
Enhancing perfSONAR Measurement Capabilities
using P4 Programmable Data Planes

Ali Mazloum
University of South Carolina

Columbia, SC, USA
amazloum@email.sc.edu

Jose Gomez
University of South Carolina

Columbia, SC, USA
gomezgaj@email.sc.edu

Elie F. Kfoury
University of South Carolina

Columbia, SC, USA
ekfoury@email.sc.edu

Jorge Crichigno
University of South Carolina

Columbia, SC, USA
jcrichigno@cec.sc.edu

ABSTRACT
As a key element in the Science Demilitarized Zone (Science DMZ)
framework, perfSONAR is a crucial tool for monitoring and trou-
bleshooting network performance. This paper presents a system that
leverages the flexibility and granularity of P4 programmable data
planes to enhance perfSONAR measurements. P4 is a programming
language used to define how network packets are processed in the
data plane. The proposed system employs a P4 programmable data
plane that operates passively on real traffic. This approach ensures
real-time per-flow monitoring and detailed insights, assisting admin-
istrators in understanding network traffic patterns. Moreover, the
system detects microbursts and seamlessly integrates with a regular
perfSONAR node. Experimental evaluations show that the proposed
system provides full visibility of the real traffic, reports undetectable
problems by a regular perfSONAR node, and notifies administrators
if the endpoints of the connection cause low performance.

KEYWORDS
perfSONAR, ScienceDMZ, P4, Data Transfer Node (DTN), Bandwidth-
delay Product (BDP), Router’s Buffer Size, Microburst, Millimeter
Wave (mmWave).

ACM Reference Format:
Ali Mazloum, Jose Gomez, Elie F. Kfoury, and Jorge Crichigno. 2023. En-
hancing perfSONAR Measurement Capabilities using P4 Programmable
Data Planes. In Workshops of The International Conference on High Per-
formance Computing, Network, Storage, and Analysis (SC-W 2023), Novem-
ber 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3624062.3624596

This work was supported by the U.S. National Science Foundation, Office of Advanced
Cyberinfrastructure, Award #2118311.

This work is licensed under a Creative Commons Attribution International 4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624596

1 INTRODUCTION
In an era where scientific and engineering endeavors are generating
unprecedented volumes of data, efficient and reliable network infras-
tructure has become paramount. From the expansive data produced
by cutting-edge facilities such as the Large Hadron Collider [14] to
the intricate genetic insights derived from portable DNA sequencers
[11], the need for seamless data transfer across networks is more
pronounced than ever. While conventional enterprise networks can
handle operational data, they face significant challenges when deal-
ing with the influx of terabyte and petabyte-scale data generated by
these scientific instruments.

In response to these challenges, the Science DMZ has emerged [9].
Aimed to facilitate large data transfers, the Science DMZ provides a
dedicated network segment designed explicitly for the high-speed
transmission of large amounts of scientific data. At its core, the Sci-
ence DMZ is supported by four key pillars: specialized Data Transfer
Nodes (DTNs) used for high-rate data movement, high-throughput
paths characterized by frictionless data flow, performance measure-
ment mechanisms for real-time network assessment, and security
protocols optimized for the unique demands of high-performance
scientific environments.

While Science DMZs are essential in facilitating data transfers,
a critical dimension consists of advanced monitoring and analyt-
ical capabilities to visualize and troubleshoot performance issues.
At the core of the Science DMZ, perfSONAR [28] emerges as the
tool to effectively implement and execute the crucial tasks of moni-
toring network performance and troubleshooting. Developed by a
collaborative effort among research and education institutions, perf-
SONAR offers a comprehensive framework for measuring, analyzing,
and diagnosing network issues. It enables network administrators,
researchers, and operators to gain valuable insights into network
performance, ensuring the efficient and reliable operation of their in-
frastructure. Although perfSONAR is a key tool used to diagnose and
troubleshoot network issues, it presents shortcomings such as time
accuracy, packet level analysis, and custom network measurements.

This paper proposes a system that enhances a regular perfSONAR
deployment by using a P4 programmable data plane as a measure-
ment instrument. The system uses passive optical TAPs to create
a copy of the traffic going to a perfSONAR node and sending it to
a P4 programmable data plane. The P4 programmable data plane
processes the metrics and displays them in a dashboard. P4 is a
programming language that defines how network devices process

819

https://doi.org/10.1145/3624062.3624596
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624596
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624596&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ali Mazloum, Jose Gomez, Elie F. Kfoury, and Jorge Crichigno

Lab
Enterprise
Network

Enterprise
Network

WANWAN

Science DMZ
Supercomputer

perfSONAR

Storage device

Offline security
appliance

Lab

DTN

Access
switches

Core switch

Border
router

Firewall,
NAT

Science DMZ

Friction-free high-latency WAN path

Path including friction (e.g., slow processing, CPU-intensive appliances)

Figure 1: A Science DMZ co-located with an enterprise net-
work.

network data packets [23]. It enables the customization of data plane
behavior, allowing network operators to specify how packets are
parsed, processed, and forwarded, providing high flexibility and
programmability in network operations.

The proposed systemminimizes network interference and latency
while offering real-time performance insights, making it particularly
well-suited for critical and high-performance networks. With this
approach, the system implements per-flow monitoring and provides
detailed reports for active flows. The reports include individual flow
throughput, Round-Trip Time (RTT), packet loss, queue occupancy,
and more. This granularity helps network administrators fine-tune
network configurations and in troubleshooting problems.

Furthermore, the proposed system introduces microburst detec-
tion, a metric critical for network stability. Microbursts are rapid
packet influxes that can impair network performance [33]. The sys-
tem’s nanosecond-level reporting of microbursts empowers admin-
istrators to pinpoint and address performance bottlenecks. Besides,
the system seamlessly integrates with perfSONAR, aligning with
the pSConfig command and the default archiver for streamlined
reporting and data storage. Administrators can adjust reporting
rates and set alert thresholds, enhancing coordination between the
system and perfSONAR. These functionalities are implemented as
an extension of the pSConfig command.

1.1 Contributions
This paper leverages the flexibility of P4 programmable data planes
to enhance the network measurements produced by a perfSONAR
node. The main contributions of this paper can be framed as follows:
• Enhancing monitoring without actively engaging with the
network. Passive P4 programmable data planes operate over
a copy of the network traffic, minimizing interference with
regular network operations.
• Introducing real-time performance reporting and per-flow
detailed statistics. The system enhances perfSONAR’s moni-
toring abilities on a per-packet basis to improve visibility and
accurate network analysis.

To
o

ls

tracerouteiperf3 iperf nuttcp tracepath
paris-

traceroute
twping owping powstream

twamp owamp

Sc
h

e
d

u
lin

g

pScheduler

OpenSearch

A
rc

h
iv

in
g

C
o

n
fi

gu
ra

ti
o

n

pSConfig

Logstash

V
is

u
al

iz
at

io
n

OpenSearch
Dashboard

Grafana Graphs MaDDash
pSConfig

WebAdmin
Toolkit UI

Discovery

Lo
o

ku
p

 Service R
egistratio

n

Figure 2: perfSONAR architecture [28].

