
BBR Congestion Control:

Fundamentals and Updates
Google TCP BBR team: Neal Cardwell, Yuchung Cheng, Kevin Yang, David Morley

Soheil Hassas Yeganeh, Priyaranjan Jha, Yousuk Seung

Van Jacobson

Google QUIC BBR team: Ian Swett, Bin Wu, Victor Vasiliev

https://groups.google.com/d/forum/bbr-dev

1Aug 29, 2023

https://groups.google.com/d/forum/bbr-dev


● BBRv1
● BBRv2
● BBRv3
● Comparing Reno, CUBIC, BBRv3
● Links for further information
● Conclusion

2

Outline 



Confidential + ProprietaryConfidential + Proprietary

BBRv1



Confidential + Proprietary

2011: many reported excessive buffering and delays on the Internet (a.k.a. bufferbloat)

2012: single-connection HTTP/2 was much slower than multi-conn HTTP/1 on lossy links

2013: poor TCP throughput on WANs w/ commodity shallow-buffer switches

Culprit: loss-based congestion control (CC) (Reno, then CUBIC)

● Packet loss alone is not a good proxy to detect congestion
● Loss-based CC is overly sensitive to losses that come before congestion

○ 10Gbps over 100ms RTT needs <0.000003% packet loss (infeasible)
○ 1% loss (feasible) over 100ms RTT gets only 3Mbps

● Loss-based CC bloats buffers if loss comes after congestion

4

Problems with loss-based congestion control



Confidential + Proprietary
 



Confidential + Proprietary 6

Network congestion and bottlenecks



Confidential + Proprietary 7

De
liv

er
y 

ra
te

BDP BDP + BufSize

RT
T

Loss-based CC (CUBIC / Reno) 

amount in flight

Loss-based congestion control in deep buffers



Confidential + Proprietary 8

De
liv

er
y 

ra
te

BDP

RT
T

amount in flight

Loss-based congestion control in shallow buffers

Loss-based CC (CUBIC / Reno) 

BDP + BufSize

Multiplicative Decrease upon 
random burst losses

=> Poor utilization



Confidential + Proprietary 9

De
liv

er
y 

ra
te

BDP BDP + BufSize

RT
T

Optimal: max BW and min RTT (Kleinrock) 

amount in flight

Optimal operating point



Confidential + Proprietary

BDP = (max BW) * (min RTT)

10

De
liv

er
y 

ra
te

BDP BDP + BufSize

RT
T

amount in flight

Est min RTT = windowed min of RTT samples

Est max BW = windowed max of BW samples

Estimating optimal point (max BW, min RTT) 



Confidential + Proprietary 11

De
liv

er
y 

ra
te

BDP BDP + BufSize

RT
T

amount in flight

Only 
min RTT is 
visible

Only
max BW
is visible

To see max BW, min RTT: probe both sides of BDP 



Confidential + Proprietary

BBRv1: Design

BBR = Bottleneck Bandwidth and Round-trip propagation time

- Model network path
- Dynamically estimate windowed max BW and min RTT on each ACK

- Control sending based on the model, to...
- Sequentially probe max BW and min RTT, to feed the model samples
- Pace near estimated BW
- Vary pacing rate to keep inflight near BDP

- Seek high throughput with a small queue
- Approaches maximum available throughput for random losses up to 15%
- Maintains small queue independent of buffer depth 

12



Confidential + ProprietaryConfidential + Proprietary

Evolution of BBR



Confidential + Proprietary

BBR v2 [2019]: what's new?

- Properties maintained between BBR v1 and BBR v2:
- High throughput with a targeted level of random packet loss
- Bounded queuing delay, despite bloated buffers

- Improvements from BBR v1 to BBR v2:
- Improved coexistence when sharing bottleneck with Reno/CUBIC
- Much lower loss rates for cases where bottleneck buffer < 1.5*BDP
- High throughput for paths with high degrees of aggregation (e.g. wifi)
- Responds to DCTCP/L4S-style ECN signals
- Vastly reduced the throughput reduction in PROBE_RTT

- Following are a few tests, to illustrate the core properties maintained and improved...
- Metrics we're evaluating in these:

- throughput, queuing latency, retransmit rate, fairness

14



Confidential + Proprietary

BBR v3 [2023]: what's new?

