
Monitoring end-to-end systems

May 20, 2019 © 2019, http://www.perfsonar.net 1

http://bit.ly/EPOC-USC-CI

Training Workshop for Network Engineers and Educators on Tools 
and Protocols for High-Speed Networks
University of South Carolina
July 22-23, 2019

Jason Zurawski

zurawski@es.net

ESnet / Lawrence Berkeley National Laboratory

mailto:zurawski@es.net


Outline
• Introduction

• Hardware & Software

• Tool Use

• Regular Testing

• Use Cases

May 20, 2019 © 2019, http://www.perfsonar.net 2



The R&E Community
• The global Research & Education network ecosystem is comprised of hundreds of international, 

national, regional and local-scale resources – each independently owned and operated.  

• This complex, heterogeneous set of networks must operate seamlessly from “end to end” to support 
science and research collaborations that are distributed globally.

• Data mobility is required; there is no liquid market for HPC resources (people use what they can get –
DOE, XSEDE, NOAA, etc. etc.)

• To stay competitive, we must learn the use patterns, and support them

• This may mean making sure your network, and the networks of others, are functional

May 20, 2019 © 2019, http://www.perfsonar.net 3



Lets Talk Performance …
"In any large system, there is always something broken.”

- Jon Postel

• Modern networks are occasionally designed to be one-size-fits-most

• e.g. if you have ever heard the phrase “converged network”, the design is to facilitate CIA 
(Confidentiality, Integrity, Availability)

May 20, 2019 © 2019, http://www.perfsonar.net 4

• It’s all TCP
– Bulk data movement is a common thread (move the data from the microscope, to the storage, 

to the processing, to the people – and they are all sitting in different facilities)
– This fails when TCP suffers due to path problems (ANYWHERE in the path)
– It’s easier to work with TCP than to fix it (20+ years of trying…)

• TCP suffers the most from unpredictability; Packet loss/delays are the enemy
– Small buffers on the network gear and hosts
– Incorrect application choice
– Packet disruption caused by overzealous security
– Congestion from herds of mice

• It all starts with knowing your users, and knowing your network



Where Are The Problems?

May 20, 2019 © 2019, http://www.perfsonar.net 5

Source
Campus Backbone

S

NREN

Congested or faulty links 
between domains

Congested intra- campus 
links

D

Destination
Campus

Latency dependant problems inside 
domains with small RTT

Regional



Source
Campus

R&E
Backbone

Regional

DS

Destination
Campus

Regional

Performance is good when RTT is < 
~10 ms

Performance is poor when RTT 
exceeds ~10 ms

Switch with small 
buffers

Local Testing Will Not Find Everything

May 20, 2019 © 2019, http://www.perfsonar.net 6



Soft Network Failures
• Soft failures are where basic connectivity functions, but 

high performance is not possible.

• TCP was intentionally designed to hide all transmission 
errors from the user:

• “As long as the TCPs continue to function properly and the internet 
system does not become completely partitioned, no transmission 
errors will affect the users.” (From IEN 129, RFC 716)

• Some soft failures only affect high bandwidth long RTT 
flows.

• Hard failures are easy to detect & fix
• soft failures can lie hidden for years!

• One network problem can often mask others

May 20, 2019 © 2019, http://www.perfsonar.net 7



Problem Statement: Hard vs. Soft Failures
• “Hard failures” are the kind of problems every organization understands

• Fiber cut

• Power failure takes down routers

• Hardware ceases to function

• Classic monitoring systems are good at alerting hard failures
• i.e., NOC sees something turn red on their screen

• Engineers paged by monitoring systems

• “Soft failures” are different and often go undetected
• Basic connectivity (ping, traceroute, web pages, email) works

• Performance is just poor

• How much should we care about soft failures?

May 20, 2019 © 2019, http://www.perfsonar.net 8



Network Monitoring
• All networks do some form monitoring.

• Addresses needs of local staff for understanding state of the network
• Would this information be useful to external users?
• Can these tools function on a multi-domain basis?

• Beyond passive methods, there are active tools.  
• E.g. often we want a ‘throughput’ number.  Can we automate that idea?
• Wouldn’t it be nice to get some sort of plot of performance over the 

course of a day?  Week?  Year?  Multiple endpoints?

• perfSONAR = Measurement Middleware

May 20, 2019 © 2019, http://www.perfsonar.net 9



perfSONAR
• All the previous Science DMZ network diagrams have little perfSONAR 

boxes everywhere

• The reason for this is that consistent behavior requires correctness

• Correctness requires the ability to find and fix problems

May 20, 2019 © 2019, http://www.perfsonar.net 10

• You can’t fix what you can’t find 

• You can’t find what you can’t see

• perfSONAR lets you see

• Especially important when deploying high performance services

– If there is a problem with the infrastructure, need to fix it

– If the problem is not with your stuff, need to prove it

• Many players in an end to end path

• Ability to show correct behavior aids in problem localization



What is perfSONAR?
• perfSONAR is a tool to:

• Set network performance expectations
• Find network problems (“soft failures”)
• Help fix these problems
• All in multi-domain environments

• These problems are all harder when multiple networks are involved
• perfSONAR is provides a standard way to publish active and passive 

monitoring data
• This data is interesting to network researchers as well as network 

operators

May 20, 2019 © 2019, http://www.perfsonar.net 11



Simulating Performance
• It’s infeasible to perform at-scale data movement all the time – as we 

see in other forms of science, we need to rely on simulations

• Network performance comes down to a couple of key metrics:
• Throughput (e.g. “how much can I get out of the network”)

• Latency (time it takes to get to/from a destination)

• Packet loss/duplication/ordering (for some sampling of packets, do they all make it 
to the other side without serious abnormalities occurring?)