• Detecting and reporting microbursts. The system offers the
capability to pinpoint and address issues arising from mi-
crobursts, a challenge often overlooked by conventional mon-
itoring tools.
• Seamless integration with perfSONAR. The system incorpo-
rates pSConfig model-based configuration and utilizes the
perfSONAR archiver for data storage, facilitating control over
reporting rates and alert thresholds throughout a perfSONAR
node.

1.2 Paper Organization
This paper is organized as follows. Section 2 provides background
on Science DMZ, perfSONAR, and P4 programmable data planes.
Section 3 describes the proposed system. Section 4 describes the
implementation of the system. Section 5 illustrates the performed
experiments and use cases. Section 6 presents the related works.
Section 7 concludes the paper.

2 BACKGROUND
2.1 Science DMZ
The Science DMZ is a network architecture specifically designed to
address the unique data transfer and performance requirements of
large-scale scientific research and data-intensive applications [8]. It
emerged as a response to the escalating demand for efficient and
high-speed data transfer capabilities within research institutions
and facilities, where conventional network infrastructures present
limitations to accommodate the massive volumes of data generated
by modern scientific experiments and simulations.

Figure 1 illustrates a basic architecture of a Science DMZ co-
located with an enterprise network. Notice the absence of a firewall
or any stateful inline security appliance in the friction-free path. As
data sets traverse from the WAN to a DTN, they can either be locally
stored within the DTN or written in a storage device. DTNs have a
dual-homed configuration featuring a secondary interface linked to
the storage device. This strategy enables the DTN to concurrently
receive data from the WAN and transfer it to the storage device,
avoiding redundant copying. Within the Science DMZ, users in an
internal laboratory can have friction-free access to the data residing
on the storage device, experiencing uninterrupted availability. In
contrast, users located in a laboratory within the enterprise network,
protected by a firewall, experience reasonable performance when

820

Enhancing perfSONAR Measurement Capabilities
using P4 Programmable Data Planes SC-W 2023, November 12–17, 2023, Denver, CO, USA

Archiver

Core Switch

Programmable Switch

Science DMZ

Internal Network

: Data packets : TAP : Tapped packets : Report

WAN

Figure 3: Proposed system overview. A P4 programmable
switch calculates measurements from the passive traffic re-
ceived from a pair of TAPs. The TAPs mirror the traffic enter-
ing and existing the core switch.

accessing stored data within the Science DMZ. This differentiation
results from the reduced latency between the Science DMZ and
enterprise users, which diminishes the performance impact caused
by retransmissions resulting from security appliances.

2.2 perfSONAR
perfSONAR is a monitoring framework designed to measure the
performance of network infrastructures. It plays a crucial role in
enhancing network operations, troubleshooting issues, and optimiz-
ing data transfer. Developed through collaborative efforts within
the research and education community, perfSONAR addresses the
challenges posed by the ever-increasing demand for high-speed and
reliable data transfer across distributed networks.

Figure 2 shows the components of perfSONAR architecture. perf-
SONAR comprises a modular architecture integrating open-source
tools (e.g., iPerf3, ping, traceroute) and perfSONAR-specific modules
(e.g., pScheduler, pSConfig, MaDDash, and others). The implementa-
tion of perfSONAR consists of distributed software agents deployed
across network nodes. These nodes collaborate to collect, analyze,
and report network performancemetrics. The framework is designed
to be vendor-neutral and adaptable to different network environ-
ments, making it suitable for a wide range of applications. These
perfSONAR nodes can coordinate measurement tests using standard
protocols to gather performance data, such as throughput, latency,
packet loss, and jitter. The collected data is aggregated and presented
in a user-friendly format.

2.3 P4 Programmable Data Planes
Traditional network devices operate on fixed, proprietary hardware
and software architectures, which limits the type of processing that a
switch or router can perform. The surge in diverse applications, from
cloud computing to IoT, demanded a network infrastructure that can
dynamically adapt and scale. P4 emerged in response to this demand,
enabling the implementation of programmable data planes that can
be tailored to the unique needs of various use cases [1, 17, 23, 25]

P4 is a programming language that defines how network de-
vices process network data packets. It enables the customization
of data plane behavior, allowing network operators to specify how

Archiver

Data storage and
visualization

: Processed report: Processed report

Configuration layer
Data collection and

processing

perfSONAR
Programmable

Switch

Data Plane

Control Plane

: Report: Report: New configuration: New configuration

Data storage and
visualization

: Processed report

Configuration
Data collection and

processing

Data Plane

Control Plane

: Report: New configuration

Figure 4: Proposed system architecture.

packets are parsed, processed, and forwarded, providing high flexi-
bility and programmability in network operations. Typically, a P4-
compatible device has multiple pipelines that can process packets
concurrently. Programmers can define different processing behav-
ior for each pipeline. A pipeline contains an Ingress programmable
block and an Egress programmable block. The two programmable
blocks utilize a programmable parser to fetch the headers of the
incoming packets, match-action tables to implement the processing
behavior, and a deparser to reassemble the packets.

The proposed system leverages on the flexibility of P4 programmable
data planes to enhance perfSONAR visibility and troubleshooting ca-
pabilities. Although the latest version of perfSONAR (version 5) [27]
aggregates the tests into a single value, the authors are aware that
perfSONAR can be as granular as the tool it uses (e.g., iPerf, ping).
The latest version of perfSONAR processes the measurements col-
lected by the Tools layer using Logstash [28]. By default, Logstash
is programmed to aggregate the result of a perfSONAR test. For
throughput tests, Logstash only reports the average value. For RTT
tests, Logstash reports the minimum, the maximum, and the mean
RTT. Because the default configuration does not reflect the maxi-
mum granularity supported by perfSONAR, Logstash’s filters can
be adjusted. However, this minor granularity addition only applies
to the performed active tests and does not allow perfSONAR to have
per-flow visibility. Having per-flow visibility is one of the main goals
that perfSONAR is aiming to achieve which cannot be done without
operating passively on the real traffic [30]

3 PROPOSED SYSTEM
3.1 Overview
The proposed system utilizes a P4 programmable switch to passively
monitor real traffic. The system is depicted in Figure 3. A legacy
switch (core switch) connects the Science DMZ to the Internet. A
TAP duplicates the traffic arriving at and departing from the legacy
switch to the programmable switch.

3.2 Architecture
The data plane of the programmable switch collects per-flow mea-
surements where flows are characterized by their 5-tuple (source
IP, destination IP, source port, destination port, and protocol). The
collected measurements are extracted by the switch’s control plane
for additional processing before being reported to a perfSONAR
archiver. The rate of measurement extraction by the control plane
is a variable that a perfSONAR node can configure. The proposed
system also allows the administrator to define an alerting threshold

821

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ali Mazloum, Jose Gomez, Elie F. Kfoury, and Jorge Crichigno

Programmable Switch

Data Plane

Control Plane

fnf1

: Number of bytes report

: Packet loss report

: Queue occupancy report

(a)

tN tP tR
tQ tN tP tR tQ

perfSONAR pSConfig

tN, tP, tR, tQ,

aN, aP, aR, aQ

perfSONAR Archiver

tR

tP

tN

n

tQ

(b) (c)

aN : Number of bytes alerting threshold

aP : Packet loss alerting threshold

aT : RTT alerting threshold

 tR : RTT reporting interval

 tQ : Queue occupancy reporting interval

aQ : Queue occupancy alerting threshold

 : RTT report

tN : Number of bytes reporting interval

tP : Packet loss reporting interval

Figure 5: The interaction between the different components of the proposed system. (a) The perfSONAR pSConfig module is
responsible for configuring the control plane of the programmable switch by updating the reporting speed and the alerting
thresholds of the four monitored metrics. (b) The data plane is responsible for collecting the measurements, and the control
plane is responsible for extracting and processing the measurements from the data plane before forwarding them to the
archiver. (c) The perfSONAR archiver stores the measurements received from the control plane.

for each monitored metric. If the threshold is exceeded, the switch
alerts the administrator and increases the rate of measurement col-
lection in order to get higher visibility. The number of reports per
second, the alerting threshold, and the increase in the reporting
rate when the threshold is exceeded are all customizable and can
be configured from the configuration layer of the perfSONAR node
(i.e., using pSConfig).

