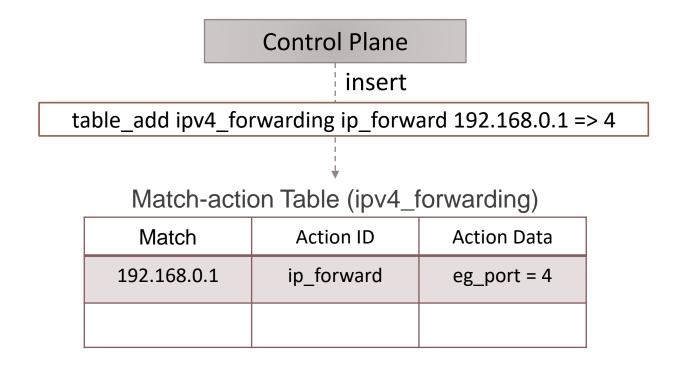
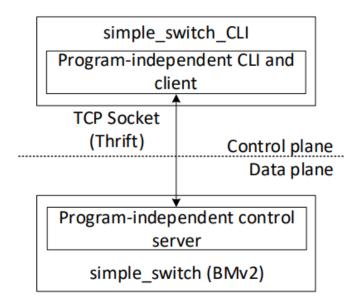
Runtime Controller, Checksum Calculation, Deparser

Jorge Crichigno¹, Mariam Kiran² ¹University of South Carolina, ²ESnet


Lab Assistants: Elie Kfoury, Ali AlSabeh, Jose Gomez University of South Carolina

WASTC 2022 virtual Faculty Development Weeks (vFDW) June 15, 2022


Runtime Controller

Control Plane

- The match-action tables are empty by default
- The control plane populates the tables with entries
- The control plane can insert, remove, and update table entries

- The simple_switch_CLI tool is used to populate the tables in this lab series
- This tool includes a program-independent CLI and a Thrift¹ client
- It connects to a Thrift control server residing on the switch

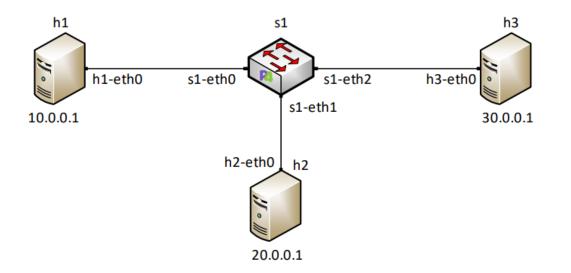
1. Thrift is an interface definition language and binary communication protocol used for defining and creating services

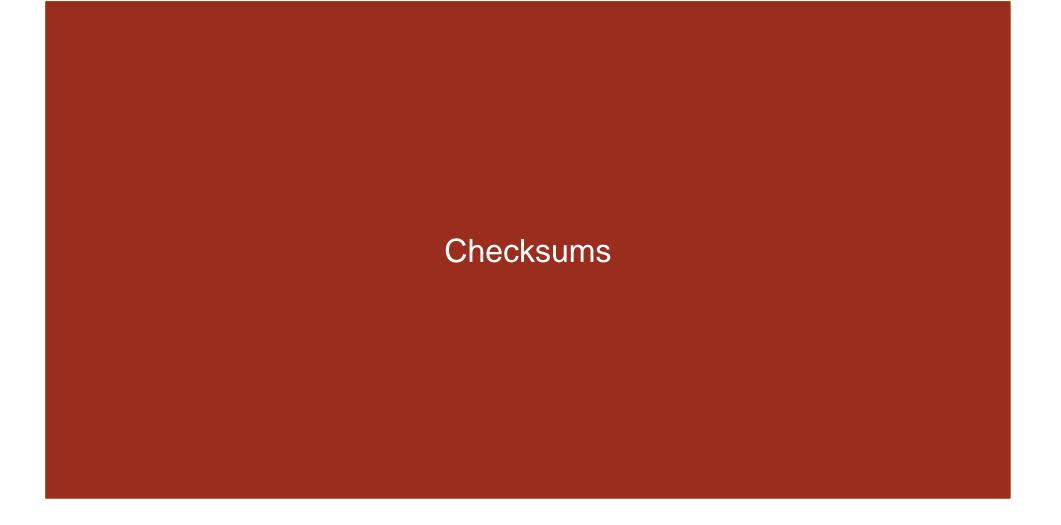
 The simple_switch_CLI is similar to other CLIs (e.g., Cisco IOS CLI) and offers a variety of commands

X root@s1:	: /behavioral-model – 🗸 🗙
Control utility for runtime P4 tab RuntimeCmd: ?	le manipulation
Documented commands (type help <to< td=""><td>ppic>):</td></to<>	ppic>):
act_prof_add_member_to_group act_prof_create_group act_prof_create_group act_prof_delete_group act_prof_delete_member act_prof_delete_member act_prof_dump_group act_prof_dump_member act_prof_dump_member act_prof_modify_member act_prof_remove_member_from_group counter_read counter_reset counter_write get_time_elapsed	<pre>reset_state serialize_state set_crc16_parameters set_crc32_parameters set_queue_depth set_queue_rate shell show_actions show_ports show_ports show_tables swap_configs switch_info table_add</pre>
get_time_since_epoch help	table_clear table_delete
load_new_config_file mc_dump	table_dump table_dump_entry

