ENABLING TCP PACING USING PROGRAMMABLE DATA PLANE SWITCHES

E. Kfoury¹, J. Crichigno¹, E. Bou-Harb², D. Khoury³, G. Srivastava⁴ University of South Carolina, FL, USA Florida Atlantic University, FL, USA American University of Science and Technology, Lebanon Brandon University, Canada

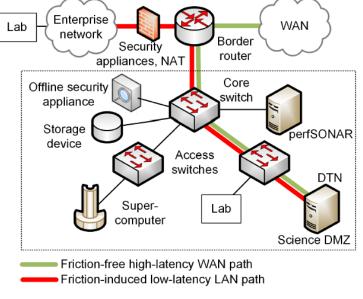
> IEEE TSP'19 Budapest, Hungary July 1, 2019

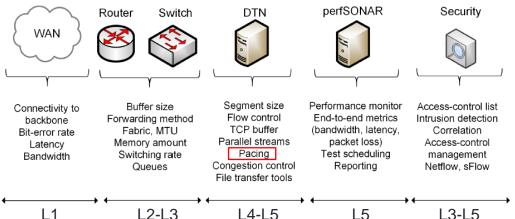
Agenda

- Motivation, Science DMZs
- Pacing
- Programmable switches
- Proposed scheme
- Preliminary results
- Ongoing work

Motivation for a High-Speed Science Architecture

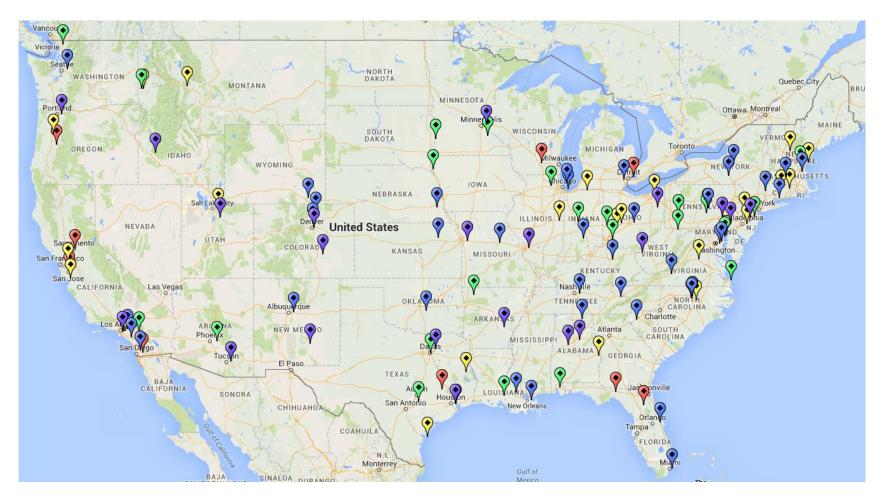
- Science and engineering applications are now generating data at an unprecedented rate
- Instruments produce hundreds of terabytes in short periods of time
- Data must be typically transferred across high-throughput highlatency Wide Area Networks (WANs)

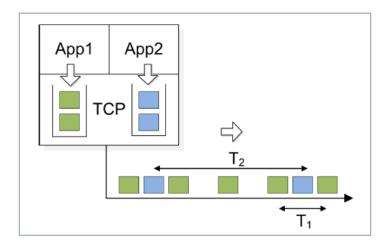

Applications


ESnet traffic

The Energy Science Network (ESnet) is the backbone connecting U.S. national laboratories and research centers

Motivation for a High-Speed Science Architecture

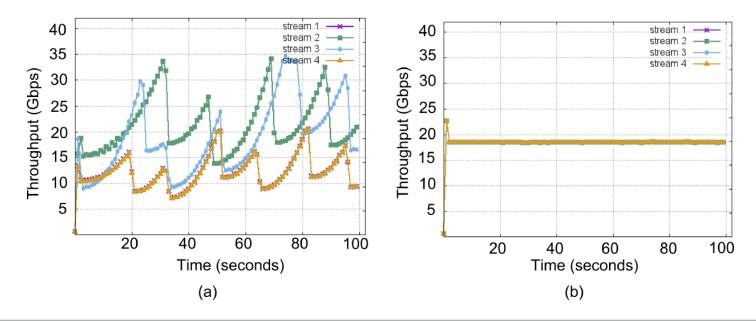

- The Science DMZ is a network designed for big science data
- Main elements
 - High throughput, friction free WAN paths
 - Data Transfer Nodes (DTNs)
 - End-to-end monitoring = perfSONAR
 - Security tailored for high speeds


Motivation for a High-Speed Science Architecture

Science DMZ deployments, U.S.