As depicted in Figure 4, the proposed system has four main com-
ponents. The first component is the data plane of the programmable
switch. The data plane is responsible for monitoring the traffic. The
second component is the control plane of the switch. The control
plane is responsible for extracting and processing the measurements
from the data plane before sending them to the perfSONAR archiver,
which represents the third component in the proposed system. Be-
sides storing the collected data, the archiver allows the real-time
visualization of the metrics extracted from the data plane. The last
component is the configuration daemon. The daemon runs on a perf-
SONAR node and configures the control plane of the programmable
switch.

As indicated by Figure 5(a), the configuration layer of perfSONAR
is responsible for configuring the time intervals during run time.
The four time intervals, 𝑡𝑁 , 𝑡𝑃 , 𝑡𝑅 , and 𝑡𝑄 represent the rate at which
the control plane extracts the number of bytes, packet losses, RTT,
and queue occupancy measurements, respectively from the data
plane. This layer can also configure alerting thresholds (𝑎𝑁 , 𝑎𝑃 , 𝑎𝑅 ,
and 𝑎𝑄) for the four metrics. If one of the alerting thresholds is
exceeded, the control plane notifies the administrator and increases
the collection rate to a value defined by the administrator.

The interaction between the data plane and the control plane is
shown in Figure 5(b). The data plane receives packets from n different
flows representing the real traffic. For each of the n flows, the data
plane continuously monitors four metrics: the number of bytes,
the RTT, the retransmission rate (number of packet loss), and the
queuing delay (queue occupancy). The control plane utilizes the APIs
provided by the switch manufacturer to access the measurements
maintained by the data plane at run-time. The control plane extracts
and reports the measurements of all the flows simultaneously, as
shown in Figure 5(c).

Table 1: Comparison between a regular perfSONAR deployment and the enhanced perfSONAR integrated with P4.

Regular perfSONAR P4-perfSONAR Comment
Measurements type Active measurements Active and passive measurements Unlike active measurements, passive measurements

induce no overhead on the network
Measurements source Injected traffic Real traffic Measurements not collected from the real trafficmight

not be representative
Granularity Limited granularity Per-flow and per-packet granularity Tools utilized by the rgular perfSONAR are not de-

signed to support sub-millisecond granularity
Visibility Limited by the active tests Real-time visibility over all data

transfers
P4-perfSONAR provides visibility as long as there is
a data transfer

Microburst detection Not supported Detects and reports microbursts
with nanosecond granularity

Microbusrt detection requires monitoring the queue
on a per-packet basis

Detecting the source
of the connection lim-
itation

Not supported Detects and reports limitations
caused by the endpoints

The regular perfSONAR does not detect problems at
the endpoints because it does not operate on their
traffic

822

Enhancing perfSONAR Measurement Capabilities
using P4 Programmable Data Planes SC-W 2023, November 12–17, 2023, Denver, CO, USA

3.3 Features
Table 1 compares the regular perfSONAR and perfSONAR integrated
with P4 (refered to by P4-perfSONAR in the table). The features of
the proposed system and their added value are explained in the
remainder of this section.

3.3.1 Passive Measurement. Unlike active measurement, passive
measurement does not add overhead or consume network resources.
Through tapping, the programmable switch operates on a copy of
the actual network traffic. The switch does not actively participate
in the network, and consequently, there is no risk of increasing net-
work latency, bottlenecks, or affecting the overall performance. This
makes passive monitoring suitable for critical and high-performance
networks where minimal interference is crucial [13].

3.3.2 Per-flow Monitoring. The proposed system significantly en-
hances the monitoring capabilities of perfSONAR. Typically, perf-
SONAR runs periodic active measurements to monitor the network.
This provides a periodic estimation of the state of the network (e.g.,
available bandwidth); however, it lacks the ability to report the
performance of the real traffic. The proposed system enhances the
visibility of perfSONAR by reporting the network performance in
real-time. Besides, the system provides per-flow detailed reports.
The data plane updates the statistics of each flow on a per-packet
basis. The statistics are continuously updated and maintained by
dedicated stateful registers where the data plane can track 2048
active flows simultaneously. Because providing a per-packet report
overwhelms both the control plane and the data collector (i.e., perf-
SONAR archiver), the administrator has the flexibility to configure
the reporting interval, which can be in the order of milliseconds.

The proposed system also provides a detailed report for each
terminated long flow. The report uses the nanosecond granularity
of the switch to provide the flow’s start and end times. The report
also includes the total number of packets sent, the total number of
bytes, the average throughput, and the number and percentage of
retransmissions. This report helps administrators understand the
type of traffic they are interacting with and consequently helps them
tune their network.

3.3.3 Microburst Detection. In addition to enhancing the visibility
of perfSONAR, the proposed system reports microbursts, a metric
not supported by any tool used by perfSONAR. Microbursts occur
when a massive amount of packets arrives in a very short dura-
tion. The duration of a microburst can be lower than a hundred
microseconds [33], making it undetectable without per-packet visi-
bility [5]. Yet, microbursts can significantly reduce the performance
of networks. The burst of packets fills a router’s buffer, increasing
the flows’ RTT. If the burst is big enough, it might bloat the buffer,
leading the router to drop all the packets arriving during the burst.

1. psconfig config-P4 --metric throughput --samples_per_second 1

2. psconfig config-P4 --metric RTT --samples_per_second 2

3. psconfig config-P4 --metric queue_occupancy --alert --threshold 30
--samples_per_second 10

Figure 6: Configuration example.

Because of the nature of some TCP congestion control algorithms,
packet losses can lead to significant performance degradation. The
proposed system is able to report the starting time and the dura-
tion for any microburst with nanosecond granularity. To do so, the
switch monitors the queue occupancy on a per-packet basis. The
sudden increase in queue occupancy is reported as a microburst.

3.3.4 Identifying if the Connection is Limited by the Network or by
the Sender/Receiver. In a network, connections can encounter vari-
ous levels of restrictions, stemming from different elements of the
communication process: the sender, the receiver, or the network
infrastructure itself [15]. The proposed system is capable of deter-
mining whether these limitations arise from the network or from
the sender/receiver.

Specifically, the system can identify whether a connection’s per-
formance is restricted by the network or by the sender/receiver. If
the network is the source of the limitation and the underlying cause
isn’t related to queuing issues (e.g., small buffer size, microbursts),
it might be necessary to conduct active measurements to precisely
pinpoint the root of the problem.

