SCIENCE DMZ: INTRODUCTION, CHALLENGES, AND OPPORTUNITIES

Jorge Crichigno
University of South Carolina
Columbia, South Carolina

- Founded in 1801, University of South Carolina (USC) is the flagship institution of the University of South Carolina System
- More than 350 programs of study, leading to bachelor's, master's, and doctoral degrees
- Total enrollment of approximately 50,000 students, with over 34,000 on the main Columbia campus as of Fall 2017

- Founded in 1801, University of South Carolina (USC) is the flagship institution of the University of South Carolina System
- More than 350 programs of study, leading to bachelor's, master's, and doctoral degrees
- Total enrollment of approximately 50,000 students, with over 34,000 on the main Columbia campus as of Fall 2017

- The College of Engineering and Computing includes:
 - Integrated Information Technology (IIT)
 - Computer Science
 - Electrical Engineering
 - Mechanical Engineering
 - Aerospace Engineering
 - Biomedical Engineering
 - Chemical Engineering
 - Civil and Environmental

- Other facts
- Countless extra curricular activities
- ~2 hours to the most beautiful beaches in the U.S.
- One of the best athletics in the country

Introduction to Science DMZ

- Science and engineering applications are now generating data at an unprecedented rate
- From large facilities to portable devices, instruments can produce hundreds of terabytes in short periods of time
- Data must be typically transferred across high-latency WANs

Applications

ESnet traffic

Enterprise Network Limitations

- Security appliances (IPS, firewalls, etc.) are CPU-intensive
- Inability of small-buffer routers/switches to absorb traffic bursts
- Even a small packet loss rate reduces throughput
- At best, transfers of big data may last days or even weeks

¹E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, "The science dmz: a network design pattern for data-intensive science," International Conference on High Performance Computing, Networking, Storage and Analysis, Nov. 2013.

Science DMZ

- The Science DMZ is a network designed for big science data¹
- Main elements
 - High throughput, friction free WAN paths (no inline security appliances, routers / switches w/ large buffer size)
 - Data Transfer Nodes (DTNs)
 - End-to-end monitoring = perfSONAR
 - Security = Access-control list + offline appliance/s (IDS)

¹E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, "The science dmz: a network design pattern for data-intensive science," International Conference on High Performance Computing, Networking, Storage and Analysis, Nov. 2013.

Science DMZ

- The Science DMZ is a network designed for big science data¹
- Main elements
 - High throughput, friction free WAN paths (no inline security appliances, routers / switches w/ large buffer size)
 - Data Transfer Nodes (DTNs)
 - End-to-end monitoring = perfSONAR
 - Security = Access-control list + offline appliance/s (IDS)

Friction-induced low-latency LAN path

Science DMZ

- The Science DMZ is a network designed for big science data¹
- Main elements
 - High throughput, friction free WAN paths (no inline security appliances, routers / switches w/ large buffer size)
 - Data Transfer Nodes (DTNs)
 - End-to-end monitoring = perfSONAR
 - Security = Access-control list + offline appliance/s (IDS)

Friction-induced low-latency LAN path

Science DMZs in the U.S.

Science DMZ deployments as of 2016

RATE-BASED (BBR) VS WINDOW-BASED LOSS-BASED CONGESTION CONTROL: IMPACT OF MSS AND PARALLEL STREAMS ON BIG FLOWS

With Zoltan Csibi

BBR Brief Overview

- TCP BBR has been recently proposed as a congestion control algorithm (2016/17)¹
- BBR represents a disruption from the window-based lossbased congestion control used during the last decades²
- BBR uses 'pacing' to try to match the bottleneck rate

1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, "Bbr: congestion-based congestion control," *Communications of the ACM*, vol 60, no. 2, pp. 58-66, Feb. 2017.

(a) A viewpoint of a TCP connection. (b) Throughput and RTT, as a function of inflight data¹.

MSS and Parallel Streams

- Two of the main features impacting big flows
 - Maximum segment size (MSS)
 - The use of parallel streams

MSS

Large MSS produces a faster recovery after a packet loss

TCP throughput =
$$\frac{c \cdot MSS}{RTT \cdot \sqrt{p}}$$

MSS: maximum segment size

RTT: round-trip time

p: loss rate c: constant

Note: the above equation does not

apply to BBR

Parallel Streams

 Opening parallel connections essentially creates a large virtual MSS on the aggregate connection

CP: Control process
DTP: Data transfer process

Scenario

- Sender/receiver connected by a 10 Gbps path, 20 ms
 RTT, running CentOS 7
- Memory-to-memory tests using iPerf3
- Network Emulator (Netem) used to adjust loss rate
- At 20 ms RTT, throughput already collapses when subject to a small loss rate

Scenario

- Each experiment lasted 70 seconds (first 10 seconds were not taken into account)
- For each test condition, ten experiments were conducted and the average throughput was computed

21

- When not limited by network bandwidth, parallel streams improved BBR's throughput by more than a factor of 3
- The improvement factor for loss-based CC is lower
- When parallel streams are used, the performance of HTCP, Cubic, and Reno are similar

1/27/2021 22

TRAFFIC CHARACTERIZATION USING NETFLOW

1/27/2021 23

Motivation

- Offline scalable security appliances are required in Science DMZs
- Flow statistics can be available
- Flow-based Intrusion Detection System (IDS) is more scalable than payload-based IDS¹
- Goal: characterize normal traffic behavior by using flow information only (e.g., IPs, ports, transport protocol)

^{1.} R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, A. Pras, "Flow monitoring explained: from packet capture to data analysis with netFlow and ipfix," *IEEE Communications Surveys and Tutorials*, vol. 16, no. 4, 2014.