• Network utilization (the opposite of “throughput” for a moment in time)

• We can get many of these from a selection of active and passive 
measurement tools – enter the perfSONAR Toolkit

May 20, 2019 © 2019, http://www.perfsonar.net 12



Outline
• Introduction

• Hardware & Software

• Tool Use

• Regular Testing

• Use Cases

May 20, 2019 © 2019, http://www.perfsonar.net 13



perfSONAR Toolkit
• The “perfSONAR Toolkit” is an open source implementation  and 

packaging of the perfSONAR measurement infrastructure and 
protocols

• http://docs.perfsonar.net/install_getting.html

• All components are available as RPMs, DEBs, and bundled as CentOS 7, 
Debian 7,8,9 or Ubuntu 14 and 16 -based packages (as for perfSONAR
v. 4.0.1)

• perfSONAR tools are much more accurate if run on a dedicated perfSONAR host

• Very easy to install and configure
• Usually takes less than 30 minutes

May 20, 2019 © 2019, http://www.perfsonar.net 14

http://docs.perfsonar.net/install_getting.html


• http://docs.perfsonar.net/install_hardware.html

• Dedicated perfSONAR hardware is best

• Server class is a good choice

• Desktop/Laptop/Mini (Mac, Shuttle, ARM) can be problematic, but work in a diagnostic 
capacity

• Other applications running may perturb results (and measurement could hurt essential 
services)

• Running Latency and Throughput on the Same Server

• If you can devote 2 interfaces – version 3.4 and above of the toolkit will support this.  

• If you can’t, note that Throughput tests can cause increased latency and loss (latency 
tests on a throughput host are still useful however)

May 20, 2019 © 2019, http://www.perfsonar.net 15

Hardware Considerations

http://docs.perfsonar.net/install_hardware.html


• http://docs.perfsonar.net/install_hardware.html

• 1Gbps vs 10Gbps testers

• There are a number of problem that only show up at speeds above 1Gbps – both 
are still super useful

• Virtual Machines do not always work well as perfSONAR hosts (use specific)

• Clock sync issues are a bit of a factor

• throughput is reduced significantly for 10G hosts

• VM technology and motherboard technology has come a long way, YMMV

• NDT/NAGIOS/SNMP/1G BWCTL are good choices for a VM, OWAMP/10G 
Throughput are not

• Docker containers being tested for performance as well; TBD

May 20, 2019 © 2019, http://www.perfsonar.net 16

Hardware Considerations

http://docs.perfsonar.net/install_hardware.html


• The best source of information is here:
• http://docs.perfsonar.net

• The two viewpoints of the perfSONAR Owner:
• Cattle, not pets: it’s an expendable server that is not tightly integrated (e.g. if it is owned or dies, 

remove the carcass and move on) 
• Treasured members of the family: each is integrated into configuration and user management (e.g. 

secured and watched like a child)

• Either viewpoint can be supported, know the tools and what you want (e.g. are willing to put into the 
task)

May 20, 2019 © 2019, http://www.perfsonar.net 17

Preparing The Software

http://docs.perfsonar.net/


Install Options: Classic or Advanced
• CentOS 7 ISO image

• Full toolkit install

• Easy, all contained

• Want more control? Bundle of packages
• perfsonar-tools

• perfsonar-testpoint

• perfsonar-core

• perfsonar-toolkit

• perfsonar-centralmanagement (pSConfig, MaDDash, Measurement Archive)

• + optional packages

• CentOS 7, Debian 8 – 9, Ubuntu 14 – 16 

May 20, 2019 © 2019, http://www.perfsonar.net 18



© 2019, http://www.perfsonar.net 19

Package bundles structure

May 20, 2019



Outline
• Introduction

• Hardware & Software

• Tool Use

• Regular Testing

• Use Cases

May 20, 2019 © 2019, http://www.perfsonar.net 20



Let’s Talk about Throughput
• Start with a definition:

• network throughput is the rate of successful message delivery over a communication channel
• Easier terms: how much data can I shovel into the network for some given amount of time

• What does this tell us?
• Opposite of utilization (e.g. its how much we can get at a given point in time, minus what is utilized)
• Utilization and throughput added together are capacity

• Tools that measure throughput are a simulation of a real work use case (e.g. how well could bulk data 
movement perform)

• Ways to game the system
• Parallel streams
• Manual window size adjustments
• ‘memory to memory’ testing – no spinning disk

May 20, 2019 © 2019, http://www.perfsonar.net 21



What Throughput Tells Us
• Let’s start by describing throughput, which is vague.

