
1

Standard Metadata, Counters, and Meters

Jorge Crichigno

College of Engineering and Computing, University of South Carolina

A Hands-on Tutorial on P4 Programmable Data Planes

Wednesday March 8, 2023

2

Standard Metadata

Standard Metadata

3

• Metadata is state associated with each packet

• It can be treated like a set of variables associated with each packet, read and written

by actions executed by tables

• Some metadata has special significance to the operation of the switch

➢ This metadata is called Intrinsic Metadata, because it has intrinsic semantics to the operation of
the machine1

1. The P4 Language Specification. Online: https://tinyurl.com/4zkwjp4b

https://tinyurl.com/4zkwjp4b

V1 Model Standard Metadata

4

• Metadata V1 model

1. The P4 Language Specification. Online: https://tinyurl.com/4zkwjp4b

• ingress_port

➢ port on which the packet arrived

• egress_spec

➢ egress intended port set during the ingress pipeline

• ingress_global_timestamp

➢ a timestamp, in microseconds, set when the packet shows up on ingress

• egress_global_timestamp

➢ a timestamp, in microseconds, set when the packet starts egress processing

• enq_qdepth

➢ depth of queue when the packet was first enqueued, in number of packets

https://tinyurl.com/4zkwjp4b

V1 Model Standard Metadata

5

• Metadata V1 model Application: compute the time the packet is waiting in the

queue (Traffic Manager)

V1 Model Standard Metadata

6

• Metadata V1 model Application: compute the time the packet is waiting in the

queue (Traffic Manager)

TM: Traffic Manager

ingress_global_timestamp egress_global_timestamp

Lab 5 Topology and Objectives

7

• The topology consists of four hosts: h1, h2, h3, and h4; one P4 switch: s1; and one

legacy switch: s2

• The objectives are
➢ Understanding the V1Model standard metadata

➢ Defining custom headers

➢ Using custom headers to monitor the switch’s queue

10.0.0.1

h1

s1-eth0

s1
10.0.0.2

h2

10.0.0.3

h3

10.0.0.4

h4

s2

s2-eth1

8

Counters

Stateless and Stateful Objects

9

• Stateless objects (transient) do not preserve the state between packets

➢ Metadata (variables)

➢ Packet headers

• Stateful objects (persistent) preserve state between packets

➢ Tables

➢ Counters

➢ Meters

➢ Registers

• Stateful memories require resources on the target and hence are managed by the

compiler

Referred to as stateful memories in the P4 Language Specification1

1. P4 Language Specification, Online: https://tinyurl.com/4zkwjp4b.

https://tinyurl.com/4zkwjp4b

P4 Counters

10

• Counters are a mechanism for keeping statistics

• A P4 program (data plane) can update counter values but cannot read them

• The control plane can read counter values and use them for other control applications

• Counters only support packet counters, byte counters, or a combination of both

• There are two types of counters: direct and indirect

P4 Direct Counters

11

• Direct counters are associated to a match-action table –effectively extend the table

P4 Direct Counters

12

• Direct counters are associated to a match-action table –effectively extend the table

• Example:

➢ instantiate a counter as a counter of packets and bytes

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: direct_counter(counterType.packets_and_bytes) my_direct_counter;
 5:
 6: action forward(egressSpect_t port){
 7: standard_meadata.egress_spec = port;
 8: }
 9:
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: counters = my_direct_counter;
26: }
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

P4 Direct Counters

13

• Direct counters are associated to a match-action table –effectively extend the table

• Example:

➢ instantiate a counter as a counter of packets and bytes

➢ specify the counter as a property of the table of interest

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: direct_counter(counterType.packets_and_bytes) my_direct_counter;
 5:
 6: action forward(egressSpect_t port){
 7: standard_meadata.egress_spec = port;
 8: }
 9:
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: counters = my_direct_counter;
26: }
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

P4 Direct Counters

14

• A single instantiation of a direct counter always contains as many independent

counter values as the number of entries in the associated table

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...

10.0.0.32

......

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1

egress port = 2

egress port = 3

egress port = 4

egress port = 0

egress port = 0

egress port = 0

egress port = 0

drop

Idx.
Count

0

1

2

3

4

5

6

7

31

... ...

0

71

23

52

84

11

0

37

49

forwarding my_direct_counter

egress port = 0

Packets
0

Bytes

...

