http://bit.ly/EPOC-USC-Cl

End devices in Science DMZs: DTNs

Jason Zurawski

zurawski@es.net

ESnet / Lawrence Berkeley National Laboratory

Training Workshop for Network Engineers and Educators on Tools and Protocols for High-Speed Networks University of South Carolina July 22-23, 2019

Data Transfer Node

- A DTN server is made of several subsystems. Each needs to perform optimally for the DTN workflow:
 - **Storage:** capacity, performance, reliability, physical footprint
 - Networking: protocol support, optimization, reliability
 - Motherboard: I/O paths, PCIe subsystem, IPMI
 - Chassis: adequate power supply, extra cooling
- Note: the workflow we are optimizing for here is sequential reads/write of large files, and a moderate number of high bandwidth flows.
- We assume this host is dedicated to data transfer, and not doing data analysis/manipulation

Motherboard and Chassis selection

Chassis

- Extra cooling (for future expansion, unless you buy the system full)
- Make sure the power supply is adequate
- Motherboard/CPU
 - Ivy Bridge/SkyLake/Cascade Lake or newer CPU architecture (e.g. for 10/40G, you can get away with a reasonably modern machine)
 - High clock rate better than high core count for DTNs max this out
 - Faster QPIC for communication between processors
 - PCI Gen 3 or newer (40G and 100G requires PCI Gen 3)
 - Memory speed faster is better, more is better
 - We recommend 128GB of RAM for a DTN node
 - IPMI for remote management (optional)

PCI Slot Considerations

- PCI slots are defined by:
 - Slot width:
 - Physical card and form factor
 - Max number of lanes
 - Lane count:
 - Maximum bandwidth per lane
 - Most cards will run slower in a slower slot
 - Not all cards will use all lanes

PCI Slot Considerations

- Card being inserted:
 - x8 Slot Width
- Slot being used:
 - x8 Slot Width
- Wider Slot (bottom):
 - x16 Slot Width

PCI Bus Considerations

- Example:
 - 10GE NICs require an 8 lane PCIe-2 slot
 - 40G/QDR NICs require an 8 lane PCIe-3 slot
 - 100G NICs (ex. Mellanox) requires a 16 lane PCIe-3 slot
 - Most RAID controllers require an 8 lane PCIe-2 slot
 - Fusion-IO cards may require a 16 lane PCIe-3 slot

Storage Architectures - Internal

- DTN with internal RAID is self-contained
 - Same CPU, RAM, etc. as DTN with external storage
 - No external dependencies for storage
 - Deployable anywhere
 - Limited scalability
 - Storage managed locally (you get whatever tools the RAID controller gives you)

Storage Architectures - External

- These are essentially the same from a DTN host design perspective
 - IB, Ethernet, or Fibrechannel card connects to external storage
 - Other system components (CPU, RAM, etc.) the same
 - Central storage management, greater flexibility
 - Integration with other large-scale resources (e.g. HPC)

DTNs in a Facility

DTNs in a Facility – Network Paths

DTNs in a Facility – Security

Storage Subsystem Selection

- Deciding what storage to use in your DTN is based on what you are optimizing for:
 - performance, reliability, capacity, and/or cost
- SATA disks historically have been cheaper and higher capacity, while SAS disks typically have been the fastest.
 - Technologies have been converging (and its hard to keep up)
- Do what you can support well (ditto for filesystems ZFS, ext4, etc.)

SSDs and HDs

- SSD storage costs much more than traditional hard drives (HDs), but are much faster. They come in different styles:
 - PCIe card: some vendors (Fusion-IO) build PCI cards with SSDs.
 - These are the fastest type of SSD: up to several GBytes/sec per card.
 - Note that this type of SSD is typically not hot-swapable.
 - HD replacement: several vendors now sell SSD-based drives that have the same form factor as traditional drives such as SAS and SATA.
 - The downside to this approach is that performance is limited by the RAID controller, and not all controllers work well with SSD.
 - Be sure that your RAID controller is "SSD capable".
- Note that the price of SSD is coming down quickly, so an SSD-based solution may be worth considering for your DTNs.