Pacing

- Pacing is a technique by which a transmitter evenly spaces or paces packets at a pre-configured rate
- If the network bottleneck is known, end devices can be set to transfer at a pacing rate rather than 'discovering' the rate
- Pacing also helps to mitigate packet bursts

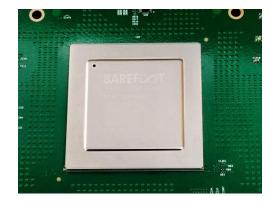


Pacing

Consider tests over ESnet backbone¹

Four flows on a 100 Gbps network, 92 msec RTT

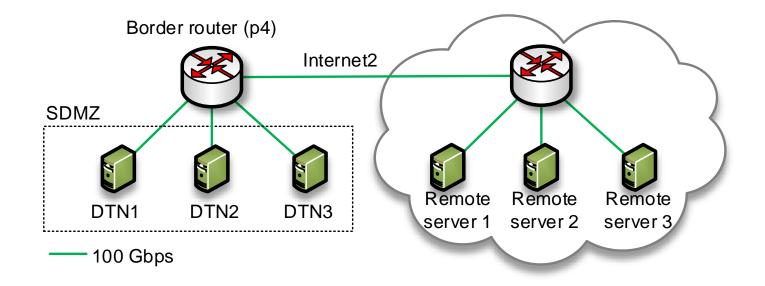
- "Consistent loss on the network with four streams, no pacing..."
- "Pacing to match bottleneck link works better yet..."
- ESnet approach requires the network operator to statically set the pacing rate, based on the number of big flows

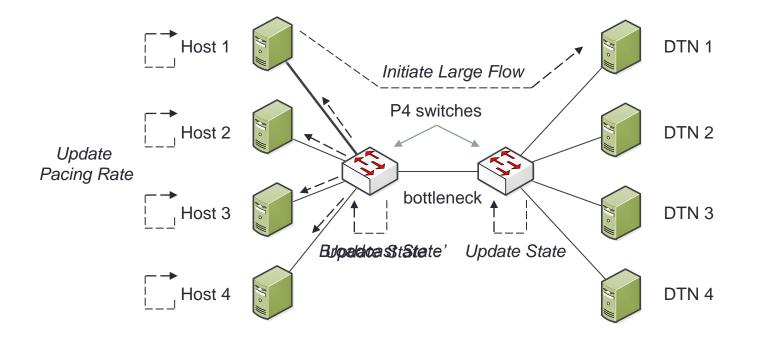


1. https://meetings.internet2.edu/media/medialibrary/2016/10/24/20160927-tierney-improving-performance-40G-100G-data-transfer-nodes.pdf

Programmable Switches

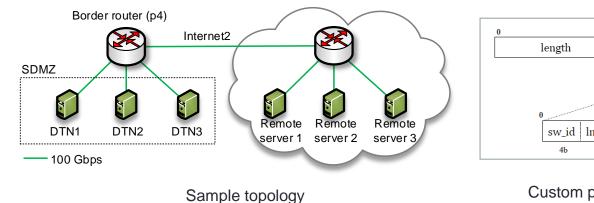
- P4 is a programming language for switches
- P4 permits operators/developers to program the data plane Add proprietary features: invent, *develop custom protocols*
- USC partnered with Barefoot Networks to use Tofino's chip to develop custom protocols

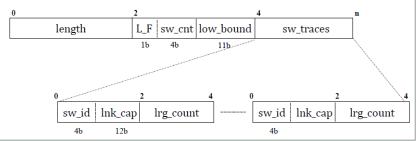

```
136
    137
139
140 日
       state parse ethernet {
141
         packet.extract(hdr.ethernet);
142 🖂
         transition select(hdr.ethernet.etherType) {
143
            TYPE IPV4: parse ipv4;
144
            default: accept;
145
         }
       }
146
147
148 🖯
       state parse ipv4 {
149
         packet.extract(hdr.ipv4);
150
         verify(hdr.ipv4.ihl >= 5, error.IPHeaderTooShort);
         transition select(hdr.ipv4.ihl) {
            5
                     : accept;
153
            default
                     : parse_ipv4_option;
154
         }
155
       }
```



