Hands-on Workshop on Open vSwitch and Software-defined Networking

Jorge Crichigno, Elie Kfoury, Shahrin Sharif University of South Carolina

Western Academy Support and Training Center (WASTC) June 21-25, 2021

National Science Foundation (NSF), Office of Advanced Cyberinfrastructure (OAC) and Advanced Technological Education (ATE)

- Traditionally, network devices have been designed with fixed functions to forward packets using a small set of protocols
- This closed-design paradigm has limited the capability of the switches to proprietary implementations which are hardcoded by vendors
- The process of updating devices is lengthy, costly, and inflexible process

- Over time, thousands of new IETF RFCs and IEEE standards were written
- Router manufacturers needed to serve many customers with one product
- By the 2000s, routers were so complicated that they were based on more than 100 million lines of code (even though individual users only used few features / protocols)
- But time-to-market pressures meant they couldn't start over with a simpler design
- The research community labeled the Internet as "ossified"

- Research programs at universities (GENI, FIND, Clean Slate, etc.) started to investigate how the Internet might move past this stagnation
- Ethane was the result of one of those project, the Clean Slate at Stanford
- Ethane proposed a different way of building and managing a network; it was tested at Stanford

- Stanford network
 - > 35,000 users
 - > 10,000 new flows/sec
 - > 137 network policies
 - > 2,000 switches
 - > 2,000 switch CPUs
- What if software decides to accept or no each flow, and how to route it?

Ethane

- Separate the control and data planes
- > Implement the control plane intelligence as a software outside of the switches
- Designed with FPGA-based switches (prototype in NetFPGA)
- > Flow are intercepted and sent to the centralized controller/s (reactive control)
- > One server suffices to implement controller, make decisions

- Ethane reduced operational overhead and complexity
- It demonstrated that a network can be globally programmed from a centralized control plane

- Researchers from Ethane shared their ideas with software and networking equipment companies
- Software companies were very positive; software makes it easy to develop, test, and deploy new ideas
 - If you put software in the hands of developers, they will tailor it to their needs
- Networking companies were negative; they were threatened by a model that handed over control to the network owner

- The Ethane project created an open API (OpenFlow) that allowed the forwarding plane in each router to be externally configured, and
- A general SDN controller (NOX) that would use OpenFlow to control the forwarding plane
- However, networking equipment would be very resistant to this approach

- Fortunately for the researchers, virtualized datacenters were becoming more popular
- In a virtualized datacenter, every server runs a software switch (vswitch) to connect VMs
- Nicira developed Open vSwitch (OVS) to provide an open-source remotely controlled vswitch
 - Viable deployment path: no dependency on network manufacturer, and market need

 Since the emergence of SDN and OVS, more open-source projects have been used in production networks

What is OVS?

- OVS is a production quality, multilayer virtual switch licensed under the open-source Apache 2.0 license
- It is designed to enable network automation through programmatic extension, while still supporting standard management interfaces and protocols (e.g., CLI, 802.1Q)
- OVS can operate both as a soft switch running within the hypervisor, and as the control stack for switching silicon
- It has been ported to virtualization platforms and switching chipsets

What is OVS?

- An OVS switch forwards packets based on flow (rather than based on destination MAC or destination IP)
- A flow can be identified by a tuple (combination of fields)
 - IPv4 or IPv6 source address
 - IPv4 or IPv6 destination address
 - Input port
 - Ethernet frame type `
 - > VLAN ID (802.1Q)
 - TCP/UDP source port
 - TCP/UDP destination port
 - Ethernet source address
 - Ethernet destination address IP
 - ➢ IP ToS (DSCP field)

OVS features

- Visibility into inter-VM communication via NetFlow, sFlow, IPFIX
- Standard 802.1Q VLAN model with trunking
- Fine-grained QoS control
- OpenFlow protocol support
- IPv6 support
- Multiple tunneling protocols (GRE, VXLAN, STT, IPsec)
- Supports LACP- Link Aggregation Control Protocol
- Multicast snooping
- NIC bonding with source-MAC load balancing, active backup and L4 hashing
- Kernel and userspace forwarding engine options
- Multi-table forwarding pipeline with flow-caching engine

Open vSwitch and SDN

- Unlike other virtual switches, Open vSwitch supported OpenFlow since its inception
- It can be re-programmed through OpenFlow
- Other virtual switches have fixed packet processing pipelines
- In contrast to closed source virtual switches, Open vSwitch can operate with a userselected operating system and hypervisor