 The simple_switch_CLI is similar to other CLIs (e.g., Cisco IOS CLI) and offers a variety of commands

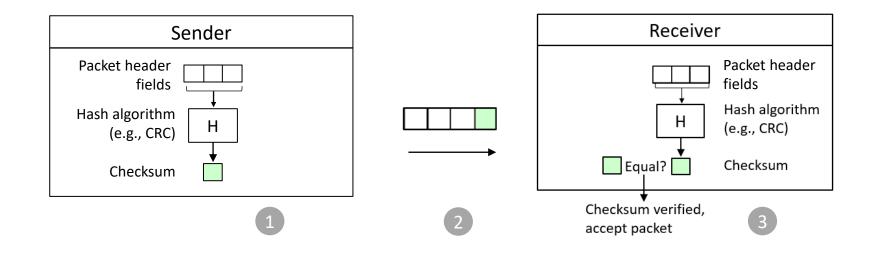
X	root@s1: /behavioral-model		a x
RuntimeCmd: show_tables MyIngress.ipv4_host MyIngress.ipv4_lpm RuntimeCmd:	[implementation=None, mk=ipv4.dstA [implementation=None, mk=ipv4.dstA		

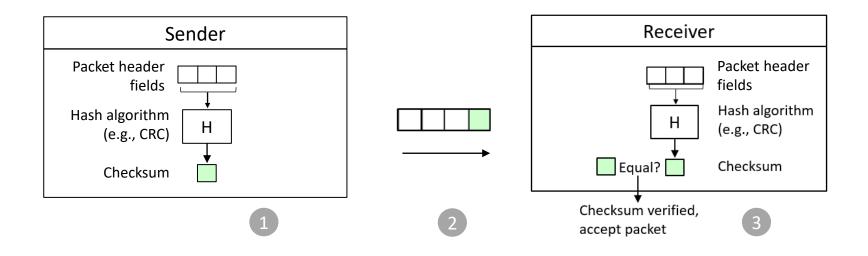

 The simple_switch_CLI is similar to other CLIs (e.g., Cisco IOS CLI) and offers a variety of commands


X	root@s1: /behavioral-model	- s ×
RuntimeCmd: show_tables MyIngress.ipv4_host MyIngress.ipv4_lpm RuntimeCmd:		mk=ipv4.dstAddr(exact, 32)] mk=ipv4.dstAddr(lpm, 32)]

X	root@s1: /behavioral-model – 🗸	×
RuntimeCmd:	table add MyIngress.ipv4 host MyIngress.forward 30.0.0.1 => 00	:00
:00:00:00:03	3 2	
Adding entry	/ to exact match table MyIngress.ipv4 host	
match key:	EXACT-1e:00:00:01	
action:	MyIngress.forward	
runtime data	a: 00:00:00:00:00:03 00:02	
	een added with handle 0	
RuntimeCmd:		

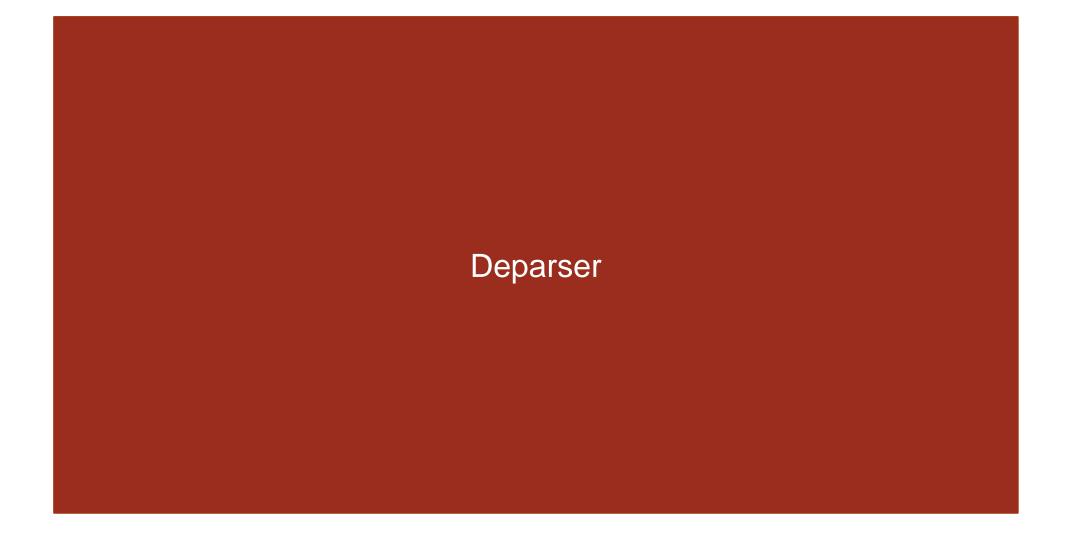
Lab 7 Topology and Objectives


- The topology consists of three hosts: h1, h2, and h3; one P4 switch: s1
- The P4 program is already provided; no P4 programming is needed in this lab
- The objectives are
 - Navigating the simple_switch_CLI tool
 - Displaying ports, tables, and actions
 - Inserting, updating, and deleting table entries