However, engaging in active measurements is not advisable when
a connection’s restriction originates from the sender or receiver. This
is due to two key reasons. Firstly, introducing active measurements
in such cases would introduce additional overhead to the network,
potentially exacerbating the issue. Secondly, these measurements
likely fail to accurately identify the underlying problem when it’s
sender/receiver-related. This is because PerfSONAR nodes do not
process the traffic generated by the DTNs. perfSONAR collects mea-
surements mainly from the active tests performed between two
perfSONAR nodes.

In essence, the system’s ability to differentiate between network-
related and sender/receiver-related limitations offers valuable in-
sights into the appropriate course of action. Active measurements
can be selectively applied based on the nature of the limitation,
ensuring efficient troubleshooting.

3.3.5 Seamless Integration with perfSONAR. To support seamless
integration with perfSONAR, the proposed system had to satisfy
two conditions: 1) the programmable switch should be configurable
through the configuration layer of perfSONAR (i.e., through pSCon-
fig module), and 2) the switch should use perfSONAR archiver to
store the collected data. Regarding the first requirement, new func-
tionality has been added to the pSConfig module, which is responsi-
ble for configuring the switch’s control plane at run time. The added
functionality allows a perfSONAR node to control the number of
reports per second sent by the control plane to the archiver. Con-
sider Figure 6. config-P4 is the added command to pSConfig through
which the node configures the control plane. The --metric parame-
ter specifies to which metric the configuration is to be applied. The
--samples_per_second specifies the number of samples to be reported
by the control plane to the archiver. The first line sets the rate of
throughput reports to one per second, and the second line sets the
number of RTT reports to two per second. The configuration will be
applied to all metrics if the administrator does not use the --metric
parameter. The config-P4 command also allows the administrator
to define a threshold for each metric that will trigger an alert if its
value is exceeded. In the third line, the rate of queue occupancy

823

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ali Mazloum, Jose Gomez, Elie F. Kfoury, and Jorge Crichigno

Data Plane

Control Plane

perfSONAR Scheduling

Filters

Logstash OpenSearch

TCP Input
Plugin

HTTP Input
Plugin

OpenSearch
Output Plugin

: Raw measurements : Report_v1

: Report_v2
perfSONAR Tools

Figure 7: Connecting the proposed system with perfSONAR’s
archiver. The control plane formats the raw measurements
extracted from the data plane to create structured reports (Re-
port_v1). Logstash receives the reports via the TCP input plu-
gin, adds the metadata required by the OpenSearch database,
and forwards the new reports (Report_v2) to OpenSearch.

reports will be set to 10 reports per second if the queue occupancy
exceeds 30%.

Regarding the second requirement, the control plane of the pro-
grammable switch is connected to Logstash through the TCP input
plugin [12]. Logstash is the data processing pipeline used by perf-
SONAR to process the measurements reported by the Tools layer.
Logstash ingests the data through the input plugins, transforms
and processes it through the filters, and ships it to the database
through the OpenSearch output plugin. As depicted in Figure 7, the
proposed system leverages the current output plugin used by the
standard perfSONAR implementation to store the data. The switch’s
control plane restructures the raw measurements extracted from
the data plane to allow Logstash to operate on them. Logstash then
adds the metadata required by the OpenSearch database by utilizing
the OpenSearch output plugin. After that, Logstash ships the final
version of the reports to the archive (i.e., the OpenSearch database).

4 IMPLEMENTATION
To support per-flow monitoring, the data plane of the switch is
programmed to group packets into flows using the hash of the
5-tuple. After that, the data plane detects long flows using count-
min sketches (CMS) [7]. After detecting a long flow, the data plane
reports the ID of the flow (i.e., the hash of the 5-tuple), its source
and destination IP, and its reversed ID. The reversed ID is calculated
by reversing the hashing order of the source and destination fields
of the 5-tuple (the source and destination IP and the source and
destination ports). The reversed ID is used to identify the flow to
which an acknowledgment packet (ACK) belongs, allowing the data
plane to calculate the RTT of TCP flows.

4.1 Throughput Monitoring
For each flow, the programmable switch calculates the number of
bytes, the queuing delay, the packet losses, and the RTT. The calcu-
lated measurements are stored inside stateful registers which are

Algorithm 1: RTT and packet loss calculation
Data plane():

ℎ𝑑𝑟 ← 𝑝𝑘𝑡 .𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (ℎ𝑒𝑎𝑑𝑒𝑟𝑠) ;
𝑓 𝑙𝑜𝑤_𝐼𝐷 ← ℎ𝑎𝑠ℎ (5_𝑡𝑢𝑝𝑙𝑒) ;
𝑝𝑘𝑡_𝑡𝑦𝑝𝑒 ← 𝑔𝑒𝑡_𝑡𝑦𝑝𝑒 (ℎ𝑑𝑟 .𝑡𝑐𝑝.𝑓 𝑙𝑎𝑔,ℎ𝑑𝑟 .𝑖𝑝.𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛) ;
if 𝑝𝑘𝑡_𝑡𝑦𝑝𝑒 == 𝑆𝑒𝑞 then

𝑝𝑟𝑒𝑣_𝑠𝑒𝑞_𝑛𝑜 ← 𝑝𝑟𝑒𝑣_𝑠𝑒𝑞_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑓 𝑙𝑜𝑤_𝐼𝐷];
if ℎ𝑑𝑟 .𝑡𝑐𝑝.𝑠𝑒𝑞_𝑛𝑜 < 𝑝𝑟𝑒𝑣_𝑠𝑒𝑞_𝑛𝑜 then

𝑝𝑘𝑡_𝑙𝑜𝑠𝑠_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑓 𝑙𝑜𝑤_𝐼𝐷] += 1;
else

𝑝𝑟𝑒𝑣_𝑠𝑒𝑞_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑓 𝑙𝑜𝑤_𝐼𝐷] ← ℎ𝑑𝑟 .𝑡𝑐𝑝.𝑠𝑒𝑞_𝑛𝑜 ;
𝑟𝑒𝑣_𝑓 𝑙𝑜𝑤_𝐼𝐷 ← ℎ𝑎𝑠ℎ (𝑟𝑒𝑣_5_𝑡𝑢𝑝𝑙𝑒) ;
𝑒𝑥𝑝_𝑎𝑐𝑘 ← ℎ𝑑𝑟 .𝑡𝑐𝑝.𝑠𝑒𝑞_𝑛𝑜 + (ℎ𝑑𝑟 .𝑖𝑝.𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛 - 4 *
ℎ𝑑𝑟 .𝑖𝑝.𝑖ℎ𝑙 - 4 * ℎ𝑑𝑟 .𝑡𝑐𝑝.𝑑𝑎𝑡𝑎_𝑜 𝑓 𝑓 𝑠𝑒𝑡) ;
𝑝𝑘𝑡_𝑠𝑖𝑔← (𝑟𝑒𝑣_𝑓 𝑙𝑜𝑤_𝐼𝐷, 𝑒𝑥𝑝_𝑎𝑐𝑘) ;
𝑒𝑎𝑐𝑘_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑝𝑘𝑡_𝑠𝑖𝑔] ← 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 () ;

else if 𝑝𝑘𝑡_𝑡𝑦𝑝𝑒 == 𝐴𝐶𝐾 then
𝑝𝑘𝑡_𝑠𝑖𝑔← (𝑓 𝑙𝑜𝑤_𝐼𝐷,ℎ𝑑𝑟 .𝑡𝑐𝑝.𝑎𝑐𝑘_𝑛𝑜) ;
𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑒𝑎𝑐𝑘_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑝𝑘𝑡_𝑠𝑖𝑔];
if 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒 != 0 then

𝑟𝑡𝑡 ← 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 () − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒 ;
𝑟𝑡𝑡_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑓 𝑙𝑜𝑤_𝐼𝐷] ← 𝑟𝑡𝑡 ;

indexed by the flow ID. The most straightforward metric to calculate
in the data plane is the number of bytes. The programmable switch
utilizes the total length field of the IPv4 header to get the packet’s
length in bytes. After that, the switch updates the register cell that
maintains the number of bytes of the current flow. The control plane
uses the APIs provided by the manufacturer of the switch to read
the register values. The throughput is then calculated in the control
plane by dividing the number of bits over the reporting duration.