• Capacity: link speed
• Narrow Link: link with the lowest capacity along a path All of this is “memory to memory”,
• Capacity of the end-to-end path = capacity of the narrow link e.g. we are not involving a

• Utilized bandwidth: current traffic load spinning 
disk (more later)

• Available bandwidth: capacity – utilized bandwidth
• Tight Link: link with the least available bandwidth in a path

• Achievable bandwidth: includes protocol and host issues (e.g. BDP!)

45 Mbps 10 Mbps 100 Mbps 45 Mbps

Narrow 

Link Tight Link

source sink

(Shaded portion shows 

background traffic)

May 20, 2019 © 2019, http://www.perfsonar.net 22



Let’s Talk about Throughput
• Few of the tools that pScheduler (the control/policy wrapper) knows how to talk with:

• Iperf2
• Default for the command line (e.g. pscheduler task throughput --dest HOST will invoke this)
• Some known behavioral problems (Older versions were CPU bound, hard to get UDP testing to be correct)

• Iperf3
• Default for the perfSONAR regular testing framework, can invoke via command line switch (pscheduler task –
tool iperf3 throughput --dest HOST)

• New brew, has features iperf2 is missing (retransmissions, JSON output, daemon mode, etc.)
• Note: Single threaded, so performance is gated on clock speed.  Parallel stream testing is hard as a result (e.g. 

performance is bound to one core)

• Nuttcp
• Different code base, can invoke via command line switch (pscheduler task –tool nuttcp throughput -
-dest HOST)

• More control over how the tool behaves on the host (bind to CPU/core, etc.)
• Similar feature set to iperf3

May 20, 2019 © 2019, http://www.perfsonar.net 23



Meet pScheduler 
(the pS 4.0 replacement for BWCTL)

• New in the perfSONAR 4.0 release is a replacement for BWCTL as the control 
wrapper used to perform tests. To find out more about the usage and terminology 
of pScheduler, read up at:

http://docs.perfsonar.net/pscheduler_intro.html

• Information on converting what you remember from BWCTL to the new pScheduler 
format can be found at:

https://fasterdata.es.net/performance-testing/network-troubleshooting-
tools/pscheduler/

May 20, 2019 © 2019, http://www.perfsonar.net 24

http://docs.perfsonar.net/pscheduler_intro.html
https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/pscheduler/


Front End
• pScheduler is operated using a single command-line 

program:

pscheduler

• Autocompletes easily on most systems:

psc Tab

May 20, 2019 © 2019, http://www.perfsonar.net 25



Command Format
• All commands follow the same format:

pscheduler command [ arg … ]

May 20, 2019 © 2019, http://www.perfsonar.net 26



Getting Help
• The --help switch can be used at any point along the 

command line for assistance:

pscheduler --help

pscheduler command --help

May 20, 2019 © 2019, http://www.perfsonar.net 27



Task Commands
•task – Give pScheduler a task that consists of making one or more 

measurements (runs).
•result– Fetch and display the results of a single, previously-

concluded run by its URL.
•watch – Attach to a task identified by URL and show run results as 

they become available.
•cancel – Stop any future runs of a task.

May 20, 2019 © 2019, http://www.perfsonar.net 28



Diagnostics and Administrivia
• ping – Determine if pScheduler is running on a host.

• clock – Check and compare the clock(s) on pScheduler host(s).

• debug – Enable debugging on pScheduler’s internal parts.

• Only needed for debugging pScheduler itself.

• diags – Produce a diagnostic dump for the perfSONAR team to 
use in resolving problems.

• internal – Do special things with pScheduler’s internals.

• Rarely needed; usually at the direction of the development team.

May 20, 2019 © 2019, http://www.perfsonar.net 29



The task Command
• Asks pScheduler to do some work

• Replaces the bwctl family of commands used in 
earlier versions of perfSONAR

May 20, 2019 © 2019, http://www.perfsonar.net 30



Synopsis
pscheduler task [ task-opts ] test [ test-

opts ]

• task-opts – Switches related to everything but the test itself
• Scheduling
• Other behaviors (output format, etc.)

• test – What test the task is to perform (e.g., throughput or 
trace)

• test-opts – Test-specific switches and parameters

May 20, 2019 © 2019, http://www.perfsonar.net 31



Starting Simple
pscheduler Front-end command

task pScheduler 
command

rtt Test type 
(round-trip time)

--dest localhost Where the pings go

--length 512 Packet size in bytes

Line breaks and indentation added for clarity.

May 20, 2019 © 2019, http://www.perfsonar.net 32



The Output Part I
% pscheduler task rtt --dest localhost --length 512

Submitting task...

Task URL:

https://ps.example.net/pscheduler/tasks/87e29f38-5b46…

Fetching first run...

Next run:

https://ps.example.net/pscheduler/tasks/87e29f38-5b46…

Starts 2016-12-07T07:57:30-05:00 (~7 seconds)

Ends   2016-12-07T07:57:41-05:00 (~10 seconds)

May 20, 2019 © 2019, http://www.perfsonar.net 33



The Output Part II
Waiting for result...