Checksums

- Several protocols use checksums to validate the integrity of the packet headers
- A checksum is a small value computed with a checksum algorithm; e.g., CRC16

Checksums


- Several protocols use checksums to validate the integrity of the packet headers
- A checksum is a small value computed with a checksum algorithm; e.g., CRC16
- No built-in constructs in P4₁₆; instead, they are expressed as externs (provided by specific libraries)
 - > Externs enable the programmer to use specialized computation provided by the platform

Checksums

- Several protocols use checksums to validate the integrity of the packet headers
- A checksum is a small value computed with a checksum algorithm; e.g., CRC16
- No built-in constructs in P4₁₆; instead, they are expressed as externs (provided by specific libraries)

	Version	Header length	Type of service	Datagram length (bytes)	
	16-bit Identifier		Flags	13-bit Fragmentation offset	
	Time-t	o-live	Upper-layer protocol		Header checksum
IP header	32-bit Source IP address				
	32-bit Destination IP address				
	Options (if any)				
	Data				

- Assembles the headers back into a well-formed packet
- Expressed as a control function (no need for another construct)
- Output parameter is a packet_out extern (defined in core.p4)

control MyDepa	in my_headers_	packet, t hdr)
{		
apply {		

Example from "Introduction to P4₁₆ - Part 2", Vladimir Gurevich." Online: <u>https://tinyurl.com/23r3nzj9</u>

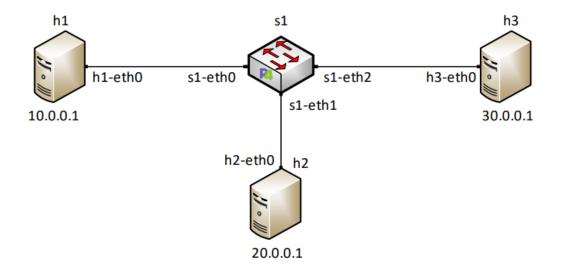
- Assembles the headers back into a well-formed packet
- Expressed as a control function (no need for another construct)
- Output parameter is a packet_out extern (defined in core.p4)
- The emit method serializes header, if valid

control MyDeparser	(packet_out	packet,
	in my_headers_t	hdr)
{		
apply {		
/* Layer 2	*/	
packet.emi	(hdr.ethernet):	

Example from "Introduction to P4₁₆ - Part 2", Vladimir Gurevich." Online: <u>https://tinyurl.com/23r3nzj9</u>

- Assembles the headers back into a well-formed packet
- Expressed as a control function (no need for another construct)
- Output parameter is a packet_out extern (defined in core.p4)
- The emit method serializes header, if valid
- If the header is not valid or not available, then the statement has no effect

```
control MyDeparser(packet_out
                                   packet,
                   in my headers t hdr)
    apply {
        /* Layer 2 */
        packet.emit(hdr.ethernet);
        packet.emit(hdr.vlan_tag);
        /* Layer 2.5 */
        packet.emit(hdr.mpls);
        /* Layer 3 */
           /* ARP */
        packet.emit(hdr.arp);
        packet.emit(hdr.arp_ipv4);
           /* IPv4 */
        packet.emit(hdr.ipv4);
           /* IPv6 */
        packet.emit(hdr.ipv6);
        /* Layer 4 */
        packet.emit(hdr.icmp);
        packet.emit(hdr.tcp);
        packet.emit(hdr.udp);
```


- Assembles the headers back into a well-formed packet
- Expressed as a control function (no need for another construct)
- Output parameter is a packet_out extern (defined in core.p4)
- The emit method serializes header, if valid
- If the header is not valid or not available, then the statement has no effect
- The deparser is decoupled from the parser
- The deparser can have conditional statements (as in other control blocks)

```
control MyDeparser(packet_out
                                   packet,
                   in my headers t hdr)
    apply {
        /* Laver 2 */
        packet.emit(hdr.ethernet);
        packet.emit(hdr.vlan_tag);
        /* Layer 2.5 */
        packet.emit(hdr.mpls);
        /* Layer 3 */
           /* ARP */
        packet.emit(hdr.arp);
        packet.emit(hdr.arp_ipv4);
           /* IPv4 */
        packet.emit(hdr.ipv4);
           /* IPv6 */
        packet.emit(hdr.ipv6);
        /* Layer 4 */
        packet.emit(hdr.icmp);
        packet.emit(hdr.tcp);
        packet.emit(hdr.udp);
```

Example from "Introduction to P4₁₆ - Part 2", Vladimir Gurevich." Online: https://tinyurl.com/23r3nzj9

Lab 8 Topology and Objectives

- The topology consists of three hosts: h1, h2, and h3; one P4 switch: s1
- The P4 program modifies the headers of the packet
- The P4 program recomputes the checksum of the updated headers
- The objectives are
 - Validating and implementing checksums
 - Understanding and implementing a deparser