SSD Form Factors

RAID Controllers

- Often optimized for a given workload, rarely for performance.
- RAIDO is the fastest of all RAID levels but is also the least reliable.
- The performance of the RAID controller is a factor of the number of drives and its own processing engine.

RAID Controller

- Be sure your RAID controller has the following:
 - >= 1GB of on-board cache
 - PCIe Gen3 support (and your board can support that)
 - dual-core RAID-on-Chip (ROC) processor *if you will have more than 8 drives*

Network Subsystem Selection

- There is a huge performance difference between cheap and expensive 10G/40G NICs.
 - E.g. please don't cheap out on the NIC it's important for an optimized DTN host.
- NIC features to look for include:
 - support for interrupt coalescing
 - support for MSI-X
 - TCP Offload Engine (TOE)
 - support for zero-copy protocols such as RDMA (RoCE or iWARP)
- Note that many 10G/40G/100G NICs come in dual ports, but that <u>does not mean if</u> you use both ports at the same time you get double the performance. Often the second port is meant to be used as a backup port.
 - Myricom 10G-PCIE2-8C2-2S
 - Mellanox MCX312A-XCBT
 - Mellanox ConnectX-3 , ConnectX-4

Reference Implementation (Oct 2014)

• Hardware description

- Motherboard: SuperMicro X9DRi-F
- CPU: 2 x Intel(R) Xeon Ivy Bridge E5-2643V2 3.5GHz 6 Cores (Total 12 Cores)
- Memory: 96G ((12) 8GB DDR3-1866MHz RAM ECC/REG)
- RAID: Adaptec ASR-81605ZQ (16 ports)
- Network Controller: Myricom 10G-PCIE2-8C2-2S or Mellanox MCX312A-XCBT
- Other recommended 10G NICs include Chelsio T5, and the Intel X520.
- System Configuration
 - We use the most recent CentOS-6 distribution of Linux, and have configured the data drives as RAID6.
- Performance Results for this configuration (Back-to-Back Testing using GridFTP)
 - memory to memory, 1 10GE NIC: 9.9 Gbps
 - memory to memory, 4 10GE NICs: 39.5 Gbps
 - disk to disk: 9.2 Gbps (1.2 GBytes/sec) using a single large file

Take Home Points

- The 2 key "take homes" for hardware are:
 - Needs to be *expandable* and
 - Needs to be *supportable*
- Needs to be able to seamlessly support data mobility

I LIKE HOW WE'VE HAD THE INTERNET FOR DECADES, YET "SENDING FILES" IS SOMETHING EARLY ADOPTERS ARE STILL FIGURING OUT HOW TO DO.

DTN Tuning is Art & Science

Please do not use the toaster and microwave at the same that Camera 2, VTR 7, and telephone line #4 are in use. This will make the popcorn machine not work properly.

Thank you!

DTN Tuning

http://fasterdata.es.net/science-dmz/DTN/tuning

- Defaults are not appropriate for performance.
 - What needs to be tuned:
 - BIOS
 - Firmware
 - Device Drivers
 - Networking
 - File System
 - Application

DTN Tuning

- Tuning your DTN host is extremely important. We have seen overall IO throughput of a DTN more than double with proper tuning.
- Tuning can be as much art as a science. Due to differences in hardware, its hard to give concrete advice.
- Here are some tuning settings that we have found do make a difference.
- This tutorial assumes you are running a RedHat-based Linux system, but other Unix flavors should have similar tuning knobs.
- Note that you should always use the most recent version of the OS, as performance optimizations for new hardware are added to every release.

