
ZEEK (BRO) INTRUSION DETECTION SYSTEM (IDS)

ELIAS BOU-HARB, Ph.D.

Assistant Professor

.

ANTONIO MANGINO

Research Assistant

July 23rd, 2019
Training Workshop for Network Engineers and Educators on Tools and

Protocols for High-Speed Networks

NSF Award 1829698
CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers

2

Zeek (Bro) IDS Outline

Network Intrusion Detection Systems

Network Traffic Signatures

Zeek (Bro) IDS

Network Scanning Detection with Zeek

Denial of Service Detection with Zeek

Internet Measurements using Zeek for IoT Security

3

Network Intrusion Detection Systems

 Software/hardware systems that actively monitor live

networks for malicious traffic, policy violations and

unidentified anomalies

 Deployed to protect operational networks without

disturbing normal/benign packet traffic flows

 In contrast to firewalls, NIDS are most often passive,

although they can operate as NIPS

4

Network Traffic Signatures

 Typically, IDS search for identified packet signatures

to determine malicious or unsolicited network activity

 Zeek leverages an event-based engine to monitor

possible intrusions, permitting more versatile handling

of malicious traffic

 Zeek supports signature conversion, resulting in

traditional signature-matching while combining the

adaptability of the event-based engine

5

Network Traffic Signatures: A Snort Signature

 Follows a rule-based format

(Action) (Protocol) (Source Address) (Source Port) (Direction) (Destination Address) (Destination Port)

alert tcp any 80 -> 192.168.x.x any (msg: “TCP Packet”; sid:100)

Rule Header Rule Option

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80 (msg: “WEB-ATTACKS
conf/httpd.conf attempt”; nocase; sid:1373; flow:to_server, established;
content:“conf/httpd.conf”; […])

6

Network Traffic Signatures: A Zeek Signature

 Follows a variable/data object-based format

 Variables support strings, integers and floats

signature sid-1371 {
ip-proto == tcp
dst-ip == a.b.0.0/16,c.d.e.0/24
dst-port == 80

payload /.*conf/\httpd\.conf/
tcp-state established, originator
event “WEB-ATTACKS conf/http.conf attempt”
}

7

Zeek (Bro) IDS

 Development began in 1995 by Vern Paxon

 Real-time notifications of possible network intrusions

 Zeek’s scripting language creates a versatile

environment for fine-grained anomaly-related

detection and processing

 Diverse log files containing distributed information

 Versatile formatting of output data for preprocessing

and advanced analytics

8

Zeek (Bro) IDS: Event Engine

 Zeek processes live and captured network traffic to

generate events

 Each event triggers a corresponding policy script

 Policy scripts determine the actions taken when an

event is recorded

9

Zeek (Bro) IDS: Event Engine

Packet Stream Event Engine
Policy

Interpreter
Output

Live network

capture/offline

packet parsing

Breaks down a

packet stream

into events based

on packet

features or

related

connection

information

Comprised of

event handlers;

determines what

Zeek will do

when an event

has been

recorded

Generates output

log files, alerts

and notices

declared within

policy scripts

Zeek’s Core

10

Zeek (Bro) IDS: Log Files

 After processing network traffic, Zeek will output

statistical log files

 By default, log files will be separated by the

transport protocol and related characteristics

 At a basic level, these log files can be used to

determine the presence of an anomaly

 Zeek log files can be formatted and exported to

external processing software

11

Zeek (Bro) IDS: Log Files

Connection Protocol-Specific Detection Observations

conn.log http.log notice.log known_certs.log

files.log ftp.log signatures.log known_services.log

x509.log dns.log traceroute.log weird.log

 Connection:
 conn.log: collection of all TCP/UDP/ICMP connections

 files.log: analysis results

 x509.log: X.509 certificate information

12

Zeek (Bro) IDS: Log Files

Connection Protocol-Specific Detection Observations

conn.log http.log notice.log known_certs.log

files.log ftp.log signatures.log known_services.log

x509.log dns.log traceroute.log weird.log

 Protocol-Specific:

 http.log: collection of all packets using the Hyper Text Transport Protocol (HTTP)

 ftp.log: collection of all packets using the File Transport Protocol (FTP)

 dns.log: collection of all packets using Domain Name System (DNS)

13

Zeek (Bro) IDS: Log Files

Connection Protocol-Specific Detection Observations

conn.log http.log notice.log known_certs.log

files.log ftp.log signatures.log known_services.log

x509.log dns.log traceroute.log weird.log

 Detection:
 notice.log: Zeek event notices

 signatures.log: collection of matched signatures

 traceroute.log: detected traceroute traffic

14

Zeek (Bro) IDS: Log Files

Connection Protocol-Specific Detection Observations

conn.log http.log notice.log known_certs.log

files.log ftp.log signatures.log known_services.log

x509.log dns.log traceroute.log weird.log

 Observations:
 known_certs.log: collection of SSL certificates

 known_services.log: collection of active software on the network

 weird.log: unexpected or anomalous activity statistics

15

Zeek (Bro) IDS: Policy Scripts

 The Zeek scripting language is used to develop and

implement filters and policies for the event-based

engine

 Event-based scripts are used to customize the output

of Zeek processing

 Scripts can be implemented to permanently update

Zeek’s event handling or used as a non-permanent

filter

16

Zeek Filters

 Script events include (but are not limited to):