1 127.0.0.1  520 Bytes  TTL 64  RTT   0.0430 ms

2 127.0.0.1  520 Bytes  TTL 64  RTT   0.0590 ms

3 127.0.0.1  520 Bytes  TTL 64  RTT   0.0640 ms

4 127.0.0.1  520 Bytes  TTL 64  RTT   0.0540 ms

5 127.0.0.1  520 Bytes  TTL 64  RTT   0.0620 ms

0% Packet Loss  RTT Min/Mean/Max/StdDev = 
0.043000/0.056000/0.064000/0.010000 ms

No further runs scheduled.

May 20, 2019 © 2019, http://www.perfsonar.net 34



Specifying Durations
• Subset of ISO 8601 Duration:

• PT19S 19 seconds

• PT3M 3 minutes
• PT2H5M 2 hours, 5 minutes
• P1D 1 day
• P3DT2H46M 3 days, 2 hours, 46 minutes
• P2W 2 weeks

• Inexact units (months, years) are not supported.

May 20, 2019 © 2019, http://www.perfsonar.net 35



Specifying Dates and Times
• ISO 8601 timestamp:

• Absolute 2016-03-19T12:05:19

• Coming in a future release:
• Relative to Now PT10M ISO 8601
• Even Boundary @PT1H @ + ISO 8601 Duration

May 20, 2019 © 2019, http://www.perfsonar.net 36



Task Options: Start Time
•--start t – Start at time t.

•--slip d – Allow the start time of run(s) to slip by 
duration d.

•--sliprand f – Randomize slip time as fraction f
of available.  (Range [0.0, 1.0])

May 20, 2019 © 2019, http://www.perfsonar.net 37



Task Options: Start Time
pscheduler task rtt

--start 2017-05-01T12:00 Start May 1, 2017 at noon

--slip PT8M Slip 
start up to 8 minutes

--sliprand 0.5

Randomly slip up to 4 minutes

--dest www.example.com

Line breaks and indentation added for clarity.

May 20, 2019 © 2019, http://www.perfsonar.net 38



Task Options:  Repetition
•--repeat d – Repeat runs every duration d.

• Other forms (notably CRON-like specification) to be added later.

•--until t – Continue repeating until time t.
• Default is forever.

•--max-runs n – Allow the task to run up to n
times.

• Default is no upper limit.

May 20, 2019 © 2019, http://www.perfsonar.net 39



Task Options:  Behavior
• --import f – Import JSON for the task from file f (use – for standard input)

• --export – Dump the task specification as JSON to standard output but don’t run 
it.

• --url – If the task is created, dump its URL to standard output and exit.

• --format f – If results are to be displayed, use format f, which is one of text
(the default), html or json.

• --assist s – Ask server s for assistance in setting up  the task

• Use this when the pScheduler server is not available on the local host.

• PSCHEDULER_ASSIST from the environment

May 20, 2019 © 2019, http://www.perfsonar.net 40



Task Options: Selecting a Tool
•--tool t – Add tool t to the list of tools which can 

be used to run the test.
• Can be specified multiple times for multiple tools.

• If not provided, a tool is automatically selected from 
those available.

May 20, 2019 © 2019, http://www.perfsonar.net 41



Test Options
• Parameters for the test

• Dependent on which test is being carried out.
• See guide documents for each test for specifics.

• Example:
psc task … trace --dest host.example.org

May 20, 2019 © 2019, http://www.perfsonar.net 42



Putting the Parts Together
psc task

--start 2016-05-04T19:20 Start at the 
specified time

--repeat PT15M

Repeat every 15 minutes

--max-runs 100

Stop after 100 successful runs

trace --dest ps.example.org Trace to 
ps.example.org

--length 384

Send 384-byte packets

--hops 42

Max. 42 hops to the destination

Line breaks and indentation added for clarity.
May 20, 2019 © 2019, http://www.perfsonar.net 43



[ps-iniu@pS40-n1-c7-7 ~]$ pscheduler task throughput --source wash-pt1.es.net --dest sunn-pt1.es.net

Submitting task...

Task URL:

https://wash-pt1.es.net/pscheduler/tasks/11f74cc2-4d49-4170-b9c4-19ad1d5cc563

Running with tool 'iperf3'

Fetching first run...

Next scheduled run:

https://wash-pt1.es.net/pscheduler/tasks/11f74cc2-4d49-4170-b9c4-19ad1d5cc563/runs/4819e120-3140-4d71-a766-bc21adef1f66

Starts 2017-07-21T12:30:25-07:00 (~7 seconds)

Ends 2017-07-21T12:30:44-07:00 (~18 seconds)

Waiting for result...

* Stream ID 5

Interval Throughput Retransmits Current Window

0.0 - 1.0 37.79 Mbps 0 903.75 KBytes 

1.0 - 2.0 581.12 Mbps 0 8.21 MBytes 

2.0 - 3.0 1.89 Gbps 0 24.11 MBytes

3.0 - 4.0 5.91 Gbps 0 67.00 MBytes

4.0 - 5.0 9.59 Gbps 0 79.86 MBytes

5.0 - 6.0 9.89 Gbps 0 79.88 MBytes

6.0 - 7.0 9.90 Gbps 0 80.19 MBytes

7.0 - 8.0 9.90 Gbps 0 80.24 MBytes

8.0 - 9.0 9.90 Gbps 0 80.26 MBytes

9.0 - 10.0 9.89 Gbps 0 80.26 MBytes

Summary

Interval Throughput Retransmits 

0.0 - 10.0 6.75 Gbps 0

Throughput task Example (iperf2)

May 20, 2019 © 2019, http://www.perfsonar.net 44

N.B. This is what perfSONAR 
Graphs – the average of the 
complete test



[ps-iniu@pS40-n1-c7-7 ~]$ pscheduler task --tool iperf3 throughput --source wash-pt1.es.net --dest sunn-pt1.es.net --

interval PT2S

Submitting task...