Motivation

 One approach for flow characterization is to measure the randomness or uncertainty of elements of a flow

Motivation

 One approach for flow characterization is to measure the randomness or uncertainty of elements of a flow

Motivation

- Entropy provides a measure of randomness or uncertainty
- For a variable X, entropy of $X = \sum_{x \in X} p_x \log_2 \left(\frac{1}{p_x}\right)$
- For the previous port example, let X be the variable indicating the external port

$$X = \begin{cases} 80 \text{ with probability } p_1 = \frac{5}{6} \\ 22 \text{ with probability } p_2 = \frac{1}{6} \end{cases}$$

Motivation

- Entropy provides a measure of randomness or uncertainty
- For a variable X, entropy of $X = \sum_{x \in X} p_x \log_2 \left(\frac{1}{p_x}\right)$
- For the previous port example, let X be the variable indicating the external port

$$X = \begin{cases} 80 \text{ with probability } p_1 = \frac{5}{6} \\ 22 \text{ with probability } p_2 = \frac{1}{6} \end{cases}$$

Entropy External Port =
$$\sum_{i=1}^2 p_i \log_2\left(\frac{1}{p_i}\right) = \frac{5}{6} \log_2\left(\frac{1}{\frac{5}{6}}\right) + \frac{1}{6} \log_2\left(\frac{1}{\frac{1}{6}}\right) = 0.65$$

Motivation

- Entropy provides a measure of randomness or uncertainty
- For a variable X, entropy of $X = \sum_{x \in Y} p_x \log_2 \left(\frac{1}{p_x}\right)$
- For the previous port example, let X be the variable indicating the external port

Internet

$$X = \begin{cases} 80 \text{ with probability } p_1 = \frac{5}{6} \\ 22 \text{ with probability } p_2 = \frac{1}{6} \end{cases}$$

- 0 entropy -> no uncertainty (e.g., all external ports are 80)
- 1 entropy -> random -> high uncertainty

Scenario

- Small campus network ~15 buildings
- Inbound traffic is used as a reference (external IP address is in the Internet, campus IP address is in campus)
- The collector organizes flow data in five-minute time slots

Results

External IP

- In general, high entropy, 'many' external IF addresses
- External IPs dispersed in the Internet
- Abnormal low entropy points
- Entropy near zero (no uncertainty of the external IP address), or 'very low' level (few external IP addresses dominate the distribution)

External port

- Higher entropy during the night, weekends
- · Low entropy during the day, noon
- Large volume of http flows when students are on campus (less uncertainty/entropy on external port)
- · Abnormal high entropy points

Results

Campus IP

- In general, low entropy, 'few' IP addresses on campus
- Higher entropy on weekends and at night
- Lower entropy when students are on campus
- A handful of public IP addresses used for regular Internet connectivity (network address translation)

Campus port

- Lower entropy at night
- High entropy (close to uniform distribution) at noon
- Dynamic ports used by browsers when students connect to the Internet
- Abnormal low entropy points

Results

- Anomalies are detected by a single feature or by correlating multiple features
- E.g., event I: low campus port's entropy, high external port's entropy, low external IP's entropy

Correlation of entropy time-series

	Campus	Campus	External	External	Total
	IP	port	IP	port	traffic
Weekday					
3-tuple	0.23	0.1	0.6	-0.02	-0.05
Campus IP		-0.85	0.6	0.89	-0.8
Campus port			-0.37	-0.98	0.78
External IP				0.45	-0.36
External port					-0.81
Weekend					
3-tuple	-0.23	-0.12	0.56	0.06	-0.03
Campus IP		0.15	-0.38	0.06	-0.38
Campus port			-0.48	-0.93	0.31
External IP				0.48	-0.05
External port					-0.39

1/27/2021 34

FUTURE RESEARCH

- BBR results indicate that rate-based congestion control (CC) can improve throughput
- BBR is still an end-to-end CC algorithm and uses implicit information (RTT)
- What if intermediate devices provide explicit feedback?
 - Queue's length
 - Latency
 - Bandwidth usage

- P4 is a programming language for switches, currently under standardization process
- Software-defined Networking (SDN) allows devices to program the control plane
- P4 switches permit to program the forwarding (data) plane
 - Add proprietary features: invent, differentiate, own
 - Telemetry and measurement
 - Reduce complexity

Barefoot's Tofino (Dec. 2016)

- What if rate at a sender node is adjusted based on feedback provided by a P4 switch?
- Engineers now have the capability of defining their own protocols, processed by a programmable P4 switch
- Feedback may include queue's length, packet latency, and others

- Many more opportunities...
 - New approaches to congestion control
 - New encapsulations and tunnels
 - New ways to tag packets for special treatment
 - New approaches to routing: e.g. source routing
 - New ways to process packets