 Protocol-specific events

 Application-level headers

 Unknown/broken connection handling

 Packet data is accessible within the filters to be used

for calculations or to be exported into separate log

files

17

Example: Protocol-oriented Zeek Filter

 Filter with UDP Request and UDP Reply events

 If a processed packet is using the UDP protocol,

source and destination information will be printed

event udp_request(u:connection){
print fmt(“A UDP Request was found!”);
print fmt(“Source Address: %s Destination Port: %s”,

uidorig_h, uidresp_p);
}
event udp_reply(u: connection){

print fmt(“A UDP Reply was found!”);
print fmt(“Source Address: %s Destination Address: %s”,

uidorig_h, uidresp_h);
}

18

Example: Protocol-oriented Zeek Filter

 Filter using a connection-based event

 If a processed packet uses the HTTP service that is

different port 80, the source IP address will be

printed

event new_connection(c: connection){

if (cidservice == “http” && cidresp_p != 80){
print fmt(“Traffic Anomaly Detected!”);
print fmt(“Source Address: %s”, cidorig_h);

}
}

19

Network Scanning Detection with Zeek

 Network scanning is a preliminary action to infer

aliveness, available services or vulnerabilities

 Various techniques are used by network scanners to

bypass firewalls and avoid detection

 Scanning traffic includes an array of transport and

application layer protocols

 Scanning traffic can be identified by header flags,

destination patterns and related packet information

20

Network Scanning Detection with Zeek:

An example

 Develop a detector based on the number of TCP connections initiated by a

source IP address within a continuous time interval

 When a scanner is targeting a single port on multiple destination addresses,

it is known as horizontal scanning

export {
const addr_scan_interval = 5min &redef;
const addr_scan_threshold = 20 &redef;
}
function horizontal_scanning(c: connection):bool {

if (num_requests(cidorig_h) > addr_scan_threshold &&
time_alive(c$connection) < addr_scan_interval) {
print fmt(“Horizontal Scanner Detected!”);
return cidorig_h;

}
}//end function

21

Network Scanning Detection with Zeek:

An example

 Develop a detector based on the number of failed TCP connections initiated

by a source IP address within a continuous time interval

 When a scanner is targeting multiple ports on a single destination address;

vertical scanning

export {
const port_scan_interval = 5min &redef;
const port_scan_threshold = 30 &redef;
}
function vertical_scanning(c: connection):bool {

if((c$orig$state == TCP_SYN_SENT && c$resp$state == TCP_RESET) ||
(c$orig$state == TCP_RESET && c$resp$state == TCP_SYN_ACK_SENT){

if (num_requests(cidorig_h) > port_scan_threshold &&
time_alive(c$connection) < addr_scan_interval) {
print fmt(“Vertical Scanner Detected!”);
return cidorig_h;

}
}//end function

22

Denial of Service Detection with Zeek

 Denial of Service (DoS) attacks are launched to

render a target machine or resource unavailable to

its intended users

 DoS techniques utilize the Internet architecture to

overwhelm their victim

 DoS attacks can be identified by packet distribution

thresholds (unidirectional traffic) or backscatter

(passive one-way traffic)

23

Denial of Service Detection with Zeek:

An example

 Develop a threshold based on the connection state, duration and

number of bytes per packet sent by a source IP address during an

HTTP flood attack

export {
const addr_traffic_interval = 5min &redef;
}

function http_request(c: connection):bool {
if (c$proto = “HTTP” && c$orig$state == S0 &&

(c$duration < 1 || c$orig_bytes <= 0){
print fmt(“HTTP Flood Detected!”);
return cidorig_h;

}
}//end function

24

The Internet-of-Things (IoT)

 Internet connected devices and systems

 Limited resources and functionalities

 Facilitate data collection, monitoring, and sharing

 Types of IoT

 Consumer IoT (e.g., routers, printers, IP cameras)

 CPS - Cyber-Physical Systems (e.g., power utilities, factory
automation, smart buildings)

 Worldwide deployment

 Projected increase with 5G

25

IoT Security

26

Passive darknet data

 One-way traffic collected at unused address space (darknet)

 UCSD Real-Time Network Telescope data provided by CAIDA

 One of largest darknets (16.7M IPv4 destination addresses)

 Obtained data

 5 TB of darknet

 Generated flow information (flowtuples)

One-way

traffic
Darknet

Internet

Address Space

Darknet

Unused address space

27

Leveraging Zeek for inferring IoT-generated

scanning traffic

 About 75% of all darknet traffic

 Malicious scans from compromised IoT devices

 0.23% ICMP Echo requests (56 IoT devices)

 100M TCP packets (99.9% TCP SYN requests)

 12.4K devices (55% Consumer IoT)

28

Scanned ports
% of

packets

Telnet /23/2323/23231 50.2

HTTP /80/8080/81 9.4
SSH /22 7.7

BackroomNet /3387 6.2
CWMP /7547 4.5

WSDAPI-S /5358 4.1
MSSQLServer /1433 3.3
Kerberos /88 2.7

MS DS /445 2.5
EtherneIP IO /2222 0.7
iRDMI /8000 0.7
Unassigned /21677 0.6
RDP /3389 0.5

FTP /21 0.3

95% Consumer IoT

99% Consumer IoT

99% Consumer IoT

100% CPS

100% CPS

Number of IoT devices (scanners) per

port/service

Leveraging Zeek for inferring IoT-generated

scanning traffic

Questions

NSF Award 1829698
CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers

ANTONIO MANGINO
Research Assistant

ELIAS BOU-HAB, Ph.D.
Assistant Professor