Task URL:

https://wash-pt1.es.net/pscheduler/tasks/5c1f457f-e5aa-463f-b475-7226dcc74dc7

Running with tool 'iperf3'

Fetching first run...

Next scheduled run:

https://wash-pt1.es.net/pscheduler/tasks/5c1f457f-e5aa-463f-b475-7226dcc74dc7/runs/3561e7c0-8471-4fb7-8c60-16c9d7fe151a

Starts 2017-07-21T12:48:56-07:00 (~6 seconds)

Ends   2017-07-21T12:49:15-07:00 (~18 seconds)

Waiting for result...

* Stream ID 5

Interval       Throughput     Retransmits    Current Window 

0.0 - 2.0      365.48 Mbps 0              9.49 MBytes

2.0 - 4.0      5.26 Gbps      0              79.88 MBytes

4.0 - 6.0      9.89 Gbps      0              80.16 MBytes

6.0 - 8.0      9.89 Gbps      0              80.27 MBytes

8.0 - 10.0     9.89 Gbps      0              80.31 MBytes

Summary

Interval       Throughput     Retransmits    

0.0 - 10.0     7.06 Gbps      0

No further runs scheduled.

[ps-iniu@pS40-n1-c7-7 ~]$

Throughput task Example (iperf3)

May 20, 2019 © 2019, http://www.perfsonar.net 45

N.B. This is what perfSONAR 
Graphs – the average of the 
complete test



[ps-iniu@pS40-n1-c7-7 ~]$ pscheduler task --tool nuttcp throughput --source wash-pt1.es.net --dest sunn-pt1.es.net --

interval PT2S

Submitting task...

Task URL:

https://wash-pt1.es.net/pscheduler/tasks/40aef448-2ba4-48db-8242-cf27c64853bb

Running with tool 'nuttcp'

Fetching first run...

Next scheduled run:

https://wash-pt1.es.net/pscheduler/tasks/40aef448-2ba4-48db-8242-cf27c64853bb/runs/36b18c33-45d6-4ea8-9523-0e12d352e222

Starts 2017-07-21T12:53:26-07:00 (~5 seconds)

Ends   2017-07-21T12:53:42-07:00 (~15 seconds)

Waiting for result...

* Stream ID 1

Interval       Throughput     Retransmits    Current Window 

0.0 - 2.0      829.94 Mbps    0              26.16 MBytes   

2.0 - 4.0      7.77 Gbps      0              78.02 MBytes   

4.0 - 6.0      9.90 Gbps      0              78.10 MBytes   

6.0 - 8.0      9.90 Gbps      0              78.14 MBytes   

8.0 - 10.0     9.90 Gbps      0              78.44 MBytes   

Summary

Interval       Throughput     Retransmits    

0.0 - 10.0     7.62 Gbps      0

No further runs scheduled.

[ps-iniu@pS40-n1-c7-7 ~]$

Throughput task Example (nuttcp)

May 20, 2019 © 2019, http://www.perfsonar.net 46

N.B. This is what perfSONAR 
Graphs – the average of the 
complete test



Outline
• Introduction

• Hardware & Software

• Tool Use

• Regular Testing

• Use Cases

May 20, 2019 © 2019, http://www.perfsonar.net 47



• There are a couple of ways to do this.  
• Beacon: Let others test to you (e.g. no regular configuration is needed)

• Island: Pick some hosts to test to – you store the data locally.  No 
coordination with others is needed

• Mesh: full coordination between you and others (e.g. consume a testing 
configuration that includes tests to everyone, and incorporate into a 
visualization)

May 20, 2019 © 2019, http://www.perfsonar.net 48

Regular Testing



• The beacon setup is typically employed 
by a network provider (regional, 
backbone, exchange point)

• A service to the users (allows people 
to test into the network)

• Can be configured with Layer 2 
connectivity if needed

• If no regular tests are scheduled, 
minimum requirements for local 
storage.  

• Makes the most sense to enable all 
services (bandwidth and latency)

May 20, 2019 © 2019, http://www.perfsonar.net 49

Regular Testing - Beacon



• The island setup allows a site to test 
against any number of the 1200+ 
perfSONAR nodes around the world, 
and store the data locally.  

• No coordination required with other sites
• Allows a view of near horizon testing (e.g. 

short latency – campus, regional) and far 
horizon (backbone network, remote 
collaborators). 

• OWAMP is particularly useful for determining 
packet loss in the previous cases.  