- BBR v3 is a minor evolution of BBR v2, with two areas of improvement:
- 1: Bug fixes

- Bandwidth convergence with loss and/or ECN marks
- Bandwidth convergence without loss or ECN marks 

- 2: Performance tuning

15



                                    Before bug fix 1:

                                         After bug fix 1:

Example test results from:

transperf bulk TCP transfer test with 4 TCP BBRv3 flows with

bottleneck_bw=50Mbps, min_rtt=40ms, buffer=1*BDP

(at t=0s flows 0, 1 start; at t=1s flows 2, 3 start)
16

BBR v3 bug fix 1: fix bw convergence with loss/ECN

https://github.com/google/transperf


17

                                         Before bug fix 2:

                                             After bug fix 2:

Example test results from:

transperf bulk TCP transfer test with 4 TCP BBRv3 flows with

bottleneck_bw=50Mbps, min_rtt=40ms, buffer=100*BDP

(at t=0s flows 0, 1 start; at t=1s flows 2, 3 start)

BBR v3 bug fix 2: fix bw convergence without loss/ECN 

https://github.com/google/transperf


● Performance tuning changes:
○ STARTUP cwnd gain: 2.89 => 2.0 [analytic derivation]
○ STARTUP pacing gain: 2.89 => 2.77 [analytic derivation]
○ When exiting STARTUP, set inflight_hi based on:

■ max(estimated BDP, max number of packets delivered in last round trip)
○ To trigger exit of STARTUP based on packet loss...

■ Require fewer loss events in a single round trip (6 rather than 8)
● Primary impact of these changes:

○ Lower queuing delays and packet loss rates during and shortly after STARTUP

18

BBR v3 performance tuning

https://github.com/google/bbr/blob/master/Documentation/startup/gain/analysis/bbr_startup_cwnd_gain.pdf
https://github.com/google/bbr/blob/master/Documentation/startup/gain/analysis/bbr_startup_gain.pdf


Confidential + Proprietary

BBR v3 Properties

- BBR v3 properties:
- Full throughput, with up to 1% random loss
- Low queue delay, despite bloated buffers of any depth
- Low queuing latency and loss using DCTCP/L4S-style ECN signals
- Coexistence with usable throughput for CUBIC/Reno in the most common Internet 

and Datacenter scenarios

19



Evolution of BBR: a summary

20

CUBIC BBR v1 BBR v3

Model parameters to the 
state machine

N/A Throughput, RTT Throughput, RTT,
max aggregation,

max inflight

Loss Reduce cwnd by 30% 
on window with any loss

N/A Explicit loss rate ceiling 
of 2%

ECN RFC3168
(Classic ECN)

N/A DCTCP-inspired ECN

Startup Slow-start until
RTT rises (Hystart) or

any loss

Slow-start until
tput plateaus

Slow-start until
throughput plateaus or
ECN/loss rate > target

https://tools.ietf.org/html/rfc3168


21

Network Path
Model

Input: measurements from network traffic

 State Machine Sending Engine

rate,

Sender data

Sent
Data

Packets

quantum,
...

 volume,

Model-based Congestion Control Algorithm Output:
Control 
parameters

throughput, delay, loss, ECN, ...

BBR v3 congestion control: the big picture



time

                

                

             Startup       

                         

                         

              Drain        

                         

                         

             ProbeBW       

                         

                       

                         

                         

             ProbeRTT 

State machine uses 2-phase sequential probing of bw, RTT

- 1: raise inflight to probe BtlBw, get high throughput
- 2: lower inflight to probe RTprop, get low delay
- At two different time scales: warm-up, steady state...
- Warm-up:

- Startup: ramp up quickly until we estimate pipe is full
- Drain: drain the estimated queue from the bottleneck

- Steady-state:
- ProbeBW: cycle pacing rate to vary inflight, probe BW
- ProbeRTT: if needed, a coordinated dip to probe RTT

BBR: the state machine

inflight
Est. BDP

22



Confidential + ProprietaryConfidential + Proprietary

Congestion Control algorithms:
a comparison



Confidential + Proprietary

fast recovery

Reno: brittle loss response, non-scalable growth

Non-scalable linear growth
Needs 1000x more time to reach 1000x higher bw

Brittle; to fully utilize a 10G, 100ms path, needs:
>1 hour between any losses
loss rate <= .0000000002  (2.0e-10) 

congestion avoidance

slow startda
ta

 in
 fl

ig
ht

time 24

Reno

(linear)
(headroom)

ssthresh

https://tools.ietf.org/html/rfc8312#section-5.2


Confidential + Proprietary

slow start

ssthresh

W_max

queue full (no headroom)

(cubic)
da

ta
 in

 fl
ig

ht

time 25

CUBIC

fast recovery
congestion avoidance

(cubic)

CUBIC: brittle loss response, non-scalable growth

Non-scalable cubic growth
Needs 10x more time to reach 1000x higher bw

Brittle; to fully utilize a 10G, 100ms path, needs:
>40 secs between any losses
loss rate <=.000000029  (2.9e-8) 

https://tools.ietf.org/html/rfc8312#section-5.2


Confidential + Proprietary

(headroom)