Supported Platforms

- Default switch in Xen and KVM
- Supported in VMware ESXi, MS Hyper-V
- Integrated in Openstack and vSphere
- Supported on Fedora, Debian, FreeBSD

Sample of Contributors

Open vSwitch Components

- Open vSwitch has three main components
- ovs-vswitchd: Open vSwitch daemon running in the userspace
- ovsdb-server: database server of Open vSwitch running in the userspace
- Datapath: Kernel space module, forwards Open vSwitch packets

- Various tools are used to interact of the components of Open vSwitch
- External controller is typically used to populate flow table entries

- ovs-vswitchd
 - Implements the switch
 - Communicates with the server through OVSDB management protocol
 - Communicates with the controller using OpenFlow
 - Talks to the Kernel Module via Netlink

- ovs-dpctl tool
 - A command line tool responsible for creating, modifying and deleting Open vSwitch datapaths
- ovs-ofctl tool
 - A command line tool for monitoring and administering switches
 - Able to show the current state of a switch, features, configuration and table entries
- ovs-appctl tool
 - ➢ QoS, MAC, STP, …

- ovsdb-server
 - Contains switch configuration, keeps track of created and modified interfaces
 - Communicates with ovs-vswitchd using OVSDB management protocol
 - Configuration is stored on persistent storage and survives a reboot

- ovs-vsctl tool
 - Manages the switch through interaction with ovsdb-server
 - Used to configure bridges, ports and tunnels
- ovsdb-client tool
 - A command line client for interacting with ovsdb-server

- OVS Kernel Module
 - Designed to be fast and simple
 - Handles switching and tunneling

Open vSwitch Workflow

- Kernel receives packets from a physical network interface controller (NIC) or the virtual NIC of a virtual machine (VM)
- Kernel module directs the packet to the userspace. The userspace makes the decisions about the actions to be taken against the packet according to OpenFlow entries (slow path)
- The action entry is stored in the kernel, used to forward subsequent packets, making the forwarding faster (fast path)

Controller Interaction

- Control Cluster
- Manages any number of remote switches over OpenFlow protocol and determine the best path for application traffic

Open vSwitch Fail-modes

- Open vSwitch maintains flow tables that are consulted to determine how to forward traffic
- The flow tables entries are typically populated by a controller
- The controller might be down or not available
- Open vSwitch offers the option to operate in a standalone fail-mode
 > Open vSwitch will take over responsibility for setting up flows (regular MAC-learning)
- Alternatively, the switch can operate in secure mode
 - Switch will *not* set up flows on its own when the controller connection fails

Open vSwitch Portability

- Open vSwitch (OVS) is intended to be easily ported to new software and hardware platforms
- Datapath in the hardware instead of the kernel

LINUX FOUNDATION COLLABORATIVE PROJECTS	++
	ovs-vswitchd <>ovsdb-server
ev3	++
Open vSwitch	ofproto <>OpenFlow controllers
Overview Documentation Talks & Presentations Download Mailing Lists Charter	++
	netdev ofproto
Porting Open vSwitch to New Software or Hardware	++ provider
	netdev ++
Open vSwitch (OVS) is intended to be easily ported to new software and hardware platforms. This document describes the	provider
platforms is likely to be more difficult.)	++

Open vSwitch Features

- Many of the features provided in standard hardware are provided by Open vSwitch
 - Standard 802.1Q VLAN model with trunking
 - Monitoring: NetFlow, sFlow, IPFIX
 - Spanning Tree Protocol (STP)
 - Quality of Service shaping and policing
 - Port mirroring (SPAN)
 - > Tunning: GRE, VXLAN, Geneve
 - > IPSec
 - IPv6 support
 - OpenFlow protocol support
 - LACP
 - Stateful/stateless firewalls through conntrack

Open vSwitch Programmability

- The flow table in Open vSwitch is nearly a general-purpose processing pipeline
- Supported features:
 - Resubmit
 - Registers
 - Learning
 - Hashing and sampling

Open vSwitch Programmability

- The flow table in Open vSwitch is nearly a general-purpose processing pipeline
- Supported features:
 - Resubmit
 - Registers
 - Learning
 - Hashing and sampling
- Does programmability impact
 - forwarding rates?1
 - Established flows
 - Connection setup
 - Many sustained connections

¹ VMware. LinuxCon Japan. Online: https://events.static.linuxfound.org/sites/events/files/cojp13_gross.pdf

Open vSwitch Performance

- Lab series on high-speed networks using emulation
- Experiments conducted at the University of South Carolina with switching hardware
- Switch is acting as a MAC-learning/layer2 device