106,500

34,500

78,000

126,000

16,500

0

55,500

73,500

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: direct_counter(counterType.packets_and_bytes) my_direct_counter;
 5:
 6: action forward(egressSpect_t port){
 7: standard_meadata.egress_spec = port;
 8: }
 9:
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: counters = my_direct_counter;
26: }
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

P4 Direct Counters

15

• The control plane can read the counters

• E.g., the following command for MyIngress.my_direct_counter indicates that

the counter associated with entry 1 counted 4,921,063 bytes and 72,880 packets

P4 Indirect Counters

16

• Indirect counters are independent counters that can be referred to specific entries or

group of entries in a match-action table

• E.g., there is a big table, but only a few counters are needed (few entries)

• The code must specify the number of independent counters (array size)

P4 Indirect Counters

17

• Example: instantiate a counter as an array of 3 elements, to count packets and bytes

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:
 6: action forward(egressSpect_t port, bit<32> index){
 7: standard_meadata.egress_spec = port;
 8: my_indirect_counter.count(index);
 9: }
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: }
26:
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

P4 Indirect Counters

18

• Example: instantiate a counter as an array of 3 elements, to count packets and bytes

• The count method is used to increment the value

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:
 6: action forward(egressSpect_t port, bit<32> index){
 7: standard_meadata.egress_spec = port;
 8: my_indirect_counter.count(index);
 9: }
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: }
26:
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

P4 Indirect Counters

19

• Example: count packets/bytes routed by routes 1-3; routes 4, 5, 7; and routes 6, 8, 32

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:
 6: action forward(egressSpect_t port, bit<32> index){
 7: standard_meadata.egress_spec = port;
 8: my_indirect_counter.count(index);
 9: }
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: }
26:
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...
10.0.0.32

...

...

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1, Idx = 0

egress port = 2, Idx = 0

egress port = 3, Idx = 0

egress port = 4, Idx = 1

egress port = 0, Idx = 1

egress port = 0, Idx = 2

drop

0

1

2

23

17

42

forwarding my_indirect_counter

Idx.
Count

Packets Bytes
34,500

25,500

63,000

egress port = 0, Idx = 1

egress port = 0, Idx = 2

egress port = 0, Idx = 2

P4 Indirect Counters

20

• Example: count packets/bytes routed by routes 1-3; routes 4, 5, 7; and routes 6, 8, 32

• Note that the index used to increment the counter is retrieved from the action data

➢ The index can also be computed, as needed by the programmer

 1: control MyIngress(inout header hdr,
 2: inout metadata meta,
 3: inout standard_metadata_t standard_metadata){
 3:
 4: counter(3,counterType.packets_and_bytes) my_indirect_counter;
 5:
 6: action forward(egressSpect_t port, bit<32> index){
 7: standard_meadata.egress_spec = port;
 8: my_indirect_counter.count(index);
 9: }
10: action drop(){
11: mark_to_drop(standard_metadata);
12: }
13:
14: table forwarding {
15: key = {
16: hdr.ipv4.dstAddr : exact;
17: }
18: actions = {
19: forward;
20: drop;
21: NoAction;
22: }
23: size = 32;
24: default_action = drop();
25: }
26:
27: apply {
28: if(hdr.ipv4.isValid()){
29: forwarding.apply();
30: }
31: }

Key Action Action Data

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.8

10.0.0.7
10.0.0.6

...
10.0.0.32

...

...

forward

forward

forward

forward

forward

forward

forward

forward

egress port = 1, Idx = 0

egress port = 2, Idx = 0

egress port = 3, Idx = 0

egress port = 4, Idx = 1

egress port = 0, Idx = 1

egress port = 0, Idx = 2

drop

0

1

2

23

17

42

forwarding my_indirect_counter

Idx.
Count

Packets Bytes
34,500

25,500

63,000

egress port = 0, Idx = 1

egress port = 0, Idx = 2

egress port = 0, Idx = 2

P4 Indirect Counters

21

• The control plane can read the counters

• E.g., the following command for MyIngress.my_indirect_counter indicates that

the counter associated with entry 1 counted 172,983,947bytes and 114,276 packets

	Slide 1
	Slide 2
	Slide 3: Standard Metadata
	Slide 4: V1 Model Standard Metadata
	Slide 5: V1 Model Standard Metadata
	Slide 6: V1 Model Standard Metadata
	Slide 7: Lab 5 Topology and Objectives
	Slide 8
	Slide 9: Stateless and Stateful Objects
	Slide 10: P4 Counters
	Slide 11: P4 Direct Counters
	Slide 12: P4 Direct Counters
	Slide 13: P4 Direct Counters
	Slide 14: P4 Direct Counters
	Slide 15: P4 Direct Counters
	Slide 16: P4 Indirect Counters
	Slide 17: P4 Indirect Counters
	Slide 18: P4 Indirect Counters
	Slide 19: P4 Indirect Counters
	Slide 20: P4 Indirect Counters
	Slide 21: P4 Indirect Counters