• Throughput will not be as valuable when the 
latency is small

May 20, 2019 © 2019, http://www.perfsonar.net 50

Regular Testing - Island



• A full mesh requires more 
coordination:

• A full mesh means all hosts involved 
are running the same test 
configuration

• A partial mesh could mean only a 
small number of related hosts are 
running a testing configuration

• In either case – bandwidth and 
latency will be valuable test cases

May 20, 2019 © 2019, http://www.perfsonar.net 51

Regular Testing - Mesh



• We can’t wait for users to report problems and then fix them (soft failures can go 
unreported for years!)

• Things just break sometimes
• Failing optics
• Somebody messed around in a patch panel and kinked a fiber
• Hardware goes bad

• Problems that get fixed have a way of coming back
• System defaults come back after hardware/software upgrades
• New employees may not know why the previous employee set things up a certain 

way and back out fixes

• Important to continually collect, archive, and alert on active throughput test results

Importance of Regular Testing

May 20, 2019 © 2019, http://www.perfsonar.net 52



MaDDash: http://ps-dashboard.es.net

May 20, 2019 © 2019, http://www.perfsonar.net 53

http://ps-dashboard.es.net/


• We run regular tests to check for three things
• TCP throughput
• One way packet loss and delay
• traceroute

• perfSONAR has mechanisms for managing regular testing between perfSONAR hosts
• Statistics collection and archiving
• Graphs
• MaDDash display
• Integration with NAGIOS

• This infrastructure is deployed now – perfSONAR hosts at facilities can take advantage of it

• At-a-glance health check for data infrastructure

Regular perfSONAR Tests

May 20, 2019 © 2019, http://www.perfsonar.net 54



• What are you going to measure?
• Achievable bandwidth

• 2-3 regional destinations
• 4-8 important collaborators
• 4-8 times per day to each destination
• 20 second tests within a region, longer across oceans and continents 

• Loss/Availability/Latency
• OWAMP:  ~10-20 collaborators over diverse paths

• Interface Utilization & Errors (via SNMP)

• What are you going to do with the results?
• NAGIOS Alerts • MadDash

• Reports to user community

Develop a Test Plan

May 20, 2019 © 2019, http://www.perfsonar.net 55



• Critical to deploy near key resources such as DTNs

• More perfSONAR hosts allow segments of the path to be tested separately
• Reduced visibility for devices between perfSONAR hosts
• Must rely on counters or other means where perfSONAR can’t go

• Effective test methodology derived from protocol behavior
• TCP suffers much more from packet loss as latency increases
• TCP is more likely to cause loss as latency increases
• Testing should leverage this in two ways

• Design tests so that they are likely to fail if there is a problem
• Mimic the behavior of production traffic as much as possible

• Note: don’t design your tests to succeed
• The point is not to “be green” even if there are problems
• The point is to find problems when they come up so that the problems are fixed quickly

perfSONAR Deployment Locations

May 20, 2019 © 2019, http://www.perfsonar.net 56



Sample Site Deployment

May 20, 2019 © 2019, http://www.perfsonar.net 57



Outline
• Introduction

• Hardware & Software

• Tool Use

• Regular Testing

• Use Cases

May 20, 2019 © 2019, http://www.perfsonar.net 58



Success Stories - #1 Failing Optic(s)
• First example –featuring a backbone network

• Similar to frog boiling, hard alarms don’t notice gradual failure

G
b

/s
normal 

performance

degrading 
performance

repair

one month

May 20, 2019 © 2019, http://www.perfsonar.net 59



Success Stories - #2 Brown University

May 20, 2019 © 2019, http://www.perfsonar.net 60



Success Stories - #2 Brown University 
Example

• Results to host behind the firewall:

May 20, 2019 © 2019, http://www.perfsonar.net 61



Success Stories - #2 Brown University Example
• In front of the firewall:

May 20, 2019 © 2019, http://www.perfsonar.net 62



Success Stories - #2 TCP Dynamics
• Want more proof – lets look at a measurement tool through the firewall.

• Measurement tools emulate a well behaved application  

• ‘Outbound’, not filtered:
nuttcp -T 10 -i 1 -p 10200 bwctl.newy.net.internet2.edu

92.3750 MB /   1.00 sec =  774.3069 Mbps     0 retrans

111.8750 MB /   1.00 sec =  938.2879 Mbps     0 retrans

111.8750 MB /   1.00 sec =  938.3019 Mbps     0 retrans

111.7500 MB /   1.00 sec =  938.1606 Mbps     0 retrans

111.8750 MB /   1.00 sec =  938.3198 Mbps     0 retrans

111.8750 MB /   1.00 sec =  938.2653 Mbps     0 retrans

111.8750 MB /   1.00 sec =  938.1931 Mbps     0 retrans

111.9375 MB /   1.00 sec =  938.4808 Mbps     0 retrans

111.6875 MB /   1.00 sec =  937.6941 Mbps     0 retrans

111.8750 MB /   1.00 sec =  938.3610 Mbps     0 retrans

1107.9867 MB /  10.13 sec =  917.2914 Mbps 13 %TX 11 %RX 0 retrans 8.38 msRTT

May 20, 2019 © 2019, http://www.perfsonar.net 63



Success Stories - #2 TCP Dynamics Through Firewall
• ‘Inbound’, filtered:

nuttcp -r -T 10 -i 1 -p 10200 bwctl.newy.net.internet2.edu

4.5625 MB /   1.00 sec =   38.1995 Mbps    13 retrans

4.8750 MB /   1.00 sec =   40.8956 Mbps     4 retrans

4.8750 MB /   1.00 sec =   40.8954 Mbps     6 retrans

6.4375 MB /   1.00 sec =   54.0024 Mbps     9 retrans

5.7500 MB /   1.00 sec =   48.2310 Mbps     8 retrans

5.8750 MB /   1.00 sec =   49.2880 Mbps     5 retrans

6.3125 MB /   1.00 sec =   52.9006 Mbps     3 retrans

5.3125 MB /   1.00 sec =   44.5653 Mbps     7 retrans

4.3125 MB /   1.00 sec =   36.2108 Mbps     7 retrans

5.1875 MB /   1.00 sec =   43.5186 Mbps     8 retrans

53.7519 MB /  10.07 sec =   44.7577 Mbps 0 %TX 1 %RX 70 retrans 8.29 msRTT

May 20, 2019 © 2019, http://www.perfsonar.net 64



Success Stories - #2 tcptrace output: with and 
without a firewall

firewall

No firewall

May 20, 2019 © 2019, http://www.perfsonar.net 65



Success Stories - #3 PSU
• PSU = Firewalls for 

some.  The college of 
engineering has one, 
central IT does not

May 20, 2019 © 2019, http://www.perfsonar.net 66



Success Stories - #3 PSU
• Initial Report from network users: performance poor both directions

• Outbound and inbound (normal issue is inbound through protection mechanisms)

• From previous diagram – CoE firewalll was tested
• Machine outside/inside of firewall.  Test to point 10ms away (Internet2 Washington)

• Low, but no retransmissions?

j@ssstatecollege:~> nuttcp -T 30 -i 1 -p 5679 -P 5678 64.57.16.22

5.8125 MB /   1.00 sec =   48.7565 Mbps     0 retrans

6.1875 MB /   1.00 sec =   51.8886 Mbps     0 retrans

6.1250 MB /   1.00 sec =   51.3957 Mbps     0 retrans

6.1250 MB /   1.00 sec =   51.3927 Mbps     0 retrans

184.3515 MB /  30.17 sec =   51.2573 Mbps 0 %TX 1 %RX 0 retrans 9.85 msRTT

May 20, 2019 © 2019, http://www.perfsonar.net 67



Success Stories - #3 PSU
• Observation: net.ipv4.tcp_window_scaling did not seem to be working

• 64K of buffer is default.  Over a 10ms path, this means we can hope to see only 50Mbps of 
throughput:

• BDP (50 Mbit/sec, 10.0 ms) = 0.06 Mbyte

• Implication: something in the path was not respecting the specification in RFC 1323, and was not allowing TCP 
window to grow
• TCP window of 64 KByte and RTT of 1.0 ms <= 500.00 Mbit/sec.
• TCP window of 64 KByte and RTT of 5.0 ms <= 100.00 Mbit/sec.
• TCP window of 64 KByte and RTT of 10.0 ms <= 50.00 Mbit/sec.
• TCP window of 64 KByte and RTT of 50.0 ms <= 10.00 Mbit/sec.

• Reading documentation for firewall:
• TCP flow sequence checking was enabled
• What would happen if this was turn off (both directions?

May 20, 2019 © 2019, http://www.perfsonar.net 68



Success Stories - #3 PSU
j@ssstatecollege:~> nuttcp -T 30 -i 1 -p 5679 -P 5678 64.57.16.22

55.6875 MB /   1.00 sec =  467.0481 Mbps     0 retrans

74.3750 MB /   1.00 sec =  623.5704 Mbps     0 retrans

87.4375 MB /   1.00 sec =  733.4004 Mbps     0 retrans

91.7500 MB /   1.00 sec =  770.0544 Mbps     0 retrans

88.6875 MB /   1.00 sec =  743.5676 Mbps    28 retrans

69.0625 MB /   1.00 sec =  578.9509 Mbps     0 retrans

2300.8495 MB /  30.17 sec =  639.7338 Mbps 4 %TX 17 %RX 730 
retrans 9.88 msRTT

May 20, 2019 © 2019, http://www.perfsonar.net 69



Success Stories - #3 PSU
• Was this impacting people?  Oh yes it was:

May 20, 2019 © 2019, http://www.perfsonar.net 70



Success Stories - #4 Host Tuning
• Simple example – play with the settings in 
/etc/sysctl.conf when running some BWCTL tests.  

• See if you can pick out when we raised the memory for the TCP 
window (ignore the blue – this is a known firewall)

May 20, 2019 © 2019, http://www.perfsonar.net 71



Success Stories - #4 Host Tuning
• Another example – long path (~70ms), single stream TCP, 10G cards, tuned 

hosts

• Why the nearly 2x uptick?  Adjusted net.ipv4.tcp_rmem/wmem
maximums (used in auto tuning) to 64M instead of 16M.

• As the path length/throughput expectation increases, this is a good idea.  
There are limits (e.g. beware of buffer bloat on short RTTs)

May 20, 2019 © 2019, http://www.perfsonar.net 72



Success Stories - #4 Host Tuning
• A more complete view – showing the role of MTUs and 

host tuning (e.g. ‘its all related’):

May 20, 2019 © 2019, http://www.perfsonar.net 73



Success Stories - #6 R&E vs. Commodity Routing
• Some campuses don’t need to be told that the R&E path is ‘better’, 

others need to figure it out on their own. 