4.2 Queue Occupancy Monitoring
Although monitoring queue occupancy on a fine-grain resolution
is not supported by perfSONAR due to software limitations, it can
be easily performed by a programmable switch. The programmable
switch calculates the time packets spent inside the core switch to
calculate its queue occupancy. The TAPs duplicate each packet twice.
The first duplication occurs at the ingress port of the core switch,
and the second duplication occurs at the egress port of the switch.
The programmable switch calculates the time difference between
the arrival of the two copies to calculate the queuing delay. The
queuing delay of the flow to which the packet belongs is stored
in a stateful register. The control plane samples the queuing delay
and calculates the queue occupancy. Queue occupancy equals the
queuing delay divided by the buffer size of the core switch.

However, because the duration of microbursts can be in the order
of tens of microseconds, the sampling approach might not detect
them. For this, microburst detection should be fully implemented
in the data plane. The data plane measures the queue occupancy
on a per-packet basis. Any sudden increase can be instantaneously
detected by the data plane. The data plane can then report the event
to the control plane.

4.3 RTT and Packet Loss Monitoring
The last two metrics calculated by the data plane are the RTT and
the packet losses. The proposed system adopts RTT and packet loss

824

Enhancing perfSONAR Measurement Capabilities
using P4 Programmable Data Planes SC-W 2023, November 12–17, 2023, Denver, CO, USA

calculation algorithm from [6]. RTT represents the time between a
packet being sent and its corresponding acknowledgment received.
As the sender transmits data packets to the receiver, the receiver
acknowledges the receipt of these packets by sending acknowledg-
ment packets back to the sender. The acknowledgment number in
these packets represents the next expected sequence number, in-
dicating that all bytes up to that number have been successfully
received. If the sender receives an acknowledgment packet with
an acknowledgment number that is less than the last transmitted
sequence number, it signifies that the receiver has not yet confirmed
the reception of the data. This inconsistency indicates a requirement
for retransmission, which, in turn, implies a packet loss scenario.

Any packet with a non-zero payload might be acknowledged
by a future ACK number. The sequence number of the packets is
used to calculate the expected future ACK number (eACK). When
an ACK packet is received, the ACK number is extracted and com-
pared against the previously stored eACKs. If a match occurs, the
switch decrements the current timestamp from the timestamp of
the matched eACK. This time difference is the RTT of the flow.

The pseudocode of the RTT and packet loss calculation program is
summarized in Algorithm 1. The data plane first parses the packets’
headers and obtains the flow_ID. It then identifies the packet type
(i.e., whether it is a data packet or an ACK packet). The packet
type is obtained by inspecting its TCP flag and total length. For
data packets (referred to by Seq in the pseudocode), the data plane
compares the current packet’s sequence number with the previous
packet’s sequence number (prev_seq_no). If the current sequence
number is smaller, the switch increments the count of packet losses
because retransmission has occurred. Otherwise, the switch updates
the value of the previous sequence number to the current sequence
number. After that, the data plane calculates the reversed flow_ID
by hashing the 5-tuple in a reversed order. Then, the data plane
calculates the eACK number of the current packet. The flow_ID and
the eACK are used to create the packet’s signature. The arrival time
of the packet is then stored in a register indexed by its signature
(eack_register in the pseudocode).

For ACK packets, the data plane creates a signature using the
flow_ID and the ACK number. After that, the created signature
is used to index eack_register. The extracted value represents the
timestamp of the data packet that corresponds to the current ACK
packet. The RTT is then calculated by subtracting the retrieved
timestamp from the current timestamp. The final step is to store
the RTT in the rtt_register at the index flow_ID. The control plane
obtains the per-flow packet losses and per-flow RTT by reading
the pkt_loss_regsiter and the rtt_register. The control plane can also
report the percentage of packet losses by dividing the number of
packet losses of a flow by the number of packets sent by the same
flow.

4.4 Detecting Flows not Constrained by the
Network

Besides calculating different metrics, the data plane can identify
if a flow is limited by the network or by the sender/receiver. To
determine whether a flow’s limitations stem from network factors
or sender/receiver constraints, the programmable switch employs a
method that involvesmonitoring the fluctuation of the flight size (the

P4 Programmable Switch

Legacy Switch

: perfSONAR : DTN : TAP

Figure 8: Topology used for the experiments.

count of transmitted bytes awaiting acknowledgment) in relation to
observed packet losses. If the flight size remains stable despite the
absence of packet losses (implying a lack of increment), the limiting
factor is likely the sender or the receiver. Conversely, when the
flight size expands in conjunction with detected packet losses, the
network is likely the influencing factor behind the limitations. This
approach is drawn from insights presented in the work by Ghasemi
et al. [15].

5 EXPERIMENTATION
It’s important to emphasize that this paper does not seek to replace
perfSONAR; instead, its objective is to complement and enhance its
capabilities. The system’s intention is to augment perfSONAR by
providing finer detail to certain metrics (such as throughput, RTT,
and packet loss) and by introducing support for novel measurements
(including queue occupancy andmicrobursts). This sectionwill delve
into an evaluation of the integration of a P4 programmable switch
with perfSONAR. First, the section will highlight the improved gran-
ularity that supplements the existing perfSONAR metrics (through-
put, RTT, and packet loss). Following that, the section will show the
significance of the newly added metrics in enhancing the function-
ality of perfSONAR.

5.1 Topology Setup
In reference to Figure 8, the experimental topology encompasses an
internal network and three external networks. Each of these net-
works is equipped with a DTN for data exchange and a perfSONAR
node dedicated to monitoring network performance. The intercon-
nections between networks involve two legacy switches. Notably,
the link interconnecting these switches acts as a performance bot-
tleneck, operating at a throughput of 10 Gigabits per second (Gbps).

To perform passive measurements, two passive optical TAPs cap-
ture packets arriving at the ingress and egress ports of the legacy
switch directly linked to the internal network. The Optical Taps are
special devices made by Fiber Instrument Sales. They work with
single-mode fiber and can handle speeds up to 100Gbps [29]. The
captured packets are then directed to a P4 programmable switch. The
programmable switch used is Edgecore Wedge100BF-32X switch

825

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ali Mazloum, Jose Gomez, Elie F. Kfoury, and Jorge Crichigno

Figure 9: Per-flow measurements.

