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• Metadata is state associated with each packet

• It can be treated like a set of variables associated with each packet, read and written

by actions executed by tables

• Some metadata has special significance to the operation of the switch

➢ This metadata is called Intrinsic Metadata, because it has intrinsic semantics to the operation of
the machine1

1. The P4 Language Specification. Online: https://tinyurl.com/4zkwjp4b

https://tinyurl.com/4zkwjp4b
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• Metadata V1 model

1. The P4 Language Specification. Online: https://tinyurl.com/4zkwjp4b

• ingress_port

➢ port on which the packet arrived

• egress_spec

➢ egress intended port set during the ingress pipeline

• ingress_global_timestamp

➢ a timestamp, in microseconds, set when the packet shows up on ingress

• egress_global_timestamp

➢ a timestamp, in microseconds, set when the packet starts egress processing

• enq_qdepth

➢ depth of queue when the packet was first enqueued, in number of packets

https://tinyurl.com/4zkwjp4b
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• Metadata V1 model Application: compute the time the packet is waiting in the 

queue (Traffic Manager)
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• Metadata V1 model Application: compute the time the packet is waiting in the 

queue (Traffic Manager)

TM: Traffic Manager

ingress_global_timestamp egress_global_timestamp
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• The topology consists of four hosts: h1, h2, h3, and h4; one P4 switch: s1; and one

legacy switch: s2

• The objectives are
➢ Understanding the V1Model standard metadata

➢ Defining custom headers

➢ Using custom headers to monitor the switch’s queue

10.0.0.1

h1

s1-eth0

s1
10.0.0.2

h2

10.0.0.3

h3

10.0.0.4

h4

s2

s2-eth1
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Counters
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• Stateless objects (transient) do not preserve the state between packets

➢ Metadata (variables)

➢ Packet headers

• Stateful objects (persistent) preserve state between packets

➢ Tables

➢ Counters

➢ Meters

➢ Registers

• Stateful memories require resources on the target and hence are managed by the

compiler

Referred to as stateful memories in the P4 Language Specification1

1. P4 Language Specification, Online: https://tinyurl.com/4zkwjp4b. 

https://tinyurl.com/4zkwjp4b
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• Counters are a mechanism for keeping statistics

• A P4 program (data plane) can update counter values but cannot read them

• The control plane can read counter values and use them for other control applications

• Counters only support packet counters, byte counters, or a combination of both

• There are two types of counters: direct and indirect
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• Direct counters are associated to a match-action table –effectively extend the table
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• Direct counters are associated to a match-action table –effectively extend the table

• Example:

➢ instantiate a counter as a counter of packets and bytes

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: direct_counter(counterType.packets_and_bytes) my_direct_counter;
 5:       
 6: action forward(egressSpect_t port){
 7:     standard_meadata.egress_spec = port;
 8: }
 9:  
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25:     counters = my_direct_counter;
26: }
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 
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• Direct counters are associated to a match-action table –effectively extend the table

• Example:

➢ instantiate a counter as a counter of packets and bytes

➢ specify the counter as a property of the table of interest

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: direct_counter(counterType.packets_and_bytes) my_direct_counter;
 5:       
 6: action forward(egressSpect_t port){
 7:     standard_meadata.egress_spec = port;
 8: }
 9:  
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25:     counters = my_direct_counter;
26: }
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 
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• A single instantiation of a direct counter always contains as many independent

counter values as the number of entries in the associated table

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...

10.0.0.32

......

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1

egress port = 2

egress port = 3

egress port = 4

egress port = 0

egress port = 0

egress port = 0

egress port = 0

drop

Idx.
Count

0

1

2

3

4

5

6

7

31

... ...

0

71

23

52

84

11

0

37

49

forwarding my_direct_counter

egress port = 0

Packets 
0

Bytes

...

106,500

34,500

78,000

126,000

16,500

0

55,500

73,500

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: direct_counter(counterType.packets_and_bytes) my_direct_counter;
 5:       
 6: action forward(egressSpect_t port){
 7:     standard_meadata.egress_spec = port;
 8: }
 9:  
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25:     counters = my_direct_counter;
26: }
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 
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• The control plane can read the counters

• E.g., the following command for MyIngress.my_direct_counter indicates that

the counter associated with entry 1 counted 4,921,063 bytes and 72,880 packets
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• Indirect counters are independent counters that can be referred to specific entries or

group of entries in a match-action table

• E.g., there is a big table, but only a few counters are needed (few entries)

• The code must specify the number of independent counters (array size)
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• Example: instantiate a counter as an array of 3 elements, to count packets and bytes

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:       
 6: action forward(egressSpect_t port, bit<32> index){
 7:     standard_meadata.egress_spec = port;
 8:     my_indirect_counter.count(index);
 9: } 
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25: }
26: 
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 
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• Example: instantiate a counter as an array of 3 elements, to count packets and bytes

• The count method is used to increment the value

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:       
 6: action forward(egressSpect_t port, bit<32> index){
 7:     standard_meadata.egress_spec = port;
 8:     my_indirect_counter.count(index);
 9: } 
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25: }
26: 
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 
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• Example: count packets/bytes routed by routes 1-3; routes 4, 5, 7; and routes 6, 8, 32

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:       
 6: action forward(egressSpect_t port, bit<32> index){
 7:     standard_meadata.egress_spec = port;
 8:     my_indirect_counter.count(index);
 9: } 
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25: }
26: 
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...
10.0.0.32

...

...

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1, Idx = 0

egress port = 2, Idx = 0

egress port = 3, Idx = 0

egress port = 4, Idx = 1

egress port = 0, Idx = 1

egress port = 0, Idx = 2

drop

0

1

2

23

17

42

forwarding my_indirect_counter

Idx.
Count

Packets Bytes
34,500

25,500

63,000

egress port = 0, Idx = 1

egress port = 0, Idx = 2

egress port = 0, Idx = 2
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• Example: count packets/bytes routed by routes 1-3; routes 4, 5, 7; and routes 6, 8, 32

• Note that the index used to increment the counter is retrieved from the action data

➢ The index can also be computed, as needed by the programmer

 1: control MyIngress(inout header hdr,
 2:     inout metadata meta,
 3:                   inout standard_metadata_t standard_metadata){  
 3:    
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:       
 6: action forward(egressSpect_t port, bit<32> index){
 7:     standard_meadata.egress_spec = port;
 8:     my_indirect_counter.count(index);
 9: } 
10: action drop(){ 
11:       mark_to_drop(standard_metadata); 
12: }
13: 
14: table forwarding { 
15:     key = {
16:        hdr.ipv4.dstAddr : exact;
17:        }
18:       actions = {
19:        forward; 
20:     drop;
21:          NoAction; 
22:       } 
23:       size = 32; 
24:       default_action = drop();
25: }
26: 
27: apply {
28:       if(hdr.ipv4.isValid()){    
29:        forwarding.apply();   
30:       }
31: } 

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...
10.0.0.32

...

...

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1, Idx = 0

egress port = 2, Idx = 0

egress port = 3, Idx = 0

egress port = 4, Idx = 1

egress port = 0, Idx = 1

egress port = 0, Idx = 2

drop

0

1

2

23

17

42

forwarding my_indirect_counter

Idx.
Count

Packets Bytes
34,500

25,500

63,000

egress port = 0, Idx = 1

egress port = 0, Idx = 2

egress port = 0, Idx = 2
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• The control plane can read the counters

• E.g., the following command for MyIngress.my_indirect_counter indicates that

the counter associated with entry 1 counted 172,983,947bytes and 114,276 packets
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