Х			۳۴	lost: h1"			- 0
root@	admin-pc:~# ip	perf3	-c 10.0.0.2				
Conne	cting to host	10.0.	0.2, port 520	1			
[13]	local 10.0.0.	1 por	t 59414 conne	cted to 10.0.0.2	port	5201	
[ID]	Interval		Transfer	Bitrate	Retr	Cwnd	
[13]	0.00-1.00	sec	5.18 GBytes	44.5 Gbits/sec	Θ	843	KBytes
13]	1.00-2.00	sec	5.21 GBytes	44.7 Gbits/sec	Θ	1.11	MBytes
13]	2.00-3.00	sec	5.20 GBytes	44.7 Gbits/sec	Θ	1.18	MBytes
13]	3.00-4.00	sec	5.21 GBytes	44.7 Gbits/sec	Θ	1.24	MBytes
[13]	4.00-5.00	sec	5.19 GBytes	44.6 Gbits/sec	Θ	1.24	MBytes
[13]	5.00-6.00	sec	5.22 GBytes	44.8 Gbits/sec	Θ	1.30	MBytes
[13]	6.00-7.00	sec	5.24 GBytes	45.0 Gbits/sec	Θ	1.44	MBytes
[13]	7.00-8.00	sec	5.22 GBytes	44.9 Gbits/sec	Θ	1.44	MBytes
[13]	8.00-9.00	sec	5.21 GBytes	44.8 Gbits/sec	Θ	1.45	MBytes
[13]	9.00-10.00	sec	5.22 GBytes	44.8 Gbits/sec	Θ	1.52	MBytes
					D		
	Interval		Transfer	Bitrate	Retr		
[13]	0.00-10.00	sec	52.1 GBytes	44.8 Gbits/sec	Θ		sender
13	0.00-10.04	sec	52.1 GBytes	44.6 Gbits/sec			receiver

Ongoing and Future Work

- Most releases of Open vSwitch add support for new fields or protocols
- Every change to Open vSwitch requires building, distributing, and installing the new version
- Every field needs coordination with controller authors (+ONF)
- Define fields and protocols with P4 (de-facto language for data plane programming)
- ~300 lines of P4 for everything in Open vSwitch¹
- Early efforts: PISCES²

¹ Ben Pfaff. Nicira, "P4 and Open vSwitch". Online: http://www.openvswitch.org//support/slides/p4.pdf

² PISCES, "A Programmable, Protocol-Independent Software Switch". Online: https://p4-vswitch.github.io/

Further Readings

- Open vSwitch official website: https://www.openvswitch.org/
- Pfaff et al. The Design and Implementation of Open vSwitch. USENIX NSDI 15.
- Open vSwitch documentation. https://tinyurl.com/5etbz9ae

Additional Slides

Virtualization

- Virtualization is the ability to run multiple operating systems on a single physical system and share the underlying hardware resources¹
- According to Cisco, 94% of all workloads will run in some form of cloud environment by the end of 2021²

¹ Vmware white paper. Virtualization Overview. Online: https://www.vmware.com/pdf/virtualization.pdf

² Cisco. Cisco's Hybrid Cloud Vision meets Black Belt Academy. Online: https://tinyurl.com/3ys4t3dd

Virtualization

- Virtualization is the ability to run multiple operating systems on a single physical system and share the underlying hardware resources¹
- According to Cisco, 94% of all workloads will run in some form of cloud environment by the end of 2021²
- The training platform we are using today is all virtualized

¹ VMware white paper. Virtualization Overview. Online: https://www.vmware.com/pdf/virtualization.pdf

² Cisco. Cisco's Hybrid Cloud Vision meets Black Belt Academy. Online: https://tinyurl.com/3ys4t3dd

Training platform

Dedicated vs Virtualized Servers

Dedicated servers versus server virtualization¹

¹ Cisco. Chapter 7: Network Evolution, CCNA Routing and Switching.

Network Virtualization

- Virtual machines on the same server and virtual machines on different servers often need to communicate
- Networking between VMs is not straightforward
- Scalability: 10K VMs or much more
- Isolation: many switches can operate in different locations
- Mobility: network state associated with network entities should be migratable

¹ Vmware white paper. Virtualization Overview. Online: https://www.vmware.com/pdf/virtualization.pdf

² Cisco. Cisco's Hybrid Cloud Vision meets Black Belt Academy. Online: https://tinyurl.com/3ys4t3dd

Virtual Switch

- A virtual switch is essential to interconnect VMs
- VMs can reside on a single server

Virtual Switch

- A virtual switch is essential to interconnect VMs
- VMs can reside on a single
- VMs can reside on different servers

