y
A
il

UNIVERSITY OF

South Carolina

Abstract

Identifying heavy hitters is vital for applications like Denial of
Service (DoS) detection and traffic engineering.

Hardware solutions (e.g., programmable data plane switches)
offer high performance but require adding hardware, which is
not ideal for virtualized environments (e.g., cloud).

Software solutions are flexible but suffer from performance
issues due to the packet processing overhead in the OS kernel.
The proposed system implements a scalable heavy hitter
detection algorithm in the software, bypassing the kernel using
the Data Plane Development Kit (DPDK).

The Count-min Sketch (CMS) algorithm is used to track the
number of packets per flow.

The system is implemented in P4 and deployed on the P4-DPDK
target running on CPU cores.

The system was tested with various packet sizes, number of CPU
cores, and number of hash functions.

Evaluation results show accurate identification of heavy hitters at
traffic rates approaching 100Gbps.

Related Work

* P4 switches approaches:
» HH-IPG [1] is a per-flow heavy hitter detection approach on P4
Tofino. The system requires adding hardware.
> Ding et al. [2] proposed a network-wide monitoring heavy
hitter algorithm using the Count-min Sketch implemented in P4.
The system requires adding hardware
« DPDK approaches:
> Elastic Sketch [3] is a network-wide detection of heavy flow
implemented on P4-OVS with DPDK. The system is tested with
low traffic rates (10Cbps).

[1] SK. Singh et al., "HH-IPC: Leveraging Inter-Packet Gap Metrics in
P4 Hardware for Heavy Hitter Detection,” 2023.

[2] D. Ding et al, “An incrementally-deployable P4-enabled
architecture for network-wide heavy-hitter detection,” 2020.

[3] T. Yang et al., “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” 2018.

Experiment Topology

The heavy hitter detector ~ Heavy hitter detector

also reflects packets.

All the servers are on the
same FABRIC site.
DPDK-pktgen is used to fig
generate traffic.

Blocked

NVIDIA
ConnectX-6

e
2

Background traffic Heavy
generator hitter
(DPDK-pktgen)

(DPDK-pktgen)

University of South Carolina, Columbia, South Carolina

System Architecture

The P4 language with the Portable NIC Architecture (PNA) is used
to implement the heavy hitter detection algorithm.

The p4c-dpdk compiler translates P4 programs into DPDK API,
allowing the configuration of the DPDK pipeline.

The DPDK pipeline is compiled and loaded on the CPU cores of the
host.

The SmartNIC uses Receive Side Scaling (RSS) to distribute the
load across the pipelines in the CPU cores.

HH_detector.p4 |&)
v
Q§ p4c-dpdk

;&l& compiler

HH_ detector.spec
: Pipeline 1 codegen
Queue 1 - i
' HH_detector.c
v
compile/libbuild
: v
1INNNl load | HH_detector.so

innnni
0O
o
=
o
[ERY

innnnl

nnnna
SmartNIC / AN

Queue 8

innnn
O
)
=S
M
(0]

innnn

Pipeline 8

P4-DPDK heavy hitter detection system architecture

Methodology

The CMS algorithm is used to detect heavy hitters.

CMS is a probabilistic data structure that serves as a frequency
table of events in a stream of data.

It uses multiple hash functions and register arrays. The hash
functions map the events to frequencies in each of the arrays.

The hash function takes as input the 5-tuple: source/destination IP,
source/destination port, and protocol.

The heavy hitter is detected by comparing the minimum frequency
for a flow in the CMS against a predefined threshold.

W
< >

F_ID, F_ID, FID,

+1

—

e
+1

C==nﬁ11(RJF_JDJ)
Count-Min Sketch (CMS) for estimating the per-flow packet counts

Acknowledgement

* This work was supported by the National Science Foundation

(NSF), Award 2118311.

Scalable Heavy Hitter Detection in Virtualized Environments:
A DPDK-based Software Approach with P4 Integration

Samia Choueiri, Ali Mazloum, Elie Kfoury, Jorge Crichigno

Performance Results of Heavy Hitter Detection

» Background traffic is generated at the rate of 100Cbps using DPDK-pktgen.

* Aheavy hitter is “immediately” identified and blocked even while processing 100Gbps of background traffic.
* The maximum throughput that can be achieved increases as the number of CPU cores running the pipelines increases.

100 -

—— Background traffic RX
Background traffic TX
—— Heavy hitter RX
- Heavy hitter TX

Ay S g S e m e e D S S g S A SN smuEw " u " .

3 4 5
Time (s)

Throughput (Gbps)

Heavy hitter mitigation at line rate

)
o
o

1
oo
o

o
o
Throughput (Gbps)

y
NN
o

Throughput (Gbps)

Throughput as a function of number of cores and packet size

Evaluating the Impact of the Number of Hash Functions on the Throughput

/ /
o)) 00
o o

o
Throughput (Gbps)

Throughput as a function of the number of hash functions
and packet size using two CPU cores

Accuracy (%)

2 3 4 5 6 7 8
Number of Hash Functions

Packet count accuracy based on the number of hash functions

Throughput (Gbps)

f f
*)) (0]
o o

N
o
Throughput (Gbps)

Throughput (Gbps)

Throughput as a function of the number of hash functions
and packet size using four CPU cores

Lessons Learned and Future Work

While CMS introduces some estimation errors, it offers a tunable trade-off
between accuracy and memory usage based on the number of hash
functions and the size of the register arrays.

The experimental results show that increasing the number of hash
functions improves the counting accuracy but degrades the throughput.
Using two CPU cores, the performance penalty is high, especially with
small packet sizes. With four CPU cores, the performance penalty is
eliminated even with a high number of hash functions.

Future work includes 1) testing the system with real traffic from CAIDA; 2)
augmenting the P4 program to detect cyberattacks; 3) profiling the
performance of P4-DPDK with various P4 programs.




	Slide 1

