Effectiveness of Application Identification in Next-Generation Firewalls

Christian Tsirlis, Brad Wilson Advisor: Jorge Crichigno

Department of Integrated Information Technology
University of South Carolina

April 22nd, 2021

Agenda

- Purpose
- Introduction
- Problem description
- Background information
 - Next-generation Firewalls (NGFWs) and how they compare to traditional firewalls
 - Application Identification
- Proposed solution and implementation
- Conclusion

Purpose

- Understand Application Identification
- Understand Security Policy rules
- Implement Application Identification in Security Policies
- Protect network from outside attackers by analyzing traffic traversing the network
- Build stronger policies to minimize attacks

Introduction

An application is a program or feature whose traffic can be labeled and monitored.

Figure 1. Example of Applications and their sub-applications

Problem Description

- Suspected malicious activity from Internet attempting to access internal network
- Evasive applications from Internet trying to enter internal network
- Effectiveness of security policies using Application Identification to protect internal

network

Figure 2. Network Topology

Background Information

- Traditional Firewalls
 - Identify traffic by IP address, port and protocol
 - Create holes which can be exploited by attackers

- Application Identification
 - Identifies traffic by application
 - Helps detect applications that evade traditional firewall

Figure 3. Shows how applications can enter a Traditional firewall

Proposed Solution and Implementation

Application Identification was used to analyze Skype application

	Name		Source	Destination			Action	
			Zone	Zone	Application	Service		
1	Block-Skype-Internal	-Internet	[22] internal network	(22) internet	skype	🔀 application-default	O Deny	
2	Allow-internal-intern	et	pag internal network	pm internet	any	🔀 application-default	O Allow	
3	intrazone-default	9	any	(intrazone)	any	any	O Allow	
4	interzone-default	9	any	any	any	any	O Deny	

Figure 4. Security Policy for Application Identification using Skype

Results

- Skype uses numerous IP destination addresses to connect
- Security policy blocks any file sharing and chat messages
- · Security policy fails to block audio/video calls

Figure 2. Network Topology

Analyzing Skype Data

	Receive Time	Туре	From Zone	To Zone	Source	Destination	To Port	Application	Action	Rule
B	04/12 19:23:35	deny	internal network	internet	192.168.1.20	20,185,212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:23:35	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
D	04/12 19:23:22	deny	internal network	internet	192.168.1.20	13.88.31.235	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:21:26	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:21:26	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:21:26	deny	internal network	internet	192,168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:21:14	deny	internal network	internet	192.168.1.20	40.86,187,166	443	skype	deny	Block-Skype-Internal-Internet
10	04/12 19:20:16	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:20:12	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:19:49	deny	internal network	internet	192.168.1.20	40.86.187.166	443	skype	deny	Block-Skype-Internal-Internet
100	04/12 19:18:58	deny	internal network	internet	192.168.1.20	40.87.19.190	443	skype	deny	Block-Skype-Internal-Internet
D	04/12 19:18:48	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:18:46	deny	internal network	internet	192.168.1.20	20.185.212	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:18:29	deny	internal network	internet	192.168.1.20	13.83.65.43	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:18:21	deny	internal network	internet	192.168.1.20	40.87.19.190	443	skype	deny	Block-Skype-Internal-Internet
D	04/12 19:18:15	deny	internal network	internet	192.168.1.20	13.83.65.43	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:18:12	deny	internal network	internet	192,168.1.20	13.83.65.43	443	skype	deny	Block-Skype-Internal-Internet
D	04/12 19:18:06	deny	internal network	internet	192.168.1.20	13.83.65.43	443	skype	deny	Block-Skype-Internal-Internet
B	04/12 19:18:05	deny	internal network	internet	192.168.1.20	13.83.65.43	443	skype	deny	Block-Skype-Internal-Internet

Figure 5. Monitor logs showing numerous IP destination addresses

Twitter Results

Twitter-base

- Blocking this application was successful
- Example
 - Could not access twitter at all

Twitter-posting

- Blocking this application was unsuccessful
- Examples
 - Could like tweets
 - Could comment on tweets
 - Could retweet

Twitter Data

Conclusion

- Why is this work important?
 - Our test highlights, that there are some weaknesses in Application Identification and how applications are evolving and finding a way to evade firewalls.
- Future work includes deeper packet analysis
- Questions?
- Thank you for listening and watching