High-speed Networks, Cybersecurity, and Software-defined Networking Workshop

Jorge Crichigno, Jose Gomez, Elie Kfoury
University of South Carolina

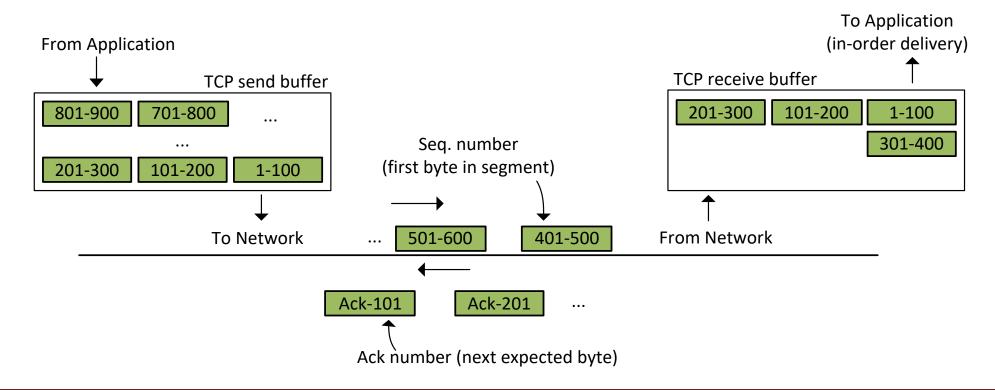
Western Academy Support and Training Center (WASTC)
2020 Summer Conference
June 15 – June 19

National Science Foundation (NSF), Office of Advanced Cyberinfrastructure (OAC) and Advanced Technological Education (ATE)

Lab 8: Bandwidth-delay Product and TCP Buffer Size

Content

- Introduction to TCP buffers, BDP, and TCP window
- BDP and buffer size experiments
- Modifying buffer size and throughput test


Section 1: Introduction to TCP buffers, BDP, and TCP window

TCP Buffers

- The TCP send and receive buffers may impact the performance of Wide Area Networks (WAN) data transfers
- At the sender side, TCP receives data from the application layer and places it in the TCP send buffer

TCP buffers

- Typically, TCP fragments the data in the buffer into maximum segment size (MSS) units
- At any given time, the TCP receiver indicates the TCP sender how many bytes the latter can send, based on how much free buffer space is available at the receiver

Bandwidth-delay product

- RTT and TCP buffer size have throughput implications
- For example, assume that the TCP buffer size is 1 Mbyte and RTT is 25ms
 - 1 Mbyte = 10,242 bytes = 1,048,576 bytes = $1,048,576 \cdot 8$ bits = 8,388,608 bits
- With a bandwidth (Bw) of 10 Gbps, this number of bits is approximately transmitted in:

$$T_{tx} = \frac{\text{# bits}}{Bw} = \frac{8,388,608}{10 \cdot 10^9} = 0.84 \text{ milliseconds.}$$

- After 0.84 milliseconds, the TCP send buffer will be empty
- TCP must wait for the corresponding acknowledgements (arriving at t = 50ms)
- This means that the sender only uses 0.84/50 or 1.68% of the available bandwidth

Bandwidth-delay product

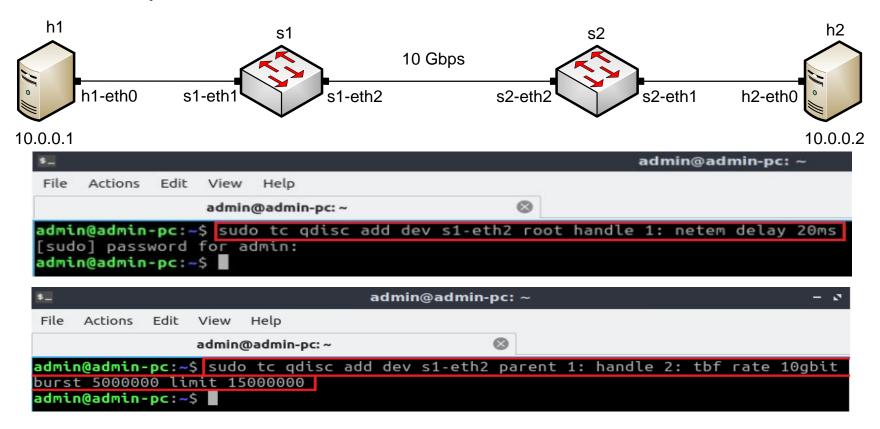
- The solution lies in allowing the sender to continuously transmit segments until the corresponding acknowledgments arrive back
- The number of bits that can be transmitted in an RTT period is the bandwidth-delay product (BDP)
- For the previous example

TCP buffer size
$$\geq$$
 BDP = $(10 \cdot 10^9)(50 \cdot 10^{-3}) = 500,000,000$ bits = 62,500,000 bytes.

The first factor (10 · 10⁹) is the bandwidth; the second factor (50 · 10⁻³) is the RTT

TCP buffer size \geq 62,500,000 bytes = 59.6 Mbytes \approx 60 Mbytes.

Practical Observations on Setting TCP Buffer Size

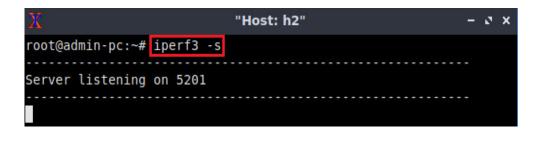

- Linux assumes that half of the send/receive TCP buffers are used for internal structures
- Thus, only half of the buffer size is used to store segments
- Considering the previous example, the TCP buffer size must be:

TCP buffer size $\geq 2 \cdot 60$ Mbytes = 120 Mbytes.

Section 2: BDP and buffer size experiments

Emulating a Wide Area Network

- The first figure shows the topology and the devices' interfaces
- The second and third figures show the command that sets a latency of 20ms and bandwidth to 10 Gbps



Verification

 The user can now verify the previous configuration by using the iperf3 tool to measure throughput

```
"Host: h1"
                                                                       - 2 ×
root@admin-pc:~# iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
15] local 10.0.0.1 port 59976 connected to 10.0.0.2 port 5201
 ID] Interval
                        Transfer
                                    Bitrate
                                                    Retr Cwnd
       0.00-1.00
                                                         16.1 MBytes
                  sec 328 MBytes 2.75 Gbits/sec
                        394 MBytes 3.30 Gbits/sec
                                                         16.1 MBytes
 151
      2.00-3.00
                  sec
                        391 MBytes 3.28 Gbits/sec
                                                         16.1 MBytes
      3.00-4.00
                        394 MBytes 3.30 Gbits/sec
                  sec
                                                         16.1 MBytes
      4.00-5.00
                        394 MBytes 3.30 Gbits/sec
                 sec
                                                         16.1 MBytes
      5.00-6.00
                        390 MBytes 3.27 Gbits/sec
                                                         16.1 MBytes
      6.00-7.00
                  sec
                        394 MBytes 3.30 Gbits/sec
                                                         16.1 MBytes
       7.00-8.00
                                                         16.1 MBytes
                        396 MBytes 3.32 Gbits/sec
                        396 MBytes 3.32 Gbits/sec
                                                         16.1 MBytes
       9.00-10.00 sec
                        394 MBytes 3.30 Gbits/sec
                                                         16.1 MBytes
 ID1 Interval
                        Transfer
                                    Bitrate
                                                    Retr
       0.00-10.00 sec 3.78 GBytes 3.25 Gbits/sec
                                                     90
                                                                   sender
      0.00-10.04 sec 3.78 GBytes 3.23 Gbits/sec
                                                                   receiver
iperf Done.
root@admin-pc:~#
```

Client (h1)

Server (h2)

Section 3: Modifying buffer size and throughput test

BDP and buffer size

 To achieve the full throughput, the user has to modify the send and receive windows in host h1 and host h2

```
"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 52428800'

net.ipv4.tcp_rmem = 10240 87380 52428800

root@admin-pc:~#
```

```
"Host: h2"

root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 52428800'

net.ipv4.tcp_rmem = 10240 87380 52428800

root@admin-pc:~#
```

```
"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_wmem='10240 87380 52428800'

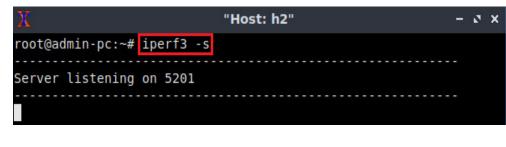
net.ipv4.tcp_wmem = 10240 87380 52428800

root@admin-pc:~#
```

```
"Host: h2"

root@admin-pc:~# sysctl -w net.ipv4.tcp_wmem='10240 87380 52428800'

net.ipv4.tcp_wmem = 10240 87380 52428800


root@admin-pc:~#
```

Verification

 The user can now verify the previous configuration by using the iperf3 tool to measure throughput

```
"Host: h1"
                                                                       - Z X
root@admin-pc:~# iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
 15] local 10.0.0.1 port 47094 connected to 10.0.0.2 port 5201
 ID] Interval
                        Transfer
                                                         Cwnd
                                     Bitrate
                                                    Retr
       0.00-1.00
                   sec 925 MBytes 7.76 Gbits/sec
                                                          39.8 MBytes
       1.00-2.00
                   sec 1.11 GBytes 9.57 Gbits/sec
                                                          39.8 MBytes
                   sec 1.11 GBytes 9.56 Gbits/sec
       2.00-3.00
                                                          39.8 MBytes
       3.00-4.00
                   sec 1.11 GBytes 9.56 Gbits/sec
                                                          39.8 MBytes
       4.00-5.00
                   sec 1.11 GBytes 9.56 Gbits/sec
                                                          39.8 MBytes
       5.00-6.00
                   sec 1.11 GBytes 9.55 Gbits/sec
                                                          39.8 MBytes
       6.00-7.00
                   sec 1.11 GBytes 9.56 Gbits/sec
                                                          39.8 MBytes
       7.00-8.00
                   sec 1.11 GBytes 9.56 Gbits/sec
                                                          39.8 MBytes
       8.00-9.00
                   sec 1.11 GBytes 9.56 Gbits/sec
                                                          39.8 MBytes
       9.00-10.00 sec 1.11 GBytes 9.56 Gbits/sec
                                                          39.8 MBytes
 ID] Interval
                        Transfer
                                     Bitrate
                                                    Retr
       0.00-10.00 sec 10.9 GBytes
                                    9.38 Gbits/sec
                                                     45
                                                                    sender
       0.00-10.04 sec 10.9 GBytes 9.34 Gbits/sec
                                                                    receiver
iperf Done.
root@admin-pc:~#
```

Client (h1)

Server (h2)