South Carolina

Runtime Controller, Checksum Calculation, Deparser

Jorge Crichigno

College of Engineering and Computing, University of South Carolina
A Hands-on Tutorial on P4 Programmable Data Planes

Tuesday March 7, 2023

Runtime Controller

Control Plane

- The match-action tables are empty by default
« The control plane populates the tables with entries
« The control plane can insert, remove, and update table entries

Control Plane

insert
table_add ipv4_forwarding ip_forward 192.168.0.1 =>4

|
]
v

Match-action Table (ipv4_forwarding)

Match Action ID Action Data

192.168.0.1 ip_forward eg_port=4

Runtime Environment

« The simple_switch_CLI tool is used to populate the tables in this lab series
 This tool includes a program-independent CLI and a Thrift® client
* It connects to a Thrift control server residing on the switch

simple_switch_CLI
Program-independent CLI and
client

A
TCP Socket
(Thrift)

Data plane

Program-independent control
server

simple_switch (BMv2)

1. Thrift is an interface definition language and binary communication protocol used for defining and creating services

Runtime Environment

« The simple_switch_CLI is similar to other CLIs (e.g., Cisco I0OS CLI) and offers a
variety of commands

root@sl: /behavioral-model

Control utility for runtime P4 table manipulation
‘timeCmd:| ?

Documented commands (type help

act prof add member to group
ct prof create u
prof crea
prof delete group 2t crc parameters
prof delet S€E JUE dept
prof dump set queue rate
prof dump gr shell
prof dump me show actions
prof modify el show ports
act prof remove member group show pvs
show tables
swap configs
switch info
table
table
table
table

table

Runtime Environment

« The simple_switch_CLI is similar to other CLIs (e.g., Cisco I0OS CLI) and offers a
variety of commands

root@sl: /behavioral-model

[1mplementation=None,

[implementation=None,

Runtime Environment

« The simple_switch_CLI is similar to other CLIs (e.g., Cisco I0OS CLI) and offers a
variety of commands

root@sl: /behavioral-model
RuntimeCmd: |show tables
MyIngress.1ipv4 host
MyIngress.ipv4 1lpm

RuntimeCmd: l

[implementation=None, mk=ipv4.dstAddr

(exact, 32)]
[implementation=None, mk=ipv4.dstAddr(1lpm, 32)

root@sl: /behavioral-model
RuntimeCmd :
:00:00:00:03
Adding entry to exact match table MyIngress.ipv4 host
match Kkey: EXACT-1e:00:00:01
action: MyIngress.forward
runtime data: P0:00:00:00:00:03 00:02
Entry has been added with handle ©
RuntimeCmd: [

add MyIngress.ipv4 host MyIngress.forward

Lab 7 Topology and Objectives

* The topology consists of three hosts: hl, h2, and h3; one P4 switch: s1
* The P4 program is already provided; no P4 programming is needed in this lab

* The objectives are
» Navigating the simple_switch_CLI tool
» Displaying ports, tables, and actions
» Inserting, updating, and deleting table entries

hi sl h3

R J@l S
° h1-eth0 si-eth0 & / s1-eth2 h3-eth0|e
S S

sl-ethl
10.0.0.1 30.0.0.1

©

Checksums

Checksums

« Several protocols use checksums to validate the integrity of the packet headers
« A checksum is a small value computed with a checksum algorithm; e.g., CRC16

Sender Receiver
Packet header Packet header
fields I:I:I:I @ fields
Hash algorithm I:I:l:l:l H Hash algorithm
(e.g., CRC) H (e.g., CRC)
v —_— !
Checksum |:| |:| qul,lal? |:| Checksum

Checksum verified,
accept packet

Checksums

« Several protocols use checksums to validate the integrity of the packet headers
« A checksum is a small value computed with a checksum algorithm; e.g., CRC16

* No built-in constructs in P4 instead, they are expressed as externs (provided by
specific libraries)
» Externs enable the programmer to use specialized computation provided by the platform

Sender Receiver
Packet header Packet header
fields D:DT @ fields
Hash algorithm I:I:l:l:l H Hash algorithm
(e.g., CRC) H (e.g., CRC)
v — !
Checksum |:| |:| qul,lal? |:| Checksum

Checksum verified,
accept packet

Checksums

« Several protocols use checksums to validate the integrity of the packet headers
« A checksum is a small value computed with a checksum algorithm; e.g., CRC16
* No built-in constructs in P4 instead, they are expressed as externs (provided by

specific libraries) 13 bite
\
|
Version AT Type of service Datagram length (bytes)
length
16-bit Identifier Flags 13-bit Fragmentation offset
S Upper-layer
Time-to-live protocol Header checksum