(Intel Tofino) [21]. The programmable switch’s control plane is con-
nected to the local perfSONAR node, leveraging its archiving capabil-
ities to store collected measurements. The data generation process is
facilitated by the iPerf3 tool [10], which generates controlled traffic
patterns for testing and evaluation purposes. Additionally, to visu-
ally present the collected data in real-time, the Grafana visualization
platform [18] is employed.

In all tests, there will be an exchange of traffic from the internal
DTN to all external DTNs. Unless specified otherwise, the interval
used by the programmable switch to report the measurements is
one second, and Grafana will group the reported measurements
by their destination IP address (i.e., destination DTN). The RTTs
between the local DTN and the three external DTNs are 50, 75, and
100 milliseconds (ms), respectively. All perfSONAR tests are initiated
from the internal DTN.

5.2 Per-flow Monitoring
This section is dedicated to demonstrating the real-time reporting
capabilities of the proposed system, showcasing its ability to provide
instantaneous updates on key metrics such as throughput, queue
occupancy, RTT, and packet losses for individual flows. To illus-
trate this functionality, an experiment was conducted, involving
the introduction of a third data transfer alongside two pre-existing
data transfers. The visual representation of this experiment can be
observed in Figure 9.

Within the depicted figure, the upper left graph presents per-flow
throughput, while the bottom left graph presents per-flow RTT. Mov-
ing to the upper right graph, queue occupancy is presented, while
the bottom right graph presents per-flow packet losses. Through
these four graphs, TCP behavior can be clearly illustrated when a
new flow joins the network. These visualizations provide valuable
insights into how the proposed system responds to changing condi-
tions, enabling swift analysis of network dynamics as new flows are
incorporated.

Initially, TCP endeavors to distribute the available bandwidth
equitably among all active connections. This equitable distribution
becomes evident through the observations in the first graph, where

Figure 10: Additional traffic statistics calculated by the control
plane.

the throughput of the two flows converges to an approximate parity
(around 5 Gbps for each flow).

Additionally, when a new TCP connection is established or is
followed by a period of inactivity, the sender adjusts the network’s
existing bandwidth allocation and congestion status. To achieve this,
the sender initiates a burst of packet transmission. This burst aids
the sender in promptly identifying the feasible data transmission
volume without inducing congestion.

This behavior is illustrated through the analysis of queue occu-
pancy and the count of packet losses. As a new flow becomes part
of the network, the queue rapidly fills up, manifesting as a sudden
surge in the queue occupancy graph. Notably, during the burst phase,
the queue’s capacity is often exceeded, leading to significant packet
losses, as depicted in the packet loss percentage graph.

5.3 Additional Traffic Statistics
In addition to the measurements collected by the data plane, the
control plane can provide invaluable insights into the network’s
traffic dynamics. This is achieved by leveraging access to the mea-
surements of all active flows. Consequently, the control plane gains
the capability to extract numerous metrics such as total link utiliza-
tion, the count of active flows, aggregate packets sent, aggregate
bytes transmitted, and more.

Moreover, the control plane performs computations that sur-
pass the data plane’s computational and resource constraints. For
instance, the control plane can calculate the fairness among TCP
flows. Notably, this involves determining the Jain’s fairness index, a
quantifiable fairness metric, by employing the following equation
[22]:

𝐹 =

(
𝑁∑
𝑖=1

𝑥𝑖

)2
𝑁 ·

𝑁∑
𝑖=1

𝑥2
𝑖

(1)

The components of the equation are as follows:
• 𝐹 is the Jain’s fairness index.
• 𝑁 represents the number of flows.
• 𝑥𝑖 corresponds to the resource allocation (e.g., bandwidth)
for the 𝑖th flow.

By applying this index, the control plane effectively assesses
the equity among different flows, allowing for a comprehensive
evaluation of traffic distribution within the network. This index
quantifies the fairness of resource allocation among multiple flows,
with a value closer to 1 indicating a more equitable distribution

826

Enhancing perfSONAR Measurement Capabilities
using P4 Programmable Data Planes SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 11: Microburst detection. The microburst bloats the
queue, resulting in a significant increase in the packet loss
percentage, and severe degradation in the throughput.

of resources. There are situations when one host is bottlenecked
by a bandwidth smaller than the others, which reduces fairness.
Monitoring the fairness index enhances the overall monitoring and
management of network resources, resulting in more optimized and
balanced performance.

Illustrated in Figure 10, the link utilization and fairness of traffic
are depicted within the time interval showcased in Figure 9. Despite
the link being fully utilized, the fairness index reveals a notable
departure from equitable resource distribution for approximately 20
seconds. This departure implies that although the link was saturated,
the available bandwidth wasn’t uniformly shared among the flows
during this duration.

To identify the underlying cause of this observed disparity, the
fairness graph in Figure 10 should be cross-referenced with the
throughput graph in Figure 9. This analysis shows that the period
of unfairness aligns with the time taken by the three TCP flows to
converge subsequent to the introduction of the third flow.

5.4 Use Cases
5.4.1 Detecting Small-sized Buffers. In this experiment, the average
RTT for the flows is set to 100 ms. As per the established guideline,
the buffer size should be one Bandwidth-delay Product (BDP) [8].
The BDP is calculated as the product of the bandwidth and the RTT,
resulting in 10𝐺𝑏𝑝𝑠×100𝑚𝑠 = 1000Megabits, which translates to 125
Megabytes. Accordingly, the buffer size was configured to be 𝐵𝐷𝑃/4
or precisely 31.25 Megabytes, representing a small-sized buffer. The
proposed system detects microbursts and shows their impact on
queue occupancy, percentage of packet losses, and throughput. If the
queue fails to absorb the microburst, leading to significant packet

Figure 12: Reporting the flows limited by network and those
limited by the sender/receiver.

losses and degradation in the throughput, then the buffer size should
be reevaluated. The experimental results are illustrated in Figure
11. Across the three flows, the percentage of lost packets notably
escalated for two flows, surpassing 0.05% for one of them and ex-
ceeding 0.15% for the other. It took approximately 25 seconds for the
throughput of these flows to recover. The programmable switch’s
data demonstrates that the buffer could not efficiently absorb the
microburst, signaling a requirement for buffer size adjustment. By
tracking the count andmagnitude of microbursts, administrators can
set an appropriate buffer size that effectively mitigates microburst
impact without incurring undue queuing delays.

5.4.2 Determining if a Connection is Limited by Sender/Receiver or
by the Network. In this experiment, three tests are performed. In
the test involving DTN1, the network is set to be the bottleneck
by introducing 0.01% packet losses. In the test involving DTN2, the
receiver is set to be the bottleneck by reducing its TCP buffer size.
In the test involving DTN3, the sender is set to be the bottleneck by
setting its sending rate to 500 Mbps which is less than the bottleneck
link (10 Gbps).

The results of the experiment are depicted in Figure 12. The mea-
surements are grouped into flows using the hash of the 5-tuple. The
throughput of Flow1, or the flow from the internal DTN to DTN1, is
fluctuating because of the induced packet losses. The programmable
switch reported that the flow is limited by the network. For Flow2
and Flow3, the throughput is steady at around 250 Mbps and 500
Mbps, respectively. The programmable switch reported that both
flows are limited by either the sender or the receiver but not by the
network.