• BWCTL results between PSU and Vanderbilt (science driver was 
genomics)

• Normally low results over the course of the day.  ‘spikes’ at 
night.  

• Traceoutes:
• PSU -> Cogent -> Century Link -> Vanderbilt

• Vanderbilt -> SOX -> NLR (dated) -> 3ROX -> PSU

• Asymmetry is not bad by itself, unless …

May 20, 2019 © 2019, http://www.perfsonar.net 74



Success Stories - #6 R&E vs. Commodity Routing

• Letting BGP ‘figure it out’ can sometimes lead to issues. 
• Yes, shortest path is a good metric in the commercial world.  
• R&E should always be preferred to commodity when available

• Managing local prefs can be a ‘pain’ for those that are not used to it.  The end result is hard to argue with

• The ‘blue’ line?  Over NLR in the dying days – and the Cisco 650x in that region was known to have a bad 
card/optic that was never replaced (e.g. packet loss all over the place)

May 20, 2019 © 2019, http://www.perfsonar.net 75



Success Stories - #8 Fiber Cut
• Not that perfSONAR could help fix this (that’s up to your local DOT 

and provider …), but it does have an interesting signature in terms 
of loss and latency:

May 20, 2019 © 2019, http://www.perfsonar.net 76



2Gbps UDP 
background 
data

TCP Test 
flows, 
50ms path

Modify this 
egress 
buffer size

Buffer Size Packets 

Dropped

TCP 

Throughput

120 MB 0 8Gbps

60 MB 0 8Gbps

36 MB 200 2Gbps

24 MB 205 2Gbps

12 MB 204 2Gbps

6 MB 207 2Gbps

30 Second test, 2 TCP streams

#9 Buffer Tuning Experiment

May 20, 2019 © 2019, http://www.perfsonar.net 77



#10 BGP Peering Migration
• Peering moved from 10G 

link to 100G link
• Latency change shows path 

change

May 20, 2019 © 2019, http://www.perfsonar.net 78



#10 BGP Peering Migration

• Performance 
increases

• Performance 
stabilizes

May 20, 2019 © 2019, http://www.perfsonar.net 79



#11 Monitoring TA Links

May 20, 2019 © 2019, http://www.perfsonar.net 80



#13 MTU Changes (Short RTT)

May 20, 2019 © 2019, http://www.perfsonar.net 81



#13 MTU Changes (Longer RTT)

May 20, 2019 © 2019, http://www.perfsonar.net 82



http://fasterdata.es.net/performance-testing/troubleshooting/interface-speed-mismatch/
http://fasterdata.es.net/performance-testing/evaluating-network-performance/impedence-mismatch/

#14 Speed Mismatch

May 20, 2019 © 2019, http://www.perfsonar.net 83

http://fasterdata.es.net/performance-testing/troubleshooting/interface-speed-mismatch/
http://fasterdata.es.net/performance-testing/evaluating-network-performance/impedence-mismatch/


Monitoring end-to-end systems

May 20, 2019 © 2019, http://www.perfsonar.net 84

http://bit.ly/EPOC-USC-CI

Training Workshop for Network Engineers and Educators on Tools 
and Protocols for High-Speed Networks
University of South Carolina
July 22-23, 2019

Jason Zurawski

zurawski@es.net

ESnet / Lawrence Berkeley National Laboratory

mailto:zurawski@es.net


Outline
• Introduction

• Hardware & Software

• Tool Use

• Regular Testing

• Use Cases

• Debugging

May 20, 2019 © 2019, http://www.perfsonar.net 85



WAN Test Methodology – Problem Isolation
• We said it before, but it bears repeating: segment-to-segment testing is not 

helpful
• TCP dynamics will be different, and in this case all the pieces do not equal the whole

• E.g. high throughput on a 1ms path with high packet loss vs. the same segment in a longer 20ms path

• Problem links can test clean over short distances
• An exception to this is hops that go thru a firewall

May 20, 2019 © 2019, http://www.perfsonar.net 86



WAN Test Methodology – Problem Isolation
• Run long-distance tests

• Run the longest clean test you can, then look for the shortest dirty test that includes the 
path of the clean test

• In order for this to work, the testers need to be already deployed when you 
start troubleshooting

• ESnet has at least one perfSONAR host at each hub location.  
• Many (most?) R&E providers in the world have deployed at least 1

• If your provider does not have perfSONAR deployed ask them why, and then ask when 
they will have it done

87



Network Performance Troubleshooting Example

May 20, 2019 © 2019, http://www.perfsonar.net 88



Wide Area Testing – Full Context

May 20, 2019 © 2019, http://www.perfsonar.net 89



Wide Area Testing – Long Clean Test

May 20, 2019 © 2019, http://www.perfsonar.net 90



Wide Area Testing – Poorly Performing Tests 
Illustrate Likely Problem Areas

May 20, 2019 © 2019, http://www.perfsonar.net 91



Likely Problem Area

May 20, 2019 © 2019, http://www.perfsonar.net 92


