
1

Registers, Packet Digests

Jorge Crichigno1, Mariam Kiran2

1University of South Carolina, 2ESnet

Lab Assistants: Elie Kfoury, Ali AlSabeh, Jose Gomez

University of South Carolina

WASTC 2022 virtual Faculty Development Weeks (vFDW)

June 17, 2022

2

Registers

Registers

3

• Registers are stateful memories whose values can be read and written in actions in

the data plane

• They can also be read and written by the control plane

• They are more general than counters; arbitrary data can be stored in registers

• Registers are global memory resources; any match-action tables can reference to

them

Registers in V1 Model

4

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

• The definition of the V1 Model register includes

➢ register instantiation that receives an input parameter –number of elements of the register

https://tinyurl.com/2h93pnyd

Registers in V1 Model

5

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

• The definition of the V1 Model register includes

➢ register instantiation that receives an input parameter –number of elements of the register

➢ read method that receives an output parameter –where to store the register value– and an input
parameter –index

https://tinyurl.com/2h93pnyd

Registers in V1 Model

6

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

• The definition of the V1 Model register includes

➢ register instantiation that receives an input parameter –number of elements of the register

➢ read method that receives an output parameter –where to store the register value– and an input
parameter –index

➢ write method that receives two input parameters, index and value to store in the register

https://tinyurl.com/2h93pnyd

Instantiating a Single Element Register

7

• The syntax below shows how to instantiate a single element register in P4

• Register R1 contains a single N-bit element

Register R1

Index Value

N = 32 bits

0 val

Writing a Single Element Register

8

• The syntax below shows how to write (store) a value val in register R1, element 0

Register R1

Index Value

N = 32 bits

0 val

Register R1

Index Value

N = 32 bits

0 val res

Reading a Single Element Register

9

• The syntax below shows how to read the value stored in element 0 of the register, and
store it into the variable res

• Note that the value val is stored in the variable res

Registers in V1 Model

10

1. L. Vanbever, Programming Network Data Planes. Online: https://tinyurl.com/ywr3c6rb

• Example: computing the time between two consecutive packets of a flow (inter-packet

gap)

Code Standard metadata

https://tinyurl.com/ywr3c6rb

Atomicity

11

• Hardware and software targets use atomic operations on P4 stateful objects

• For Intel Tofino switch (Vladimir Gurevich)1:

• For BMv2 v1model implementation2:

1. Intel® Connectivity Research Program (Private). Memory semantics of Tofino architecture. Online: https://tinyurl.com/yz7hzydr
2. P4Lang Consortium, The BMv2 Simple Switch target. Online: https://tinyurl.com/26b762m3

https://tinyurl.com/yz7hzydr
https://tinyurl.com/26b762m3

Lab 9 Topology and Objectives

12

• This lab requires the learner to write a P4 program that stores the last observed source

IP address into a register

• The topology consists of four hosts, one P4 switch, and one legacy switch

• The objectives are
➢ Be able to write P4 programs using registers

➢ Read, write, and reset registers from the control plane

h1

s1

h2

h3 h4

s2

R1 = last source IP

13

Packet Digests

Data Plane to Control Plane Communication

14

• The data plane can send a packet to the control plane via a particular port reserve for

this purpose

• Another mechanism for the data plane to communication with the control plane is

packet digest

Data plane

Control plane

Packet in/out

CPU port

Extern
objects

Extern
control

(Digests)

Packet Digests

15

• The contents of a digest for one packet are typically much smaller than the packet
➢ E.g., packet header/s and/or metadata to be processed by a program in the control plane

• The controller computes digests and communicates with the data plane using runtime

APIs

Data plane

Digest(packet header,
packet metadata,...)

Control plane

Perform actions
in the data

plane

TM

.

.

.

.

.

.

controller.py

Lab Scenario: MAC Learning

16

• Initially the forwarding

table is empty

MAC address
MAC_1

h1 h2

port 0 port 1

s1

Data plane

Digest(source MAC
address, ingress port)

Control plane

Add entry to the
forwarding table

TM

.

.

.

.

.

.

contrller.py (MAC learning)

MAC address
MAC_2

Key Action Action Data

Forwarding table

Control plane

controller.py

Control plane

controller.py (MAC Learning)

C
o

n
tr

o
l
P

la
n

e
D

a
ta

 P
la

n
e

Lab Scenario: MAC Learning

17

• Switch s1 receives a packet

from host h1

• The data plane sends a

digest to the control plane

• The control plane populates

the forwarding table

• Switch s1 learns how to

reach host h1

MAC address
MAC_1

h1 h2

port 0 port 1

s1

Data plane

Digest(MAC_1, port 0)

Control plane

table_add(forwarding,
key=MAC_1,

a_data=e_port 0)

TM

.

.

.

.

.

.

contrller.py (MAC learning)

MAC address
MAC_2

Key Action Action Data

MAC_1 forward egress port = 0

Forwarding table

Control plane

controller.py (MAC Learning)

C
o

n
tr

o
l
P

la
n

e
D

a
ta

 P
la

n
e

Lab Scenario: MAC Learning

18

• Switch s1 receives a

packet from host h2

• The data plane sends a

digest to the control

plane

• The control plane

populates the table

• Switch s1 learns how to

reach host h2

• Host h1 can reach host

h2

MAC address
MAC_1

h1 h2

port 0 port 1

s1

Data plane

Digest(MAC_2, port 1)

Control plane

table_add(forwarding,
key=MAC_2,

a_data=e_port 1)

TM

.

.

.

.

.

.

contrller.py (MAC learning)

MAC address
MAC_2

Key Action Action Data

MAC_1 forward egress port = 0

Forwarding table

MAC_2 forward egress port = 1

Control plane

controller.py (MAC Learning)

C
o

n
tr

o
l
P

la
n

e
D

a
ta

 P
la

n
e

Lab 11 Topology and Objectives

19

• The topology consists of two hosts: h1, h2, and one P4 switch: s1

• The objectives are
➢ Creating a digest with the source MAC address and ingress port

➢ Sending the digest to the control plane

➢ Programming a controller with the runtime APIs to create table entries

➢ Populating the forwarding table from the control plane

➢ Verifying the connectivity between end hosts

MAC address
MAC_1

h1 h2

port 0 port 1

s1

MAC address
MAC_2

