
1

A Hands-on Tutorial on P4 Programmable Data Planes

Jorge Crichigno

University of South Carolina

http://ce.sc.edu/cyberinfra

jcrichigno@cec.sc.edu

Internet2 Technology Exchange

Monday December 5th, 2022

Denver, Colorado

Organizers

2

Jorge Crichigno
Faculty Elie Kfoury

PhD Student
Ali AlSabeh

PhD Student

Workshop Website

• All material is posted on the website of the tutorial

http://ce.sc.edu/cyberinfra/workshop_2022_ie2_p4.html

3

Agenda

4

Time Topic Presenter

01:30 - 01:55
Overview of P4 and programmable data plane switches
Introduction to packet parsing

Jorge Crichigno

01:55 - 02:30
Hands-on Session 1: intro to P4 and BMv2; writing a parser,
compiling, and downloading P4 code to the switch

Elie Kfoury

02:30 - 2:45 Break

02:45 - 03:05 Using registers to store arbitrary data Jorge Crichigno

03:05 - 03:40
Hands-on Session 2: Calculating packets interarrival times
using hashes and registers

Elie Kfoury

03:40 - 03:55 Break

03:55 - 04:30
Hands-on Session 2 (continue): Calculating packets
interarrival times using hashes and registers

Elie Kfoury

5

Overview of P4 and Programmable

Data Plane Switches

Jorge Crichigno

University of South Carolina

http://ce.sc.edu/cyberinfra

jcrichigno@cec.sc.edu

Internet2 Technology Exchange

Monday December 5th, 2022

Denver, Colorado

Traditional (Legacy) Networking
• Since the explosive growth of the Internet in the 1990s, the networking industry has

been dominated by closed and proprietary hardware and software

• The interface between control and data planes has been historically proprietary

➢ Vendor dependence: slow product cycles of vendor equipment, no innovation from network owners

➢ A router is a monolithic unit built and internally accessed by the manufacturer only

6

SDN
• Protocol ossification has been challenged first by SDN

• SDN (1) explicitly separates the control and data planes, and (2) enables the control

plane intelligence to be implemented as a software outside the switches

• The function of populating the forwarding table is now performed by the controller

7

SDN Limitation

8

• SDN is limited to the OpenFlow specifications
➢ Forwarding rules are based on a fixed number of protocols / header fields (e.g., IP, Ethernet)

• The data plane is designed with fixed functions (hard-coded)
➢ Functions are implemented by the chip designer

Can the Data Plane be Programmable?

• Evolution of the computing industry

9

1970s 1970s-80s 1990s-2000s 2010s 2014

1. Vladimir Gurevich, “Introduction to P4 and Data Plane Programmability,” https://tinyurl.com/2p978tm9.

https://tinyurl.com/2p978tm9

Can the Data Plane be Programmable?

10

• Data plane comparison: fixed-function vs P4 programmable

1. Vladimir Gurevich, “Introduction to P4 and Data Plane Programmability,” https://tinyurl.com/2p978tm9.

https://tinyurl.com/2p978tm9

P4 Programmable Switches

11

• P41 programmable switches permit a programmer to program the data plane
➢ Define and parse new protocols

➢ Customize packet processing functions

➢ Measure events occurring in the data plane with

high precision

➢ Offload applications to the data plane

1. P4 stands for stands for Programming Protocol-independent Packet Processors

P4 Programmable Switches

12

• P41 programmable switches permit a programmer to program the data plane
➢ Define and parse new protocols

➢ Customize packet processing functions

➢ Measure events occurring in the data plane with

high precision

➢ Offload applications to the data plane

Reproduced from N. McKeown. Creating an End-to-End Programming Model for Packet Forwarding.

Available: https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

Generalized Forwarding: Match + Action

13

• The data plane contains table/s
➢ Match bits in arriving packet (match phase)

➢ Take action - Many header fields can determine action (action phase)

▪ Drop

▪ Copy

▪ Modify

▪ Log packet

▪ Forward out a link (destination-based forwarding is just a particular case)

Match+Action
Stage

Memory ALU

Programmable
Parser Programmable Match-Action Pipeline

PISA: Protocol Independent Switch Architecture

14

Reproduced from N. McKeown. Creating an End-to-End Programming Model for Packet Forwarding.

Available: https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

Programmable
Deparser

https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

PISA: Protocol Independent Switch Architecture

15

Reproduced from N. McKeown. Creating an End-to-End Programming Model for Packet Forwarding.

Available: https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

Example P4 Program

16

Memory ALU

Programmable
Parser Programmable Match-Action Pipeline

header_type ethernet_t { … }

header_type l2_metadata_t { … }

header ethernet_t ethernet;

header vlan_tag_t vlan_tag[2];

metadata l2_metadata_t l2_meta;

Header and Data DeclarationsParser Program

parser parse_ethernet {

extract(ethernet);

return switch(ethernet.ethertype) {

0x8100 : parse_vlan_tag;

0x0800 : parse_ipv4;

0x8847 : parse_mpls;

default: ingress;

}

Tables and Control Flow
table port_table { … }

control ingress {

apply(port_table);

if (l2_meta.vlan_tags == 0) {

process_assign_vlan();

}

}

16
Reproduced from N. McKeown. Creating an End-to-End Programming Model for Packet Forwarding.

Available: https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

https://www.youtube.com/watch?v=fiBuao6YZl0&t=4216s