STARTUP

inflight_hi

inflight_lo

(exponential)

da
ta

 in
 fl

ig
ht

time

PROBE_BW

26

BBR v3

BBR v3: bounded loss tolerance, scalable growth

Aims to reduce time with queue full (leave headroom)
Scalable exponential growth; uses new bw in O(log(BDP))
To fully utilize a 10G, 100ms path:

Can have up to loss_thresh loss in every round
[Shallow buffer case depicted; no loss with deeper buffers]



Confidential + ProprietaryConfidential + Proprietary

Current Status of BBR



● Google-internal traffic:
○ BBRv3 is TCP congestion control for all internal WAN traffic
○ BBR.Swift is TCP congestion control used within a datacenter

● Google-external traffic:
○ BBRv3 is TCP congestion control for all Google.com public Internet traffic
○ A/B experiments: BBRv3 vs BBRv1 for small % of users for:

■ TCP for YouTube
■ QUIC for google.com and YouTube

28

BBR deployment status at Google 

https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00


● Impact of BBRv3 vs BBRv1 on Google.com and YouTube TCP public Internet traffic:
○ Lower retransmit rate (12% reduction)
○ Slight latency improvement (0.2% reduction) for:

■ Google.com web search
■ Starting YouTube video playback

○ Latency wins seem to be from lower loss rate (less/faster loss recovery)

29

BBRv3 performance impact for public Internet traffic



● TCP BBRv3 release:
○ Linux TCP (dual GPLv2/BSD): github.com/google/bbr/blob/v3/README.md
○ Main updates: the bug fixes described earlier in this presentation
○ TCP BBR v3 release is open source (dual GPL/BSD), available for review/testing
○ Plan to email patches to propose inclusion in mainline Linux TCP

● BBRv1 code in Linux TCP "bbr" module will be upgraded to BBRv3
● Why upgrade BBRv1->BBRv3 in place rather than a separate module? BBRv3 has...

○ Better coexistence with Reno/CUBIC, vs v1
○ Lower loss rates, vs v1
○ Lower latency for short web requests (from google.com, YouTube data), vs v1
○ Throughput similar to v1 (within 1% of v1 on YouTube)

30

BBR Open Source Code 

https://github.com/google/bbr/blob/v3/README.md


● How to enable BBR:
○ To enable manually for one-shot experimentation:

■ sysctl net.ipv4.tcp_congestion_control=bbr

○ To enable every time a machine boots:
■ Add to /etc/sysctl.conf (Ubuntu, Debian, RedHat, CentOS):

● net.ipv4.tcp_congestion_control=bbr

● net.core.default_qdisc=fq

● BBRv1 for TCP:
○ In mainline Linux (since v4.9 in Dec 2016)

● BBRv3 for TCP:
○ On github: github.com/google/bbr/blob/v3/README.md

● Pacing options:
○ Preferred: fq qdisc: implements pacing and fair queuing
○ If fq is not present, BBR uses TCP-layer pacing (usable since v4.20 in Dec 2018)

31

How to Experiment with Linux TCP BBR

https://github.com/google/bbr/blob/v3/README.md
https://man7.org/linux/man-pages/man8/tc-fq.8.html
https://www.ietf.org/proceedings/88/slides/slides-88-tcpm-9.pdf
https://man7.org/linux/man-pages/man8/tc-fq.8.html
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=218af599fa635b107cfe10acf3249c4dfe5e4123


Conclusion

● Summary:
○ Open sourced BBRv3 on github with significant bug fixes vs BBRv2
○ BBRv3 used for all TCP for Google.com public Internet and internal WAN traffic
○ BBRv3 under A/B testing for YouTube TCP, YouTube and Google.com QUIC

● Next:
○ Plan on submitting BBRv3 for inclusion in mainline Linux TCP
○ Will update BBR Internet Drafts to cover BBRv3:

■ Delivery rate estimation: draft-cheng-iccrg-delivery-rate-estimation
■ BBR Congestion control:          draft-cardwell-iccrg-bbr-congestion-control

● We invite the community to share…
○ Feedback on the algorithm, code, or drafts
○ Test results, issues, patches, or ideas

● Thanks!

32

https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control


 Q & A

https://groups.google.com/d/forum/bbr-dev

Internet Drafts, paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Nandita Dukkipati, Matt Mathis, Luke Hsiao, C. 
Stephen Gunn, Jana Iyengar, Pawel Jurczyk, Biren Roy, David Wetherall, Amin 
Vahdat,  Leonidas Kontothanassis, and {YouTube, google.com, SRE, BWE} teams.

33

https://groups.google.com/d/forum/bbr-dev