Barefoot's Tofino (2016)

Pacing using Programmable Switches

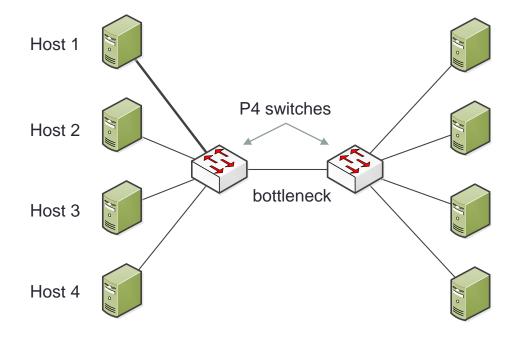
- What if the rate at a sender node is adjusted based on feedback provided by a P4 switch?
- Feedback includes number of large flows and more



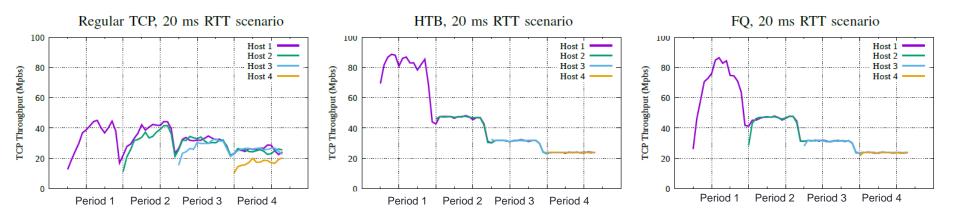

Pacing using Programmable Switches

Pacing using Programmable Switches

- Switches store network's state (number of large flows)
- To initiate a large flow, a DTN inserts a custom header during the TCP 3-way handshake, using the IP options field
- Switches parse custom header, update number of large flows
- Number of large flows is returned in the SYN-ACK message, and sent to all DTNs. DTNs update their *pacing* rate



Custom protocol built using IP options field

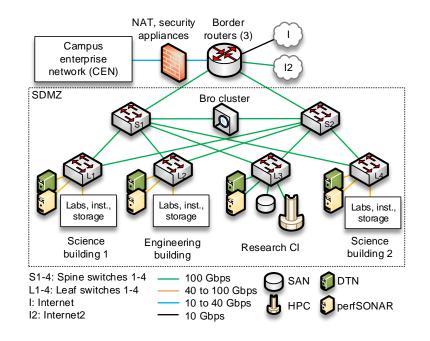

Emulation Results

- The custom protocol was implemented in Mininet
- The P4 switch is the BMv2 from P4.org
- Four hosts (DTNs) generating flows; 100 Mbps, 20ms RTT
- Hosts adjusted their pacing rate using two pacing disciplines Fair Queue (FQ)

Hierarchical Token Bucket (HTB)

