Registers, Packet Digests

Jorge Crichigno!, Mariam Kiran?
tUniversity of South Carolina, 2ESnet

Lab Assistants: Elie Kfoury, Ali AlISabeh, Jose Gomez
University of South Carolina

WASTC 2022 virtual Faculty Development Weeks (VFDW)
June 17, 2022

Registers

Registers

Registers are stateful memories whose values can be read and written in actions in
the data plane

They can also be read and written by the control plane
They are more general than counters; arbitrary data can be stored in registers

Registers are global memory resources; any match-action tables can reference to
them

Registers in V1 Model

« The definition of the V1 Model register includes
» register Instantiation that receives an input parameter —number of elements of the register

/* Definition in vlimodel.pd %/

ex r<T> {
register(bit<3z> instance_count);l

void read(out T result, in bit<3i’> index);
void write(in bit<32> index, in T value);

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

https://tinyurl.com/2h93pnyd

Registers in V1 Model

« The definition of the V1 Model register includes
» register Instantiation that receives an input parameter —number of elements of the register

» read method that receives an output parameter —where to store the register value— and an input
parameter —index

/* Definition in vlimodel.pd %/

extern register<T> {
i bit<3?2> j nt):

void read(out T result, in bit<3i’- index);l

void write(in bit<32> index, in T value);

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

https://tinyurl.com/2h93pnyd

Registers in V1 Model

« The definition of the V1 Model register includes
» register Instantiation that receives an input parameter —number of elements of the register

» read method that receives an output parameter —where to store the register value— and an input
parameter —index
» write method that receives two input parameters, index and value to store in the register

/* Definition in vlimodel.pd %/

extern register<T> {
register(bit<3i’> instance_count);
void read(out T result, in bit<3i’?> index);
| void write(in bit<32> index, in T value);l

}

1. V. Gurevich, Introduction to P416. Online: https://tinyurl.com/2h93pnyd

https://tinyurl.com/2h93pnyd

Instantiating a Single Element Register

» The syntax below shows how to instantiate a single element register in P4

register<bit<N>>(1) R1;

* Register R1 contains a single N-bit element

Register R1
Index Value
0)
o /
N
N = 32 bits

Writing a Single Element Register

* The syntax below shows how to write (store) a value val in register R1, element O

Rl.write (0,val)

Register R1
Index Value
0 val
o /
N
N = 32 bits

Reading a Single Element Register

« The syntax below shows how to read the value stored in element O of the register, and
store it into the variable res

Rl.read(res, 0)

* Note that the value val is stored in the variable res

Register R1
Index Value
0 val —>» res
G J
N
N = 32 bits

Registers in V1 Model

« Example: computing the time between two consecutive packets of a flow (inter-packet
gap)

Code Standard metadata

register<bit<48>>(16384) last_seen; struct standard_metadata_t {
bit<9> ingress_port;

bit<9> egress_spec;

action get_inter_packet_gap(out bit<48> interval, bit<32> flow_id) bit<9> egress_port;
{ bit<32> clone_spec;
bit<48> last_pkt_ts; bit<32> instance_type;

bit<1> drop;
.] bit<16> recirculate_port;
/* Get the time the previous packet was seen */ bit<32> packet_length;

Tast_seen.read(last_pkt_ts, flow_id); bit<32> enq_timestamp;
bit<19> enqg_qdepth;
))) . bit<32> deq_timedelta;
/* Calculate the time interval */ . nthe
interval = standard_metadata.ingress_global_timestamp - last_pkt_ts; bit<48> ingress global timestamp;
bit<32> 1f_field_list;

. . . . , bit<16> mcast_grp;
/* Update the register with the new timestamp */ bit<ls resubﬁtp}lag.
—_ 2

Tast_seen.write(flow_id, standard_metadata.ingress_global_timestamp); bit<16> egress_rid;
bit<1> checksum_error;

1. L. Vanbever, Programming Network Data Planes. Online: https://tinyurl.com/ywr3c6rb

https://tinyurl.com/ywr3c6rb

Atomicity

- Hardware and software targets use atomic operations on P4 stateful objects
 For Intel Tofino switch (Vladimir Gurevich)?:

In case of stateful objects, a complex read-modify-write operation counts as one access and is performed by a special ALU (counter ALU, meter
ALU, stateful ALU, etc.)

