relatively large with respect to the

average change in the throughput. For instance, when σ is set

to 0.15, the number of samples is 31. The average reporting

rate is 31
120 = 0.26 samples per second, which means that

the average ∆Tcurrent is 3.9 seconds. Thus, most of the

throughput measurements predicted by the model were close

enough to the observed values (according to the defined σ).

C. Comparing with other Adaptive Systems

The proposed adaptive system is compared to LP and the

multiadaptive sampling technique (MuST) [12]. MuST uses the
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TABLE III
RULES TO DEFINE THE NEXT INTERVAL BETWEEN SAMPLES IN MUST.

Current m ∆Tnext ∆Snext

1− σ < m < 1 + σ ∆Tcurrent ∆Scurrent

m < 1− σ m∆Tcurrent m∆Scurrent

m > 1 + σ 2 ∗∆Tcurrent ∆Scurrent + 0.15∆Scurrent

last N observations to adjust the time interval between samples

and the size of the samples. Table III shows how MuST adjusts

∆Tnext and ∆Snext based on the error m, ∆Tcurrent, and

∆Scurrent, where ∆Scurrent is the current sample size and

Snext is the size of the next sample.

A two-minute iPerf test is performed between the two

DTNs. The parameters σ and Nmax are set to 0.05 and 5,

respectively. Fig. 4 depicts the ground truth throughput, the

throughput reported by each of the three systems, and the

RME of each system. The proposed system outperforms LP

and MuST, where the ground truth throughput and the reported

throughput overlap with an RME near 0 throughout the test.

MuST performs better than LP, where it missed reporting a few

critical measurements, which led to an increase in the RME.

LP has the highest overall RME, where it missed a higher

number of critical measurements than MuST.

The cumulative distribution function (CDF) of the RME

for the three systems is calculated by executing 10 tests and

is depicted in Fig. 5. The maximum observed RME by the

proposed system is 0.06, where 98% of the RME values are

less than 0.04. The maximum observed RME by MuST is 0.28,

where 75% of the RME values are less than 0.04, 85% are less

than 0.05, 90% are less than 0.1, 95% are less than 0.2, and

98% are less than 0.25. The maximum observed RME by LP

is 0.3, where 65% of the RME values are less than 0.04, 80%

are less than 0.05, 88% are less than 0.1, 94% are less than

0.2, and 98% are less than 0.25.

V. DISCUSSION: LIMITATIONS AND FUTURE WORK

The proposed system can maintain the state (e.g., number

of bytes, RTT, packet losses, etc.) of up to 2048 flows. This

imposes no limitation if the system targets science DMZ

networks, as they are characterized by a few elephant flows

[1]. However, the system is not scalable enough to monitor

the traffic on an ISP. The constraint on the number of flows

that can be simultaneously monitored originates from the

available resources on the PDP switches and the number of

metrics maintained by the data plane [6]. Future work aims

to investigate the optimal resource allocation strategy at the

PDP switch to maximize the number of monitored flows

without impacting the set of monitored metrics. One approach

is to utilize FermatSketch, a data structure that dynamically

allocates the memory resources of the PDP switch [17].

The proposed system involves the control plane in the data

collection process. Because the control plane does not have

enough processing power to extract per-packet measurements

from the data plane [8], it periodically extracts the measure-

ments. Thus, all measurements collected by the data plane and

not extracted by the control plane are discarded. To minimize

data loss, the proposed system aggregates the measurements on

the data plane. The control plane then extracts the aggregated

values.

In order to eliminate the loss, the data plane should directly

report the measurements to the archiver. However, reporting

per-packet measurements is not an option as it floods the

archiver. Future work aims at deploying an adaptive sampling

model directly on the data plane. The model selectively reports

measurements similar to the proposed system. Nevertheless,

deploying the adaptive model on the data plane results in a

more accurate sampling compared to the model running on the

control plane because it has access to the real measurements

and not the aggregated measurements.

VI. CONCLUSION

This paper deploys an adaptive sampling model to reduce

the consumption of the processing and storage resources at

the perfSONAR archiver. A PDP switch is installed passively

and monitors the inbound and outbound traffic to a Science

DMZ. The data plane of the switch is programmed to collect

and maintain per-flow per-packet measurements. The control

plane then extracts the measurements and utilizes an LP-

based adaptive sampling model to make a per-measurement



sampling decision. The model significantly reduces the number

of measurements reported to the archiver under stable network

conditions and provides an accurate presentation of the state

of the flows under unstable network conditions.

VII. APPENDIX

For any two consecutive observations xi−1 and xi in vector

x, their difference di is bounded as follows:

1− σ ≤
xpi

xi

≤ 1 + σ

1− σ ≤
xi−1 +

xi−1−x1

i−1

xi−1 + di
≤ 1 + σ

(1− σ)(xi−1 + di) ≤ xi−1 +
xi−1 − x1

i− 1
≤ (1 + σ)(xi−1 + di)

xi−1−x1

i−1 − σxi−1

1 + σ
≤ di ≤

xi−1−x1

i−1 + σxi−1

1− σ
(1)

The RME is bound from above as follows:

xN+1 = (N+1)xN+1

N+1

= xN+1

N+1 + xN+dN+1

N+1 + ...+ x1+dN+1+...+d2

N+1

= xN+1+xN+1+...+x1

N+1 + dN+1

N+1 + ...+ dN+1+...+d2

N+1

= µ+
N+1∑
i=2

(i−1)di

N+1

xN+1 − µ =
N+1∑
i=2

(i−1)di

N+1

by (1):

xN+1 − µ ≤ 1
N+1

N+1∑
i=2

(i− 1)
xi−1−x1

i−1
+σxi−1

1−σ

xN+1 − µ ≥ 1
N+1

N+1∑
i=2

(i− 1)
xi−1−x1

i−1
−σxi−1

1+σ

if xN+1 − µ ≥ 0 :

| xN+1 − µ |≤
1

N + 1

N+1∑

i=2

(i− 1)

xi−1−x1

i−1
+ σxi−1

1− σ
(2.1)

if xN+1 − µ ≤ 0 :

| xN+1 − µ |≤
−1

N + 1

N+1∑

i=2

(i− 1)

xi−1−x1

i−1 − σxi−1

1 + σ

≤
1

N + 1

N+1∑

i=2

(i− 1)

x1−xi−1

i−1
+ σxi−1

1 + σ
(2.2)

For any element xi, its minimum value ximin
and its

maximum value ximax
are expressed in term of x1 as follows:

xi max =
ix1

2(1− σ)(i−1)
− x1(

i−2∑

j=1

i

(i+ 1− j)(i− j)(1− σ)j
) (3.1)

xi min =
ix1

2(1 + σ)(i−1)
− x1(

i−2∑

j=1

i

(i+ 1− j)(i− j)(1 + σ)j
) (3.2)

Substituting (3.1) and (3.2) in (2.1) and (2.2), respectively,

produce the upper bound of the RME in terms of N, σ, and

x1:

| xN+1−µ

µ
|≤ max( (N

2+2N)(xN max−x1+σxN max(N−1))
2µ(N−1)(1−σ) ,

(N2+2N)(x1−xN min−σxN min(N−1))
2µ(N−1)(1+σ) )

(4)
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