

CYBER THREAT INTELLIGENCE LAB College of Engineering & Computer Science Florida Atlantic University

ZEEK (BRO) INTRUSION DETECTION SYSTEM (IDS)

ELIAS BOU-HARB, Ph.D.

Assistant Professor

ANTONIO MANGINO

Research Assistant

NSF Award 1829698

CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers

July 23rd, 2019

Training Workshop for Network Engineers and Educators on Tools and Protocols for High-Speed Networks

Zeek (Bro) IDS Outline

Network Intrusion Detection Systems
Network Traffic Signatures
Zeek (Bro) IDS
Network Scanning Detection with Zeek
Denial of Service Detection with Zeek
Internet Measurements using Zeek for IoT Security

Network Intrusion Detection Systems

- 3
- Software/hardware systems that actively monitor live networks for malicious traffic, policy violations and unidentified anomalies
- Deployed to protect operational networks without disturbing normal/benign packet traffic flows
- In contrast to firewalls, NIDS are most often passive, although they can operate as NIPS

Network Traffic Signatures

- Typically, IDS search for identified packet signatures to determine malicious or unsolicited network activity
- Zeek leverages an event-based engine to monitor possible intrusions, permitting more versatile handling of malicious traffic
- Zeek supports signature conversion, resulting in traditional signature-matching while combining the adaptability of the event-based engine

Network Traffic Signatures: A Snort Signature

Follows a rule-based format

(Action) (Protocol) (Source Address) (Source Port) (Direction) (Destination Address) (Destination Port) alert tcp any 80 -> 192.168.x.x any (msg: "TCP Packet"; sid:100) Rule Header Rule Option

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80 (msg: "WEB-ATTACKS conf/httpd.conf attempt"; nocase; sid:1373; flow:to_server, established; content:"conf/httpd.conf"; [...])

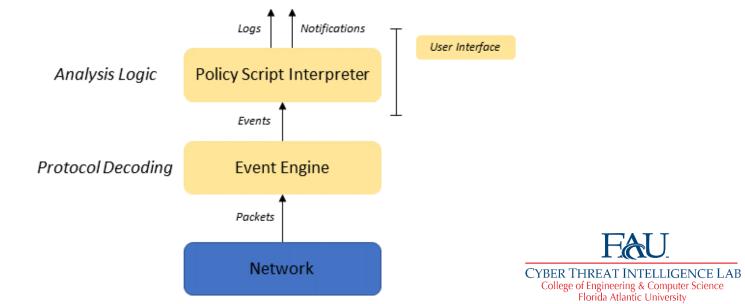
Network Traffic Signatures: A Zeek Signature

Follows a variable/data object-based format

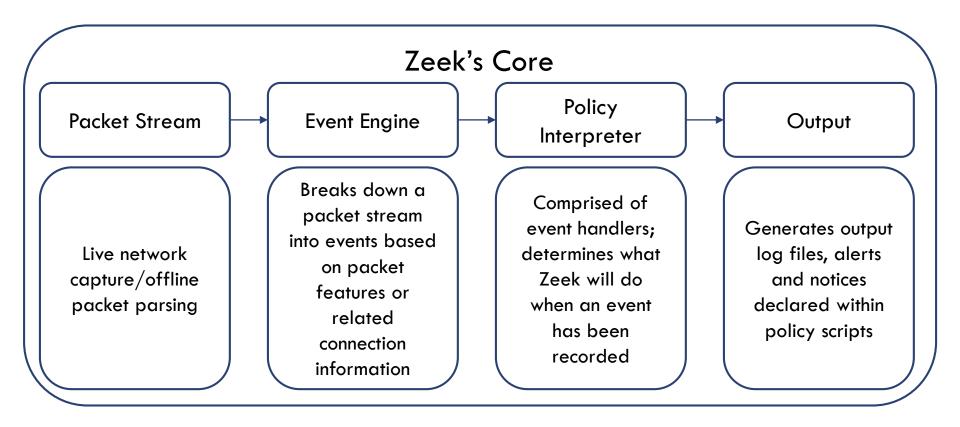
Variables support strings, integers and floats

```
signature sid-1371 {
    ip-proto == tcp
    dst-ip == a.b.0.0/16,c.d.e.0/24
    dst-port == 80
payload /.*conf/\httpd\.conf/
tcp-state established, originator
event "WEB-ATTACKS conf/http.conf attempt"
}
```

