EXPLOITING RANSOMWARE PARANOIA FOR EXECUTION PREVENTION

Ali AlSabeh, Haidar Safa, Elias Bou-Harb, Jorge Crichigno

Presented by: Ali AlSabeh

IEEE International Conference on Communications 2020

OVERVIEW

- Introduction
- Motivation
- Related Work
- Problem Statement
- Contribution
- Proposed Approach
- Evaluation and Results
- Conclusion and Future Work

INTRODUCTION

RANSOMWARE

- Increasingly devasting attack
- Locks and/or encrypts the victims' machine
- Ask for a ransom to return encrypted data

MOTIVATION

MOTIVATION

Crypto-Locked: Illinois Public Health District

Last Tuesday, Champaign-Urbana Public Health District, which serves about 210,000 people in central Illinois, was hit by Netwalker ransomware, aka MailTo. "We are working to get our

HIPAA Journal @HIPAAJournal · May 22

Maze **#ransomware** gang attacks UK COVID - 19 research firms ow.ly /KdtT50yZMcI #healthcare #cybersecurity

Magellan Health, a for-profit managed health care and insurance firm, was the victim of a ransomware attack.

@CityPowerJhb 🕗 · Jul 25, 2019

#Update City Power has been hit by a **Ransomware** virus. it has encrypted all our databases, applications and network. Currently our ICT department is cleaning and rebuilding all impacted applications.^GR

RELATED WORK

ANALYSIS TECHNIQUES

- Static analysis does not execute the sample and it is achieved by inspecting:
 - Source code
 - Assembly
 - Executable file...
- Dynamic analysis executes the sample in an isolated environment and records the generated activities such as:
 - File access
 - Memory access
 - Registry access

RANSOMWARE DETECTION TECHNIQUES

BRIDEMAID

 Combination of static and dynamic analysis to detect ransomware in Android operating system

UNVEIL

 Detects ransomware by creating an artificial, yet realistic execution environment that can detect file lockers and screen lockers

NetConverse

 Detects ransomware from the generated network traffic using machine learning

RansomFlare

 Combination of behavioral-based analysis and machine learning to detect ransomware

PROBLEM STATEMENT

PROBLEM STATEMENT

- The previous approaches devote their work to detect a ransomware from the behaviors it generates
- However, there is no prevention technique that suppresses the execution of ransomware
- In our paper, we work on preventing a contemporary ransomware sample from the environmental artifacts it executes prior to the attack.

CONTRIBUTION

CONTRIBUTION

- Exploring the behavior of contemporary ransomware by collecting relevant artifacts related to fingerprinting the execution environment
- Designing and developing a host-based approach which can detect and prevent contemporary ransomware through monitoring their "paranoia"
- Executing empirical evaluations using real ransomware datasets
 - Training: 91% accuracy
 - Testing: 84% accuracy

PROPOSED APPROACH

PROPOSED APPROACH

GetWindowsDirectory

EnumPrintersW

C:\agent.py

SystemBiosVersion

DATASET COLLECTION

- The collected ransomware samples were from multiple sources
- The collected samples were inconsistent (file types, compatibility) and they lack metadata
- Using VirusTotal API, we did the following:
 - Performed data cleaning to filter out incompatible samples w.r.t our execution environment
 - Associated meta-data labels to map each ransomware sample to its corresponding family

API MONITORING AND COLLECTING ENVIRONMENT ARTIFACTS

- To study the behavior of an application we monitored the called APIs using Microsoft Detour library
- The collected APIs were filtered to include the ones mainly related to environment fingerprinting

Engineering

and Computing

MANAGING FALSE POSITIVES USING PRIORITIZED COLLECTED APIS

- To address false positives, the collected APIs were monitored against benign applications
- A rank is assigned to each API
- The more the API is called by evasive ransomware, the more its rank will be close to 10
- Similarly, the more the API is called by benign applications, the less its rank will be

MANAGING FALSE POSITIVES USING PRIORITIZED COLLECTED APIS

- Every monitored program will have a score that is initially zero and is incremented by the rank of each called API
- Once the score exceeds a threshold, the monitored program is killed

EVALUATION AND RESULTS

ENVIRONMENTAL SETUP

- Our approach is currently designed to operate solely on Windows operating system
- The approach was tested on virtual box running Windows 10 with 8 GB of RAM and 50 GB of hard disk space
- 117 ransomware samples from
 - 30 different ransomware families (wannacry, cryptolocker, locky)
- 98 benign applications
 - built-in Windows applications (notepad, chrome, Skype)
 - Random applications marked as safe by Virus Total

ENVIRONMENTAL SET UP

TRAINING DATA

- During this phase, fingerprinting-related APIs were collected and ranked
- The scores of ransomware samples are relatively higher than that of benign samples

and Computing

THRESHOLD

- To differentiate between ransomware and benign samples, a threshold is set
- A threshold value of 21 has the best accuracy (91%) in the training data set
- This value is used as score limit in the testing phase

TESTING DATA

- With zero-day ransomware samples, and a threshold value of 21, the accuracy was 84%
- False negative rate = 22%
 - Due to the presence of non-evasive ransomware samples
 - However, can be detect using a regular IDS

CONCLUSION AND FUTURE WORK

CONCLUSION

- We addressed evasive ransomware that perform environmental fingerprinting checks
- We explored fingerprinting artifacts on CPU, registries, memory...
- We performed empirical evaluations and showed that our approach is capable of detecting and preventing evasive ransomware

FUTURE WORK

- Conduct extensive evaluations on a broader set of samples and evasive APIs
- Explore deferring techniques to delay/suppress the execution of contemporary ransomware
- Enhance the developed prototype to make it more generic on various operating systems

THANKS!