32-bit Source IP address
IP header
32-bit Destination IP address

Options (if any)

Data

Deparser

13

Deparser

control MyDeparser(packet_out packet,

« Assembles the headers back into a well-formed packet (4 my_ReaeTa_t indr)

« Expressed as a control function (no need for another construct)
- Output parameter is a packet out extern (defined in core.p4)

apply {

Example from “Introduction to P44 - Part 2", Vladimir Gurevich.” Online: https://tinyurl.com/23r3nz|9

https://tinyurl.com/23r3nzj9

Deparser

control MyDeparser(packet_out packet,
 Assembles the headers back into a well-formed packet (OERCEARETRL S
. Wy {
- Expressed as a control function (no need for another construct) B aver 3

packet.emit(hdr.ethernet);

Output parameter is a packet out extern (defined in core.p4)
The emit method serializes header, if valid

Example from “Introduction to P44 - Part 2", Vladimir Gurevich.” Online: https://tinyurl.com/23r3nz|9

https://tinyurl.com/23r3nzj9

Deparser

control MyDeparser(packet_out packet,
- Assembles the headers back into a well-formed packet ¢ OERCEARETRL S
i apply {
« Expressed as a control function (no need for another construct) 7% Layer 2 %/
. : : packet.emit(hdr.ethernet);
- Output parameter is a packet out extern (defined in core.p4) packet.emit(hdr.vian_ tag):
* The emit method serializes header, if valid /% Layer 2.5 */

packet.emit(hdr.mpls);

If the header is not valid or not available, then the statement has o i
* Layer 3 %

no effect /% ARP %/
packet.emit(hdr.arp);
packet.emit(hdr.arp_ipv4);
/* IPv4 x/
packet.emit(hdr.ipv4);
/% IPV6 %/
packet.emit(hdr.ipv6);

/* Layer 4 x/

packet.emit(hdr.icmp);
packet.emit(hdr.tcp);
packet.emit(hdr.udp);

Example from “Introduction to P44 - Part 2", Vladimir Gurevich.” Online: https://tinyurl.com/23r3nz|9

https://tinyurl.com/23r3nzj9

Deparser

control MyDeparser(packet_out packet,
- Assembles the headers back into a well-formed packet ¢ OERCEARETRL S
i apply {
« Expressed as a control function (no need for another construct) 7% Layer 2 %/
. : : packet.emit(hdr.ethernet);
- Output parameter is a packet out extern (defined in core.p4) packet.emit(hdr.vian_ tag):
* The emit method serializes header, if valid /% Layer 2.5 */

packet.emit(hdr.mpls);

* |If the header is not valid or not available, then the statement has o i
* Layer 3 %

no effect /% ARP */
_ packet.emit(hdr.arp);
« The deparser is decoupled from the parser packet.emit(hdr.arp_ipva);
.) /* IPv4 x/
- The deparser can have conditional statements (as in other control pacw;etigmétu)dr.ipw):
* vb *
bIOCkS) packet.emit(hdr.ipv6);

/* Layer 4 x/

packet.emit(hdr.icmp);
packet.emit(hdr.tcp);
packet.emit(hdr.udp);

Example from “Introduction to P44 - Part 2", Vladimir Gurevich.” Online: https://tinyurl.com/23r3nz|9

https://tinyurl.com/23r3nzj9

Lab 8 Topology and Objectives

* The topology consists of three hosts: hl, h2, and h3; one P4 switch: s1
* The P4 program modifies the headers of the packet
» The P4 program recomputes the checksum of the updated headers

* The objectives are

» Validating and implementing checksums
» Understanding and implementing a deparser

hi sl h3

< J@L %
° h1-eth0 si-eth0 & / s1-eth2 h3-eth0|e
S S

sl-ethl
10.0.0.1 30.0.0.1

	Slide 1
	Slide 2
	Slide 3: Control Plane
	Slide 4: Runtime Environment
	Slide 5: Runtime Environment
	Slide 6: Runtime Environment
	Slide 7: Runtime Environment
	Slide 8: Lab 7 Topology and Objectives
	Slide 9
	Slide 10: Checksums
	Slide 11: Checksums
	Slide 12: Checksums
	Slide 13
	Slide 14: Deparser
	Slide 15: Deparser
	Slide 16: Deparser
	Slide 17: Deparser
	Slide 18: Lab 8 Topology and Objectives