6



Zeek (Bro) IDS


- 7
- Development began in 1995 by Vern Paxon
- Real-time notifications of possible network intrusions
- Zeek's scripting language creates a versatile environment for fine-grained anomaly-related detection and processing
- Diverse log files containing distributed information
- Versatile formatting of output data for preprocessing and advanced analytics

Zeek (Bro) IDS: Event Engine

- 8
- Zeek processes live and captured network traffic to generate events
- Each event triggers a corresponding policy script
- Policy scripts determine the actions taken when an event is recorded

Zeek (Bro) IDS: Event Engine

- 10
- After processing network traffic, Zeek will output statistical log files
- By default, log files will be separated by the transport protocol and related characteristics
- At a basic level, these log files can be used to determine the presence of an anomaly
- Zeek log files can be formatted and exported to external processing software

□ Connection:

- conn.log: collection of all TCP/UDP/ICMP connections
- files.log: analysis results
- x509.log: X.509 certificate information

Connection	Protocol-Specific	Detection	Observations
conn.log	http.log	notice.log	known_certs.log
files.log	ftp.log	signatures.log	known_services.log
x509.log	dns.log	traceroute.log	weird.log

Protocol-Specific:

- http.log: collection of all packets using the Hyper Text Transport Protocol (HTTP)
- ftp.log: collection of all packets using the File Transport Protocol (FTP)
- dns.log: collection of all packets using Domain Name System (DNS)

Connection	Protocol-Specific	Detection	Observations
conn.log	http.log	notice.log	known_certs.log
files.log	ftp.log	signatures.log	known_services.log
x509.log	dns.log	traceroute.log	weird.log

Detection:

- notice.log: Zeek event notices
- signatures.log: collection of matched signatures
- traceroute.log: detected traceroute traffic

Connection	Protocol-Specific	Detection	Observations
conn.log	http.log	notice.log	known_certs.log
files.log	ftp.log	signatures.log	known_services.log
x509.log	dns.log	traceroute.log	weird.log

Observations:

- known_certs.log: collection of SSL certificates
- known_services.log: collection of active software on the network
- weird.log: unexpected or anomalous activity statistics

Connection	Protocol-Specific	Detection	Observations
conn.log	http.log	notice.log	known_certs.log
files.log	ftp.log	signatures.log	known_services.log
x509.log	dns.log	traceroute.log	weird.log

Zeek (Bro) IDS: Policy Scripts

- The Zeek scripting language is used to develop and implement filters and policies for the event-based engine
- Event-based scripts are used to customize the output of Zeek processing
- Scripts can be implemented to permanently update
 Zeek's event handling or used as a non-permanent
 filter

Zeek Filters

- □ Script events include (but are not limited to):
 - Protocol-specific events
 - Application-level headers
 - Unknown/broken connection handling
- Packet data is accessible within the filters to be used for calculations or to be exported into separate log files

Example: Protocol-oriented Zeek Filter

- 17
- Filter with UDP Request and UDP Reply events
- □ If a processed packet is using the UDP protocol, source and destination information will be printed

Example: Protocol-oriented Zeek Filter

- □ Filter using a connection-based event
- If a processed packet uses the HTTP service that is different port 80, the source IP address will be printed

```
event new_connection(c: connection){
```

```
if (c$id$service == "http" && c$id$resp_p != 80){
    print fmt("Traffic Anomaly Detected!");
    print fmt("Source Address: %s", c$id$orig_h);
}
```