5.4.3 Detecting Throughput Degradation Caused by mmWave Block-
ages in Data Centers. A Conventional Hierarchical Tree-based Data
Center Network (DCN) is a type of network architecture used in
data centers to manage and distribute data traffic within the facility.
Conventional Tree-based DCNs may suffer from limited scalability,
high cost (cables might contribute by 8% of the overall infrastruc-
ture cost [32]), high energy consumption, and low cross-section
bandwidth [20].

To mitigate these problems, researchers have been investigating
the capability of mmWave wireless networks as a possible solution

827

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ali Mazloum, Jose Gomez, Elie F. Kfoury, and Jorge Crichigno

0 5 10 15
Time [s]

0

50

100

150

200

250

IA
T

[m
s]

0 5 10 15
Time [s]

0

500

1000

1500

Th
ro

ug
hp

ut
 [M

bp
s]

(a) (b)

Figure 13: Blockage can be identified by the significant in-
crease in the IAT values during the blockage: (a) no blockage;
(b) blockage at t=7s [26].

[19]. This technology is promising because it supports multi-Gbps
point-to-point communication besides providing high spatial reuse.
However, a common issue in mmWave networks is the line of sight
(LOS) blockage. Devices communicating through the mmWave tech-
nology steer their beams in a process known as beamforming to
maximize the signal strength in the direction of the other commu-
nicating end (i.e., LOS). Because the signal is focused in a narrow
beam, a gray failure occurs when the LOS is blocked. Blocking the
LOS (which can happen if data center employees walk through it)
significantly degrades the connection quality.

Previous work utilized P4 programmable data planes to detect
degradation caused by the blockage problem in mmWave networks
[26]. Consider Figure 13. Upon blockage, the inter-arrival time (IAT)
of the packets increases bymultiple orders of magnitude. Bymonitor-
ing the IAT of the packets, programmable data planes can report the
degradation caused by a blockage. Figure 14 shows the time required
by a P4-based system to detect and react to LOS blockage compared
to throughput-based and RSSI-based systems. The P4-based system
utilizes a programmable data plane device to measure the IAT. The
Throughput-based system utilizes a controller to monitor through-
put degradation. RSSI-based system is employed by off-the-shelf
devices. It monitors the received signal strength indicator (RSSI) to
detect and react to blockages. The gray rectangle indicates the time
of blockage. As shown by the figure, P4-based system detects the
blockage before the throughput degrades. The system outperforms
the throughput-based system and the RSSI-based system.

6 RELATEDWORK
NetSage [31] is a data analysis and visualization platform that com-
bines data from various sources into a single unified view. It is open
to the public and accessible via https://portal.netsage.global/grafana,
and its software is open source. NetSage uses active and passive mea-
surements to provide performance visualizations. It can collect data
from routers, switches, active testing sites, and science data archives.
NetSage analysis longitudinal data to understand longer-term trends
and behaviors.

OSG Network Monitoring Platform [2] is a comprehensive net-
work monitoring platform that supports data collection, processing,
storage, and visualization. This platform collects measurements from
the tests performed by perfSONAR. This platform stores data in a
short-term store location (last six months), in a long-term store loca-
tion, and in a backup location. Further, the platform has a centralized
configuration system that configures the tools to be used in the tests,

0

500

1000

0

500

1000

Th
ro

ug
hp

ut
 [M

bp
s]

Throughput-based
system

0 2 4 6 8 10
Time [s]

0

500

1000

RSSI-based system

P4-based system

Figure 14: Recovery speed of the P4-based system, throughput-
based system, and the RSSI-based system. The gray rectangle
represents the 2 seconds blockage [26].

the participating nodes in the tests, and the test schedule for the
entire infrastructure.

Bezerra et al. [3] integrates In-band Network Telemetry (INT)
[23] with AmLight to provide sub-second network monitoring and
performance evaluation metrics. Programmable switches were uti-
lized to collect measurements at the data plane level. The collected
measurement is then directed to AmLight Collector, which is respon-
sible for receiving, parsing, processing, and generating operational
reports. Through INT, AmLight was capable of providing instan-
taneous bandwidth utilization, monitoring packet drop probability
and jitter, and tracing packets.

Kfoury et al. [24] addressed the challenge of identifying conges-
tion control algorithms (CCAs) using P4-programmable data planes.
CCAs regulate sending rates to prevent network congestion. When
multiple CCAs coexist on the same link, the performance tends to
favor CCAs that exhibit more aggressive behavior. Therefore, it be-
comes crucial to accurately identify and separate them to isolate
their dynamics. However, this identification is not straightforward
as CCAs are not advertised in packet headers. To address this issue,
the authors proposed P4CCI, a system that detects the CCA of a flow
at line rate by utilizing P4-programmable data planes (PDPs). The
PDP calculates and extracts the flow’s bytes-in-flight and forwards
this information to a deep learning model for classification. Once
classified, flows are allocated into dedicated queues based on their
CCA type. The systemwas implemented and tested on real hardware
using Intel’s Tofino ASIC. The results show that P4CCI’s ability to
accurately detect and separate CCAs leads to an enhancement in
network performance.

Gomez et al. [16] evaluated the performance of the Bottleneck and
Round-trip Time version (BBRv2) CCA through Mininet emulation.
The study highlighted improved coexistence of BBRv2 and CUBIC
compared to BBRv1 and CUBIC. The authors showed the effective-
ness of BBRv2 in reducing RTT unfairness and achieving a better
bandwidth distribution. Additionally, it was reported that BBRv2

828

Enhancing perfSONAR Measurement Capabilities
using P4 Programmable Data Planes SC-W 2023, November 12–17, 2023, Denver, CO, USA

demonstrates improved adaptability to RTT and bandwidth varia-
tions compared to BBRv1. Results also show that BBRv2 reduces the
average flow completion time (FCT) of concurrent flows.

The proposed system in this paper utilizes programmable switches
to enhance the monitoring and troubleshooting functionalities of
perfSONAR. The traces produced by perfSONAR are used to un-
derstand longitudinal traffic behavior (NetSage and OSG Network
Monitoring Platform), detect anomalies in the traffic [4], and train
network-wide anomaly detection systems [34]. By providing higher
visibility and more detailed reports, the proposed system can en-
hance the performance of all the platforms that utilize perfSONAR
traces. Furthermore, the proposed system allows perfSONAR to
detect degradation problems not caused by the network.

7 CONCLUSION
The integration of P4 with perfSONAR yields substantial benefits by
passively monitoring real traffic in real-time and on a per-flow basis.
The real-time passive analysis executed through a P4 programmable
switch significantly augments perfSONAR’s troubleshooting capa-
bilities. This integration equips perfSONAR with the ability to dis-
cern flows constrained by sender/receiver limitations, facilitating
informed decisions on the need for active measurements. This syn-
ergy not only elevates monitoring precision but also streamlines the
diagnostic process for optimized network performance.

REFERENCES
[1] Ali AlSabeh, Joseph Khoury, Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb.

2022. A survey on security applications of P4 programmable switches and a
STRIDE-based vulnerability assessment. Computer Networks (2022).

[2] Marian Babik, Shawn McKee, Brian Bockelman, Edgar Hernandez, Edoardo
Martelli, Ilija Vukotic, Derek Weitzel, and Marian Zvada. 2019. Improving WLCG
networks through monitoring and analytics. In EPJ Web of Conferences, Vol. 214.
EDP Sciences, 08006.

