South Carolina

Registers
Jorge Crichigno

College of Engineering and Computing, University of South Carolina

A Hands-on Tutorial on P4 Programmable Data Planes

Wednesday March 8, 2023

Registers

Registers

Registers are stateful memories whose values can be read and written in actions in
the data plane

They can also be read and written by the control plane
They are more general than counters; arbitrary data can be stored in registers

Registers are global memory resources; any match-action tables can reference to
them

Registers in V1 Model

« The definition of the V1 Model register includes
» register Instantiation that receives an input parameter —number of elements of the register

/* Definition in vlimodel.pd %/

ex r<T> {
register(bit<3z> instance_count);l

void read(out T result, in bit<3i’> index);
void write(in bit<32> index, in T value);

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

https://tinyurl.com/2h93pnyd

Registers in V1 Model

« The definition of the V1 Model register includes
» register Instantiation that receives an input parameter —number of elements of the register

» read method that receives an output parameter —where to store the register value— and an input
parameter —index

/* Definition in vlimodel.pd %/

extern register<T> {
i bit<3?2> j nt):

void read(out T result, in bit<3i’- index);l

void write(in bit<32> index, in T value);

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

https://tinyurl.com/2h93pnyd

Registers in V1 Model

« The definition of the V1 Model register includes
» register Instantiation that receives an input parameter —number of elements of the register

» read method that receives an output parameter —where to store the register value— and an input
parameter —index
» write method that receives two input parameters, index and value to store in the register

/* Definition in vlimodel.pd %/

extern register<T> {
register(bit<3i’> instance_count);
void read(out T result, in bit<3i’?> index);
| void write(in bit<32> index, in T value);l

}

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

https://tinyurl.com/2h93pnyd

Instantiating a Single Element Register

» The syntax below shows how to instantiate a single element register in P4

register<bit<N>>(1) R1;

* Register R1 contains a single N-bit element

Register R1
Index Value
0)
o /
N
N = 32 bits

Writing a Single Element Register

* The syntax below shows how to write (store) a value val in register R1, element O

Rl.write (0,val)

Register R1
Index Value
0 val
o /
N
N = 32 bits

Reading a Single Element Register

« The syntax below shows how to read the value stored in element O of the register, and
store it into the variable res

Rl.read(res, 0)

* Note that the value val is stored in the variable res

Register R1
Index Value
0 val —>» res
G J
N
N = 32 bits

Registers in V1 Model

« Example: computing the time between two consecutive packets of a flow (inter-packet
gap)

Code Standard metadata

register<bit<48>>(16384) last_seen; struct standard_metadata_t {
bit<9> ingress_port;

bit<9> egress_spec;

action get_inter_packet_gap(out bit<48> interval, bit<32> flow_id) bit<9> egress_port;
{ bit<32> clone_spec;
bit<48> last_pkt_ts; bit<32> instance_type;

bit<1> drop;
.] bit<16> recirculate_port;
/* Get the time the previous packet was seen */ bit<32> packet_length;

Tast_seen.read(last_pkt_ts, flow_id); bit<32> enq_timestamp;
bit<19> enqg_qdepth;
))) . bit<32> deq_timedelta;
/* Calculate the time interval */ . nthe
interval = standard_metadata.ingress_global_timestamp - last_pkt_ts; bit<48> ingress global timestamp;
bit<32> 1f_field_list;

. . . . , bit<16> mcast_grp;
/* Update the register with the new timestamp */ bit<ls resubﬁtp}lag.
—_ 2

Tast_seen.write(flow_id, standard_metadata.ingress_global_timestamp); bit<16> egress_rid;
bit<1> checksum_error;

1. L. Vanbever, Programming Network Data Planes. Online: https://tinyurl.com/ywr3c6rb

https://tinyurl.com/ywr3c6rb

Atomicity

- Hardware and software targets use atomic operations on P4 stateful objects
 For Intel Tofino switch (Vladimir Gurevich)?:

In case of stateful objects, a complex read-modify-write operation counts as one access and is performed by a special ALU (counter ALU, meter
ALU, stateful ALU, etc.)

Since this counts as one operation, it is atomic for all practical intents and purposes. For example, it is impossible to see a stateful object in
some "intermediate” state. Similarly, when the same object (instance) is accessed by the next packet, it does see it fully modified.

« For BMv2 vimodel implementation?:

The BMv2 vimodel implementation supports parallel execution. It uses locking of all register objects accessed within an action to guarantee
that the execution of all steps within an action are atomic, relative to other packets executing the same action, or any action that accesses some
of the same register objects.

1. Intel® Connectivity Research Program (Private). Memory semantics of Tofino architecture. Online: https://tinyurl.com/yz7hzydr
2. P4lang Consortium, The BMv2 Simple Switch target. Online: https://tinyurl.com/26b762m3

https://tinyurl.com/yz7hzydr
https://tinyurl.com/26b762m3

	Slide 1
	Slide 2
	Slide 3: Registers
	Slide 4: Registers in V1 Model
	Slide 5: Registers in V1 Model
	Slide 6: Registers in V1 Model
	Slide 7: Instantiating a Single Element Register
	Slide 8: Writing a Single Element Register
	Slide 9: Reading a Single Element Register
	Slide 10: Registers in V1 Model
	Slide 11: Atomicity