Network Tuning

#	add	to	/etc/sysctl.conf	

net.core.rmem_max = 67108864

net.core.wmem_max = 67108864

net.ipv4.tcp_rmem = 4096 87380 33554432

net.ipv4.tcp_wmem = 4096 65536 33554432

net.core.netdev_max_backlog = 250000

Add to /etc/rc.local to increase send queue depth

increase txqueuelen

/sbin/ifconfig eth2 txqueuelen 10000

/sbin/ifconfig eth3 txqueuelen 10000

This info (and more) is available on fasterdata, formatted for cut and paste

make sure cubic and htcp are loaded
/sbin/modprobe tcp_htcp
/sbin/modprobe tcp_cubic
set default to CC alg to htcp
net.ipv4.tcp_congestion_control=htcp

with the Myricom 10G NIC
using interrupt coalencing helps a lot:
/usr/sbin/ethtool -C ethN rx-usecs 75

Please consider jumbo frames, but don't just blindly turn them on

I/O Scheduler

- The default Linux scheduler is the "fair" scheduler. For a DTN node, we recommend using the "deadline" scheduler instead.
- To enable deadline scheduling, add "elevator=deadline" to the end of the "kernel' line in your /boot/grub/grub.conf file, similar to this:
- kernel /vmlinuz-2.6.35.7 ro root=/dev/VolGroup00/LogVol00 rhgb quiet elevator=deadline

Interrupt Affinity

- Interrupts are triggered by I/O cards (storage, network). High performance means lot of interrupts per second
- Interrupt handlers are executed on a core
 - Interrupt handler is just code it gets run for every interrupt
 - Cache effects matter (with lots of I/O we're going to run that code a lot)
- Depending on the scheduler, core 0 gets all the interrupts, or interrupts are dispatched in a round-robin fashion among the cores: both are bad for performance:
 - Core 0 get all interrupts: with very fast I/O, the core is overwhelmed and becomes a bottleneck
 - Round-robin dispatch: very likely the core that executes the interrupt handler will not have the code in its L1 cache.
 - Two different I/O channels may end up on the same core.

Know Your Layout

SUPER® X9DAX-iF/-7F/-iTF/-7TF Motherboard User's Manual

- Where are your cards?
- Where are your cores?
- Understand what your bindings mean physically
- Performance of a given config can be tightly coupled to physical layout
- Don't be afraid to experiment

EPOC Engagement and Performance Operations Center

SSD Issues – Write Sparingly

- Tuning your SSD is more about reliability and longevity than performance
 - Each flash memory cell has a finite lifespan that is determined by the number of "program and erase (P/E)" cycles
 - Without proper tuning, SSD can die within months.
 - never do "write" benchmarks on SSD: this will damage your SSD quickly.
- TRIM
 - Trim informs the SSD when the filesystem no longer needs space
 - Important to prolong the life of SSDs
 - Modern SSD drives and modern OSes should all include TRIM support
 - Only the newest RAID controllers included TRIM support as of late 2012
- Swap
 - To prolong SSD lifespan, do not swap on an SSD
 - In Linux you can control this using the sysctl variable vm.swappiness. E.g.: add this to /etc/sysctl.conf:
 - vm.swappiness=1
 - This tells the kernel to avoid unmapping mapped pages whenever possible.
- Avoid frequent re-writing of files (for example during compiling code from source), use a ramdisk file system (tmpfs) for /tmp /usr/tmp, etc.

Benchmarking

- Single-threaded sequential file write:
 - \$ dd if=/dev/zero of=/storage/data1/file1 bs=4k count=33554432
- Single-threaded sequential file read:
 - \$ dd if=/storage/data1/file1 of=/dev/null bs=4k
- Use more to simulate parallel workload
 - Use oflag=direct to disable caching

Sample Data Transfer Results (2005)

- Using the right tool is very important
- Sample Results: Berkeley, CA to Argonne, IL (near Chicago).
 RTT = 53 ms, network capacity = 10Gbps.