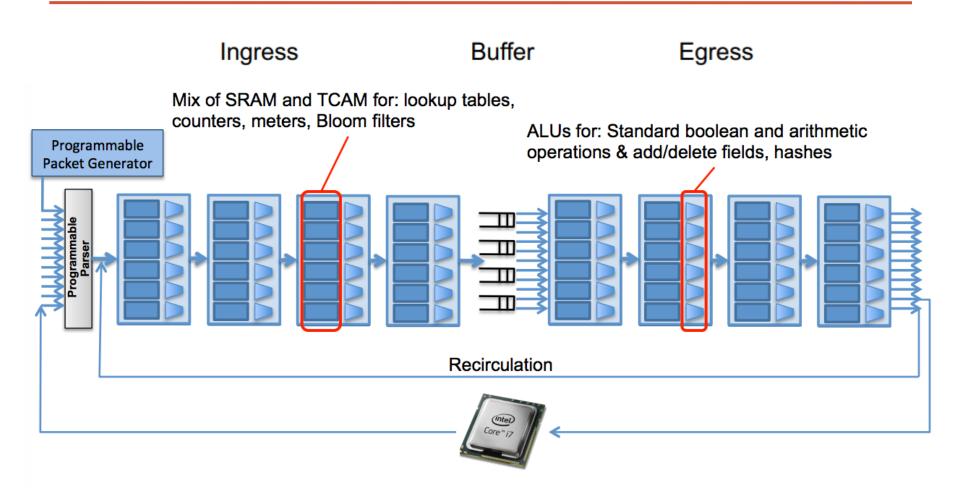
Emulation Results

Throughput

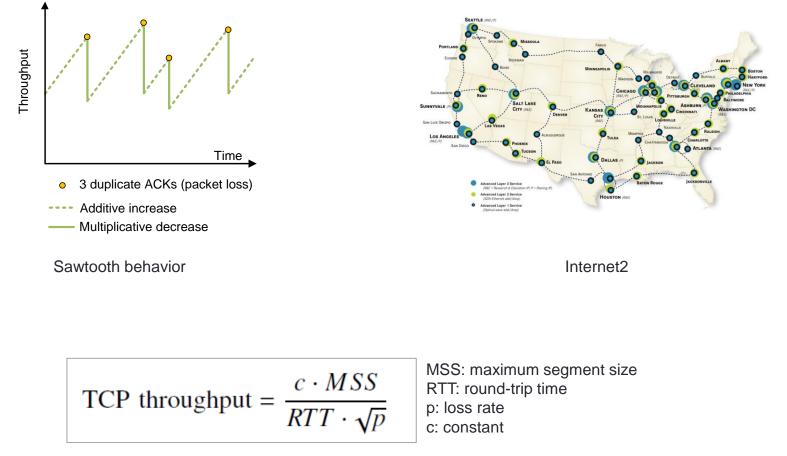

		Re	CP		FQ										
Period	$\sum T_i$	T ₁	T ₂	T ₃	T ₄	$\sum T_i$	T ₁	T ₂	T ₃	T ₄	$\sum T_i$	T ₁	T ₂	T ₃	T ₄
P ₁ (01-15 sec)	33.62	33.62	N/A	N/A	N/A	81.25	81.25	N/A	N/A	N/A	66.59	66.59	N/A	N/A	N/A
P ₂ (16-30 sec)	67.27	36.06	31.21	N/A	N/A	93.1	46.40	46.70	N/A	N/A	89.91	45.85	44.06	N/A	N/A
P ₃ (31-45 sec)	88.83	31.27	30.61	26.95	N/A	94.42	31.40	31.37	31.65	N/A	93.72	31.40	31.36	30.96	N/A
P ₄ (46-60 sec)	91.86	25.32	24.63	25.32	16.59	95.12	23.78	23.75	23.73	23.86	94.52	23.71	23.71	23.67	23.43

Coefficient of variation and Jain's fairness

		Re	egular T(CP				HTB			FQ					
Period	F	CV ₁	CV ₂	CV ₃	CV ₄	F	CV ₁	CV ₂	CV ₃	CV ₄	F	CV ₁	CV ₂	CV ₃	CV ₄	
P ₁ (01-15 sec)	1.00	32.32	N/A	N/A	N/A	1.0000	8.188	N/A	N/A	N/A	1.0000	28.427	N/A	N/A	N/A	
P ₂ (16-30 sec)	.994	22.63	30.08	N/A	N/A	.99998	3.773	2.998	N/A	N/A	.99960	4.351	14.142	N/A	N/A	
P ₃ (31-45 sec)	.994	9.349	10.90	19.69	N/A	.99998	2.065	2.081	1.985	N/A	.99960	1.618	1.317	3.879	N/A	
P ₄ (46-60 sec)	.974	7.806	5.260	6.447	17.27	.99999	1.168	1.138	.755	.684	.99997	1.022	1.020	.996	3.336	


Ongoing Work

- Implement proposed protocol using real P4 switches
- Extend the protocol to support general cases
- Extend the sharing bandwidth scheme for scenarios where an uneven allocation is desirable (priorities)
- Use proposed protocol in USC's production network


Additional Slides

PISA Architecture

Pacing

• Packet loss is expensive in high-throughput high-latency networks

(c) Average throughput

M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The macroscopic behavior of the tcp congestion avoidance algorithm," *ACM Computer Communication Review*, vol. 27, no 3, pp. 67-82, Jul. 1997.

ESnet