[3] Jeronimo Bezerra, Italo Brito, Arturo Quintana, Julio Ibarra, Vasilka Chergarova,
Renata Frez, Heidi Morgan, Marc LeClerc, and Arun Paneri. 2021. Deploying
per-packet telemetry in a long-haul network: the AmLight use case. In 2021 IEEE
Workshop on Innovating the Network for Data-Intensive Science (INDIS). IEEE, 44–
49.

[4] Prasad Calyam, Jialu Pu, Weiping Mandrawa, and Ashok Krishnamurthy. 2010.
Ontimedetect: Dynamic network anomaly notification in perfSONAR deployments.
In 2010 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE, 328–337.

[5] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstreich,
Steven Monetti, and Tzuu Wang. 2019. Fine-grained queue measurement in
the data plane. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies. 15–29.

[6] Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jennifer
Rexford. 2020. Measuring TCP round-trip time in the data plane. In Proceedings of
the Workshop on Secure Programmable Network Infrastructure. 35–41.

[7] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[8] Jorge Crichigno, Elias Bou-Harb, and Nasir Ghani. 2018. A comprehensive tutorial
on science DMZ. IEEE Communications Surveys & Tutorials (2018).

[9] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2013.
The science DMZ: A network design pattern for data-intensive science. In Proceed-
ings of the International Conference on High Performance Computing, Networking,
Storage and Analysis.

[10] Jon Dugan, Seth Elliott, Bruce Mah, Jeff Poskanzer, and Kaustubh Prabhu. 2014.
iPerf3, tool for active measurements of the maximum achievable bandwidth on IP
networks. URL: https://github. com/esnet/iperf (2014).

[11] E. Waltz. 2016. Portable DNA Sequencer MinION Helps Build the Internet of
Living Things . https://tinyurl.com/fysezkef

[12] Elastic. 2023. TCP input plugin. https://www.elastic.co/guide/en/logstash/current/
plugins-inputs-tcp.html

[13] Brian Eriksson, Paul Barford, and Robert Nowak. 2008. Network discovery from
passive measurements. In Proceedings of the ACM SIGCOMM 2008 conference on
Data communication. 291–302.

[14] European Organization for Nuclear Research. 2023. Towards the future: tackling
upcoming data challenges. https://home.cern/about/computing

[15] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
plane performance diagnosis of TCP. In Proceedings of the Symposium on SDN
Research. 61–74.

[16] Jose Gomez, Elie Kfoury, Jorge Crichigno, Elias Bou-Harb, and Gautam Srivastava.
2020. A performance evaluation of TCP BBRv2 alpha. In 2020 43rd International
Conference on Telecommunications and Signal Processing (TSP).

[17] Jose Gomez, Elie F Kfoury, Jorge Crichigno, and Gautam Srivastava. 2022. A
survey on TCP enhancements using P4-programmable devices. Computer Networks
(2022).

[18] Grafana Labs. 2023. The Open Observability Platform. https://grafana.com/
[19] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David

Wetherall. 2011. Augmenting data center networks with multi-gigabit wireless
links. In Proceedings of the ACM SIGCOMM 2011 conference. 38–49.

[20] Abdelbaset Hamza, Jitender Deogun, and Dennis Alexander. 2016. Wireless
communication in data centers: A survey. IEEE communications surveys & tutorials
18, 3 (2016), 1572–1595.

[21] Intel. 2023. Wedge 100BF-32X, 100GbE data center switch, Barefoot Networks,
an Intel® company. https://www.edge-core.com/productsInfo.php?cls=1&cls2=
180&cls3=181&id=335

[22] Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness index: An
explanation. In ATM Forum contribution, Vol. 99.

[23] Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2021. An exhaustive survey on
P4 programmable data plane switches: Taxonomy, applications, challenges, and
future trends. IEEE access (2021).

[24] Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2023. P4CCI: P4-based online
TCP congestion control algorithm identification for traffic separation. In IEEE
International Conference on Communications (ICC), Rome, Italy.

[25] Ali Mazloum, Elie Kfoury, Jose Gomez, and Jorge Crichigno. 2023. A Survey on
Rerouting Techniques with P4 Programmable Data Plane Switches. Computer
Networks (2023).

[26] Ali Mazloum, Elie Kfoury, Sanjib Sur, Jorge Crichigno, and Nasir Ghani. 2023.
Enhancing Blockage Detection and Handover on 60 GHz Networks with P4 Pro-
grammable Data Planes. (2023).

[27] perfSONAR Project. 2023. perfSONAR 5.0.3 Release Notes. https://www.perfsonar.
net/releasenotes-2023-06-16-5-0-3.html

[28] perfSONAR Project. 2023. What is perfSONAR? https://tinyurl.com/4xef95h9
[29] Fiber Instrument Sale. 2022. Optical TAP. https://www.fiberinstrumentsales.com
[30] Brian Tierney, Joe Metzger, Jeff Boote, Eric Boyd, Aaron Brown, Rich Carlson,

Matt Zekauskas, Jason Zurawski, Martin Swany, and Maxim Grigoriev. 2009.
perfSONAR: Instantiating a global network measurement framework. SOSP Wksp.
Real Overlays and Distrib. Sys 28 (2009).

[31] Katrina Turner, Mahesh Khanal, Tyson Seto-Mook, Alberto Gonzalez, Jason Leigh,
Andrew Lake, Sartaj Baveha, Samir Faci, Brian Tierney, and Daniel Doyle. 2020.
The NetSage Measurement Framework: Design, Development, and Discoveries. In
2020 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS). IEEE,
45–56.

[32] Hars Vardhan, Navine Thomas, Seong Ryu, Bhaskar Banerjee, and Ravi Prakash.
2010. Wireless data center with millimeter wave network. In 2010 IEEE global
telecommunications conference GLOBECOM 2010. IEEE, 1–6.

[33] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Proceedings of the 2017
Internet Measurement Conference. 78–85.

[34] Yuanxun Zhang, Saptarshi Debroy, and Prasad Calyam. 2016. Network-wide
anomaly event detection and diagnosis with perfSONAR. IEEE Transactions on
Network and Service Management 13, 3 (2016), 666–680.

829

https://tinyurl.com/fysezkef
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-tcp.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-tcp.html
https://home.cern/about/computing
https://grafana.com/
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.perfsonar.net/releasenotes-2023-06-16-5-0-3.html
https://www.perfsonar.net/releasenotes-2023-06-16-5-0-3.html
https://tinyurl.com/4xef95h9
https://www.fiberinstrumentsales.com

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Background
	2.1 Science DMZ
	2.2 perfSONAR
	2.3 P4 Programmable Data Planes

	3 Proposed System
	3.1 Overview
	3.2 Architecture
	3.3 Features

	4 Implementation
	4.1 Throughput Monitoring
	4.2 Queue Occupancy Monitoring
	4.3 RTT and Packet Loss Monitoring
	4.4 Detecting Flows not Constrained by the Network

	5 Experimentation
	5.1 Topology Setup
	5.2 Per-flow Monitoring
	5.3 Additional Traffic Statistics
	5.4 Use Cases

	6 Related Work
	7 Conclusion
	References