Network Scanning Detection with Zeek

- 19
- Network scanning is a preliminary action to infer aliveness, available services or vulnerabilities
- Various techniques are used by network scanners to bypass firewalls and avoid detection
- Scanning traffic includes an array of transport and application layer protocols
- Scanning traffic can be identified by header flags, destination patterns and related packet information

Network Scanning Detection with Zeek: An example

20

- Develop a detector based on the number of TCP connections initiated by a source IP address within a continuous time interval
- When a scanner is targeting a single port on multiple destination addresses, it is known as horizontal scanning

```
export {
const addr_scan_interval = 5min &redef;
const addr_scan_threshold = 20 &redef;
}
function horizontal_scanning(c: connection):bool {
    if (num_requests(c$id$orig_h) > addr_scan_threshold &&
        time_alive(c$connection) < addr_scan_interval) {
        print fmt("Horizontal Scanner Detected!");
        return c$id$orig_h;
    }
}//end function</pre>
```


Network Scanning Detection with Zeek: An example

- Develop a detector based on the number of failed TCP connections initiated by a source IP address within a continuous time interval
- When a scanner is targeting multiple ports on a single destination address; vertical scanning

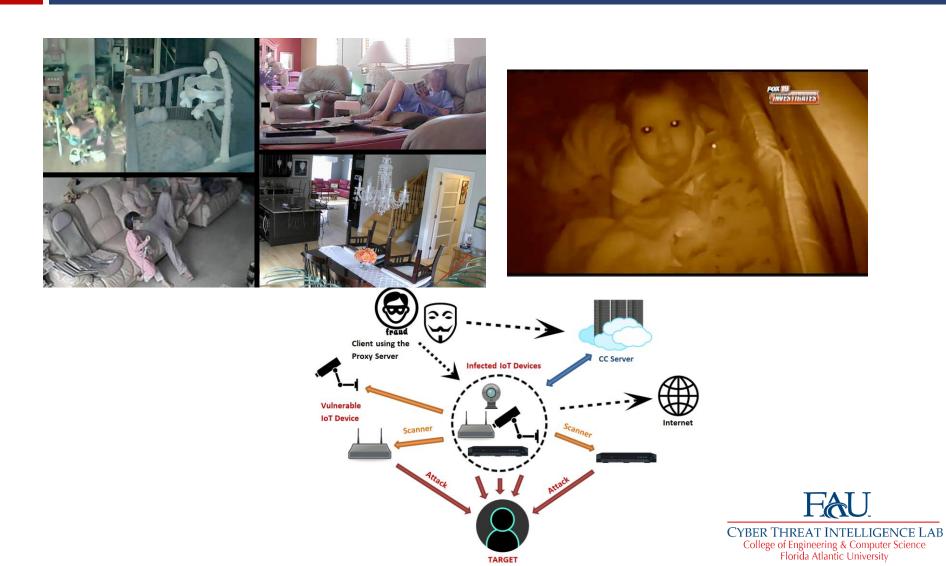
```
export {
  const port_scan_interval = 5min &redef;
  const port_scan_threshold = 30 &redef;
  }
  function vertical_scanning(c: connection):bool {
    if((c$orig$state == TCP_SYN_SENT && c$resp$state == TCP_RESET) ||
        (c$orig$state == TCP_RESET && c$resp$state == TCP_SYN_ACK_SENT){
            if (num_requests(c$id$orig_h) > port_scan_threshold &&
            time_alive(c$connection) < addr_scan_interval) {
                print fmt("Vertical Scanner Detected!");
                return c$id$orig_h;
            }
    }//end function</pre>
```


Denial of Service Detection with Zeek

- 22
- Denial of Service (DoS) attacks are launched to render a target machine or resource unavailable to its intended users
- DoS techniques utilize the Internet architecture to overwhelm their victim
- DoS attacks can be identified by packet distribution thresholds (unidirectional traffic) or backscatter (passive one-way traffic)

