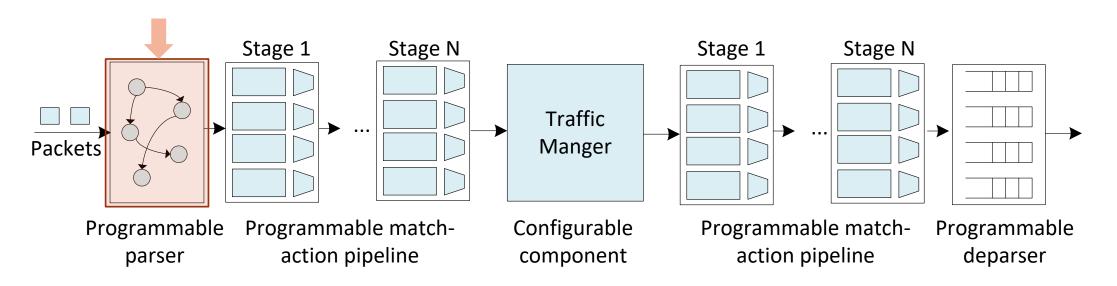
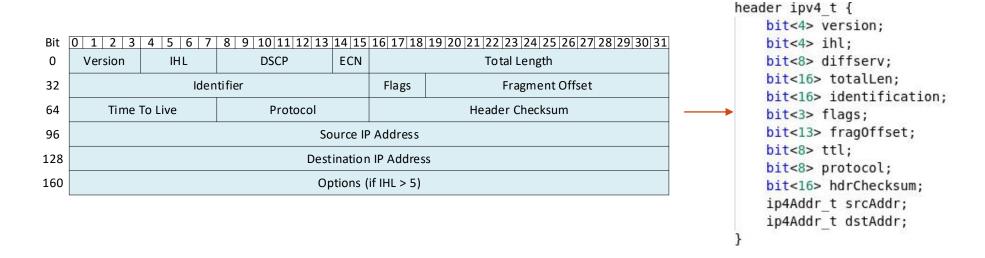

Parser

Jorge Crichigno

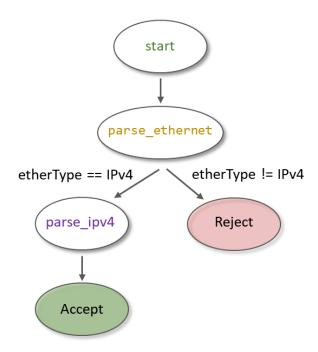

College of Engineering and Computing, University of South Carolina

A Hands-on Tutorial on P4 Programmable Data Planes

Monday March 6, 2023

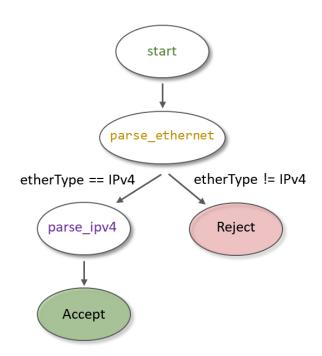


- The parser enables parsing arbitrary headers with a finite state machine
- The state machine follows the order of the headers within the packets
- The packet is split into the defined headers and the remaining is treated as the payload



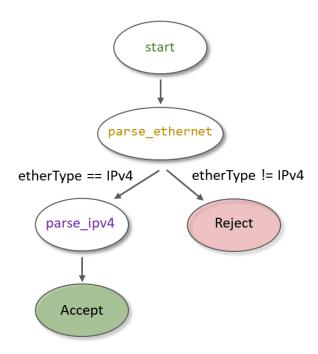
Packet Headers

- The packet headers are specified by the programmer
- The programmer has the flexibility of defining custom/non-standardized headers
- Such capability is not available in non-programmable devices


- Every parser has three predefined states: start, accept, and reject
- Other states may be defined by the programmer
- In each state, the parser executes statements and then transitions to another state


```
state start {
    transition parse_ethernet;
}
state parse_ethernet {
    packet.extract(hdr.ethernet);
    transition select(hdr.ethernet.etherType) {
        TYPE_IPV4: parse_ipv4;
        default: reject;
    }
}
state parse_ipv4 {
    packet.extract(hdr.ipv4);
    transition accept;
}
```

packet is an input parameter; hdr is an output parameter


 P4₁₆ has an extract method that can be used to "fill in" the fields of a header from the "raw" packet


```
state start {
    transition parse_ethernet;
}
state parse_ethernet {
    packet.extract(hdr.ethernet);
    transition select(hdr.ethernet.etherType) {
        TYPE_IPV4: parse_ipv4;
        default: reject;
    }
}
state parse_ipv4 {
    packet.extract(hdr.ipv4);
    transition accept;
}
```

packet is an input parameter; hdr is an output parameter

P4₁₆ has a select statement that can be used to branch in a parser


```
state start {
    transition parse_ethernet;
}
state parse_ethernet {
    packet.extract(hdr.ethernet):
    transition select(hdr.ethernet.etherType) {
        TYPE_IPV4: parse_ipv4;
        default: reject;
    }
}
state parse_ipv4 {
    packet.extract(hdr.ipv4);
    transition accept;
}
```

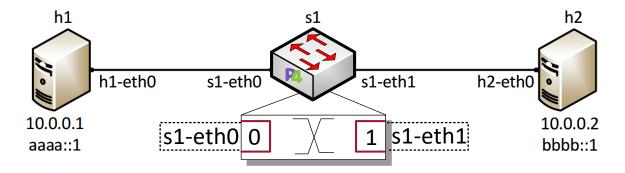
packet is an input parameter; hdr is an output parameter

Headers Format

• Ethernet header:

48 bits	48 bits	16 bits
Destination Address	Source Address	Ether Type

• IPv4 header:


Bit	0 1 2 3	4 5 6 7	8 9 10 11 12 13	14 15	16 17 18	19 20 21 22 23 24 25 26 27 28 29 30 31		
0	Version	IHL	DSCP	ECN	Total Length			
32	Identifier Flags				Fragment Offset			
64	Time ¹	To Live	Protocol		Header Checksum			
96	Source IP Address							
128	Destination IP Address							
160	Options (if IHL > 5)							

• IPv6 header:

Bit	0 1 2 3	4 5 6 7 8 9 10 11	12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 3:					
0	Version	Traffic Class	Flow Label							
32		Payload Length	Next Header Hop Limit							
64	·									
	Source IP Address									
192	Destination IP Address									

Lab 4 Topology and Objectives

- The topology consists of two hosts: h1 and h2; one P4 switch: s1
- The objectives are:
 - Defining the headers for Ethernet, IPv4 and IPv6
 - Implementing the parser
 - > Testing and verifying the switch behavior when IPv4 and IPv6 packets are received

