

Network Technologies for Secure Data Movement

Emerging Topics on Packet Processing Acceleration

Elie Kfoury¹, Ali Mazloum¹, Jennifer Kim² ¹University of South Carolina (USC) ²Internet2 <u>https://research.cec.sc.edu/cyberinfra/</u>

> Boston, MA December 9, 2024

Packet processing on Network Interface Cards (NICs)

Evolution of Network Interface Cards (NICs)

- Network Interface Cards (NICs) have evolved over the years
- Traditional NICs use fixed-function components to implement basic physical and datalink layer services

Evolution of Network Interface Cards (NICs)

- Network Interface Cards (NICs) have evolved over the years
- Traditional NICs use fixed-function components to implement basic physical and datalink layer services
- Offload NICs use fixed-function components to offload basic infrastructure functions
 - > Computing IP checksums, encapsulating/de-encapsulating segments, etc.

Evolution of Network Interface Cards (NICs)

- SmartNICs use domain-specific processors to customize packet processing
 - Programmable packet processing pipeline, regular expression, encryption/decryption, etc.
- The domain-specific processors are typically ASIC or FPGA-based
- SmartNICs also include general-purpose CPU cores for managing the system

Accelerating IDS/IPS Functions

- Intrusion Detection/Prevention System (IDS/IPS) functions can be offloaded to the SmartNIC
 - > Traffic bypass, Deep Packet Inspection (DPI), signature matching, etc.

Accelerating IDS/IPS Functions

- Intrusion Detection/Prevention System (IDS/IPS) functions can be offloaded to the SmartNIC
 - > Traffic bypass, Deep Packet Inspection (DPI), signature matching, etc.

Suricata bypass function

Packet Processing on End-hosts

Data Plane Development Kit (DPDK)

- One approach to avoid the overhead is to bypass the kernel
- DPDK is a set of optimized libraries for processing packets in the user space
- DPDK bypasses the kernel
- DPDK uses Poll Mode Drivers (PMD) which constantly poll the NICs for new packets
- This avoids the overheads resulting from interrupts

P4-DPDK

- Programming using DPDK is not straightforward and presents barrier to entry
- P4 is a domain-specific language for packet processing
- P4 was originally designed for programmable data plane switches
- Recently, P4 has been used to program other packet processing datapaths

Attack	DPDK	P4
DNS amplification	898	255
HTTP flood	1184	354
SlowLoris	995	513
UDP flood	911	376
Elephant flow (heavy hitter)	903	373

Lines of code (LOC) for implementing defenses against common cyberattacks¹

¹Zhang, Menghao, et al. "Poseidon: Mitigating volumetric DDoS attacks with programmable switches." *NDSS, 2020.*

P4-DPDK

• P4-DPDK is an initiative that translates P4 code to DPDK

Heavy Hitter Detection

- Heavy hitters are flows that contribute a significant amount of traffic to a link
- Detecting heavy hitters is crucial across various applications:
 - Congestion control
 - Intrusion detection and prevention
 - Traffic rerouting
 - Network capacity planning
 - > etc.
- DPDK-based heavy hitter detection using P4

Scalable Heavy Hitter Detection in Cloud Environments: A DPDK-based Software Approach with P4 Integration UNIVERSITY O

South Carolina

Samia Choueiri, Ali Mazloum, Elie Kfoury, Jorge Crichigno

Integrated Information Technology Department, University of South Carolina, Columbia, South Carolina