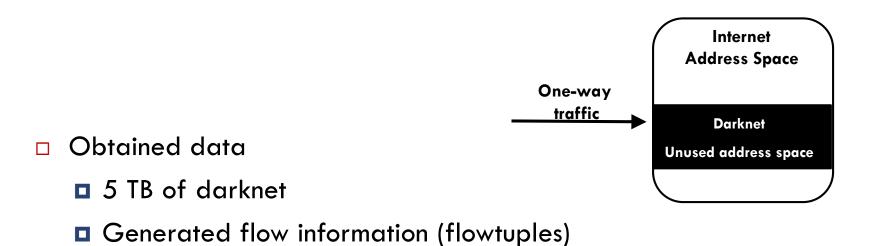
Denial of Service Detection with Zeek: An example

- 23
- Develop a threshold based on the connection state, duration and number of bytes per packet sent by a source IP address during an HTTP flood attack



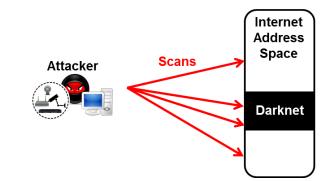
The Internet-of-Things (IoT)

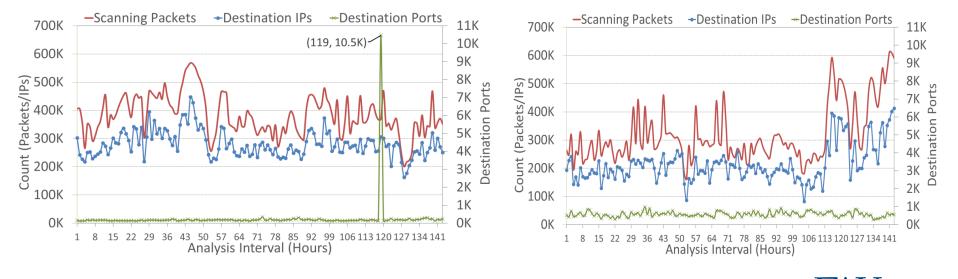
- Internet connected devices and systems
 - Limited resources and functionalities
 - Facilitate data collection, monitoring, and sharing
- Types of IoT
 - Consumer IoT (e.g., routers, printers, IP cameras)
 CPS Cyber-Physical Systems (e.g., power utilities, factory automation, smart buildings)
- Worldwide deployment
 Projected increase with 5G


IoT Security

Passive darknet data

26


- One-way traffic collected at unused address space (darknet)
 - UCSD Real-Time Network Telescope data provided by CAIDA
 - One of largest darknets (16.7M IPv4 destination addresses)



Source Port		TTL	Protocol	Packets	TCP Flags	IP Length	

Leveraging Zeek for inferring IoT-generated scanning traffic

- About 75% of all darknet traffic
- Malicious scans from compromised IoT devices
 - 0.23% ICMP Echo requests (56 IoT devices)
 - 100M TCP packets (99.9% TCP SYN requests)
 - 12.4K devices (55% Consumer IoT)

Leveraging Zeek for inferring IoT-generated scanning traffic

Talmat (22/2222/22221 EQ.2	
Telnet /23/2323/23231 50.2	
HTTP /80/8080/81 9.4 95% Consumer I	оΤ
SSH /22 7.7	
BackroomNet /3387 6.2 100% CPS	
CWMP /7547 4.5	
WSDAPI-S /5358 4.1	
MSSQLServer /1433 3.3	
Kerberos /88 2.7 99% Consumer I	οT
MS DS /445 2.5	
EtherneIP IO /2222 0.7	
iRDMI /8000 0.7 99% Consumer I	οT
Unassigned /21677 0.6 100% CPS	
RDP /3389 0.5	
FTP /21 0.3	

Number of IoT devices (scanners) per port/service

Questions

ELIAS BOU-HAB, Ph.D.

Assistant Professor

ANTONIO MANGINO

Research Assistant

NSF Award 1829698

CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers

