
1

Implementing a Stateful Packet Filter Using a P4 

Programmable Switch

Andrew Smith & Nolan Pelino

Advisor: Ali AlSabeh

Department of Integrated Information Technology (IIT) 

University of South Carolina

December 07, 2023



Agenda

2

Introduction/Background

Project Objective

Implemented Solution

Conclusion



Introduction

• The data plane is the structured pipeline that processes a stream of bits as

they move through a switch

• P4 is a programming language that describes the behavior of the data plane,

providing the programmer an unprecedented amount of control

3

• Stateful packet filters examine every 

packet passing through a switch, 

maintaining a log of various connections

• This data is then leveraged to enhance 

the precision of filtering decisions



Project Objective

• The objective of this project is to implement a stateful packet filter on the Tofino

P4-Programmable ethernet switches

• The packet filter is developed to interact with both TCP and ICMP

• The code is initially written on a BMv2 software switch and then migrated to be

compatible with Tofino hardware switches

• The purpose of this project is to demonstrate P4's suitability in high-speed,

stateful traffic filtering applications

4



Implemented Solution

• Topology

• PC1 and PC2 are hosts on the
10.0.0.0/24 network

• PC1 is used as the management
interface for the Tofino switch

• The goal is to allow connections
initiated from PC1 to PC2 only, at the
level of TCP and ICMP protocols

5



Implemented Solution

• Registers

• Registers are used within P4 to save arbitrary data

• Multiple packets can access or modify register data

• We use them here to store and access the ICMP identifier field of packets

6

Index Value

register_index1 ICMP Flow Identifier1

register_index2 ICMP Flow Identifier2

… …

register_indexN ICMP Flow IdentifierN

Index Value

register_index1 TCP Flow Identifier1

register_index2 TCP Flow Identifier2

… …

register_indexM TCP Flow IdentifierM

ICMP register TCP register



Implemented Solution

• Hashes

• A hash function maps any given input values to an output of fixed length

• In P4, we specify the hashing algorithm (CRC16) then initialize the variable
that the hash will be stored in

• Subsequently, the hash will be used to access the register entry corresponding
to flow we are monitoring

7

Line 1 specifies the algorithm we will use for the hash
Line 2 initializes the variable that the hash will be stored in

The input of the hash function is the source and destination 
IP addresses of the packet. The output is a 16-bit hash value 
and will be stored in the variable sel_hash. This will later be 
used as the register index for the flow



Implemented Solution

8

Index Value

sel_hash ICMP Flow Identifier

sel_hash ICMP Flow Identifier

sel_hash ICMP Flow Identifier



Implemented Solution

• Match-action Tables

• Match-action tables allow the programmer to define actions to be executed on a
certain match (key), specified in the control plane

• The icmp_policy and tcp_policy tables were designed to implement policies for the
ICMP and TCP protocols

• The key for the tables identify the flow ID

• For example, in ICMP the flow ID is the source and destination IP addresses

9



Implemented Solution

• Match-action Tables

• There are no actions in the policy tables (NoAction), since no logic needs to be
applied from the control plane

• When a match occurs, we can interpret this as “true – the packet matches the
policy, forward the packet” and on no match, as “false – the packet does not match
the policy, drop the packet”

• The size of the table is 1024, which is the number of entries in the table (i.e.,
number of policies we can implement)

10



Implemented Solution

• Apply Logic

• First check which of the ICMP or TCP headers are valid before processing

• If the ICMP packet is an echo request, store the ICMP ID in a register at
the hashed index then forward

11

...



Implemented Solution

• Apply Logic

• If the ICMP packet is an echo reply, read the value at the hashed index and forward
if the current ICMP ID matches

• The hashed index is the source and destination IP addresses reverse

• This results in the same hash value of the ICMP request, where the flow ID was
stored

12



Implemented Solution

• Apply Logic

• If the TCP packet is valid and hits on tcp_policy, store the source and destination
port at the hashed index of the register

• If the TCP packet does not hit on tcp_policy, read the value at the hashed index. If
the stored source and destination ports match the current packet, proceed
in forwarding

• Otherwise, drop all packets

• The hashed index consists of the source and destination IP addresses and port
numbers

13



Implemented Solution

TCP apply block

14



ICMP Evaluation

15

PC1 -> PC2

PC2 -> PC1

• When attempting to initiate a ping from PC1 to PC2, the action is successful

• However, attempting to ping PC1 from PC2 fails due to the implemented policy



TCP Evaluation

16

Successful connection

Failed connection

• Setting up an iPerf server on PC2 and configuring PC1 as the client results in 

a successful client-server connection

• Attempting to initiate PC1 as the server and PC2 as the client leads to 

connection refusal, again, due to TCP forwarding rules and apply logic



Conclusion

• We implemented a stateful packet filter on a BMv2 software switch and on

Tofino hardware switch

• Our P4 code successfully demonstrates the packet filter in accordance with

environment configuration and forwarding tables

• We tested our code to allow connections originating from the internal network

only

• For future work, we plan on implementing timeout on stale entries and collision

resolving on flows that produce the same hash value

17


	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Project Objective
	Slide 5: Implemented Solution
	Slide 6: Implemented Solution
	Slide 7: Implemented Solution
	Slide 8: Implemented Solution
	Slide 9: Implemented Solution
	Slide 10: Implemented Solution
	Slide 11: Implemented Solution
	Slide 12: Implemented Solution
	Slide 13: Implemented Solution
	Slide 14: Implemented Solution
	Slide 15: ICMP Evaluation
	Slide 16: TCP Evaluation
	Slide 17: Conclusion