Tool	Throughput	
scp:	140 Mbps	
HPN patched scp:	1.2 Gbps	
ftp	1.4 Gbps	
GridFTP, 4 streams	5.4 Gbps	
GridFTP, 8 streams	6.6 Gbps	

• Note that to get more than 1 Gbps (125 MB/s) disk to disk requires RAID.

Say NO to SCP (2016)

- Using the right data transfer tool is very important
- Sample Results: Berkeley, CA to Argonne, IL (near Chicago) RTT = 53 ms, network capacity = 10Gbps.

ΤοοΙ	Throughput
scp	330 Mbps
wget, GridFTP, FDT, 1 stream	6 Gbps
GridFTP and FDT, 4 streams	8 Gbps (disk limited)

• Notes

- scp is 24x slower than GridFTP on this path!!
- to get more than 1 Gbps (125 MB/s) disk to disk requires RAID array.
- Assume host TCP buffers are set correctly for the RTT

Data Transfer Tools

- Parallelism is key
 - It is much easier to achieve a given performance level with four parallel connections than one connection
 - Several tools offer parallel transfers
- Latency interaction is critical
 - Wide area data transfers have much higher latency than LAN transfers
 - Many tools and protocols assume a LAN
 - Examples: SCP/SFTP, HPSS mover protocol

Why Not Use SCP or SFTP?

• Pros:

- Most scientific systems are accessed via OpenSSH
- SCP/SFTP are therefore installed by default
- Modern CPUs encrypt and decrypt well enough for small to medium scale transfers
- Credentials for system access and credentials for data transfer are the same
- Cons:
 - The protocol used by SCP/SFTP has a fundamental flaw that limits WAN performance
 - CPU speed doesn't matter latency matters
 - Fixed-size buffers reduce performance as latency increases
 - It doesn't matter how easy it is to use SCP and SFTP they simply do not perform
- Verdict: Do Not Use Without Performance Patches

A Fix For scp/sftp

- PSC has a patch set that fixes problems with SSH
 - <u>http://www.psc.edu/networking</u> /projects/hpn-ssh/
- Significant performance increase (allows the TCP window to open up if the host is tuned)
- Advantage this helps rsync too

BDP versus SSH Receive Window for a 100Mbps Path

Throughput Speeds of HPN-SSH Versus SSH

sftp

- Uses same code as scp, so don't use sftp WAN transfers unless you have installed the HPN patch from PSC
- But even with the patch, SFTP has yet another flow control mechanism
 - By default, sftp limits the total number of outstanding messages to 16 32KB messages.
 - Since each datagram is a distinct message you end up with a 512KB outstanding data limit.
 - You can increase both the number of outstanding messages ('-R') and the size of the message ('-B') from the command line though.
- Sample command for a 128MB window:
 - sftp -R 512 -B 262144 user@host:/path/to/file outfile

Commercial Data Transfer Tools

- There are several commercial UDP-based tools
 - Aspera: <u>http://www.asperasoft.com/</u>
 - Data Expedition: http://www.dataexpedition.com/
 - TIXstream: http://www.tixeltec.com/tixstream_en.html
- These should all do better than TCP on a lossy path
 - advantage of these tools less clear on an clean path
- They all have different, fairly complicated pricing models

GridFTP

• GridFTP from ANL has features needed to fill the network pipe

- Buffer Tuning
- Parallel Streams
- Supports multiple authentication options
 - Anonymous
 - ssh
 - X509
- Ability to define a range of data ports
 - helpful to get through firewalls
- Partnership with ESnet and Globus Online to support Globus Online for use in Science DMZs

http://bit.ly/EPOC-USC-Cl

End devices in Science DMZs: DTNs

Jason Zurawski

zurawski@es.net

ESnet / Lawrence Berkeley National Laboratory

Training Workshop for Network Engineers and Educators on Tools and Protocols for High-Speed Networks University of South Carolina July 22-23, 2019