Since this counts as one operation, it is atomic for all practical intents and purposes. For example, it is impossible to see a stateful object in
some "intermediate” state. Similarly, when the same object (instance) is accessed by the next packet, it does see it fully modified.

« For BMv2 vimodel implementation?:

The BMv2 vimodel implementation supports parallel execution. It uses locking of all register objects accessed within an action to guarantee
that the execution of all steps within an action are atomic, relative to other packets executing the same action, or any action that accesses some
of the same register objects.

1. Intel® Connectivity Research Program (Private). Memory semantics of Tofino architecture. Online: https://tinyurl.com/yz7hzydr
2. P4lang Consortium, The BMv2 Simple Switch target. Online: https://tinyurl.com/26b762m3

https://tinyurl.com/yz7hzydr
https://tinyurl.com/26b762m3

Lab 9 Topology and Objectives

 This lab requires the learner to write a P4 program that stores the last observed source
IP address into a register

 The topology consists of four hosts, one P4 switch, and one legacy switch

* The objectives are

> Be able to write P4 programs using registers
» Read, write, and reset registers from the control plane

R1 = last source IP

Packet Digests

13

Data Plane to Control Plane Communication

- The data plane can send a packet to the control plane via a particular port reserve for
this purpose

* Another mechanism for the data plane to communication with the control plane is
packet digest

Control plane

A
Extern
Packet in/out] control
(Digests)
| CPU port
Extern
Data plane objects

Packet Digests

« The contents of a digest for one packet are typically much smaller than the packet
» E.g., packet header/s and/or metadata to be processed by a program in the control plane

« The controller computes digests and communicates with the data plane using runtime
APIs

Control plane

@ controller.py
A

_ Perform actions
Digest(packet header,

in the data
packet metadata,...)
plane
4
Data plane

OO0 =5 =b = | = |=m OO O
- P g:]D':]D ™ 1 p| * [=D| | - >

D - =3B b - |0 |=m

Lab Scenario: MAC Learning

 Initially the forwarding

table is empt
p y o Control plane
5
g @ controller.py (MAC Learning)
© y
Forwarding table
% Digest(source MAC Add entry to the Key Action Action Data
E address, ingress port) forwarding table
©
[a]
A
Data plane
D - [D - (D] [0
% =I5 . [0 | 1w | [E25| . [=30| |=m
D |=3D D |=35| |
D - 3B D " |30 |=m

h2
N
NS
MAC address MAC address
MAC 1 MAC_2

Lab Scenario: MAC Learning

e Switch sl receives a packet
from host hl

- The data plane sends a

Control plane

@ controller.py (MAC Learning)

Control Plane

digest to the control plane : Forwarding table
® table_add(forwarding,))
« The control plane populates £ bpigest(Mac_1, porto) key=MAC_1, Key Action Action Data
the forwarding table § a_data=e_port0) > MAC 1 forward egress port =0
: A

reach host hl e e O =
%ED':}D ™ | 035 © 30| | T
5| - |=Ib 5 =0 [mm

h2
N
X
MAC address MAC address
MAC_1 MAC_2

Lab Scenario: MAC Learning

 Switch sl receives a

packet from host h2 § Control plane
« The data plane sends a g & controller.py (MAC Leaming)
. O
digest to the control Forwarding table
| o table_add(forwarding, : :
plane & | Digest(MAC_2, port 1) key=MAC_2, Key Action Action Data
e The control p|ane § a_data=e_port 1)7 MAC_1 forward | egress port =0
pOpUIateS the table — plar:e MAC_2 forward egress port =1
e Switch sl learns how to =5 . 5 e 0
SRR
reach host h2 = - =8 S
 Host hl can reach host
h2
h2
N
X
MAC address MAC address
MAC_1 MAC_2

Lab 11 Topology and Objectives

* The topology consists of two hosts: h1, h2, and one P4 switch: s1

* The objectives are

» Creating a digest with the source MAC address and ingress port

» Sending the digest to the control plane

» Programming a controller with the runtime APIs to create table entries
» Populating the forwarding table from the control plane

» Verifying the connectivity between end hosts

hl sl h2

E
s
[
(i(
E
ad

MAC address MAC address
MAC_1 MAC_2

