South Carolina

Implementing a Stateful Packet Filter Using a P4
Programmable Switch

Andrew Smith & Nolan Pelino
Advisor: Ali AlSabeh

Department of Integrated Information Technology (IIT)
University of South Carolina

December 07, 2023

Agenda

Introduction/Background

Project Objective
Implemented Solution

Conclusion

ﬂ

South Carolina

Introduction

 The data plane is the structured pipeline that processes a stream of bits as
they move through a switch

P4 is a programming language that describes the behavior of the data plane,
providing the programmer an unprecedented amount of control

- Stateful packet filters examine every
packet passing through a switch,
maintaining a log of various connections

; : ! .»; bank.example.com
« This data is then leveraged to enhance g 3 \ PR
the precision of filtering decisions) b INE

Computer 1
Stateful firewall

evil.example.com

South Carolina

Project Objective

» The objective of this project is to implement a stateful packet filter on the Tofino
P4-Programmable ethernet switches

« The packet filter is developed to interact with both TCP and ICMP

« The code is initially written on a BMv2 software switch and then migrated to be
compatible with Tofino hardware switches

 The purpose of this project is to demonstrate P4's suitability in high-speed,
stateful traffic filtering applications

South Carolina

Implemented Solution

« Topology

e PC1 and PC2 are hosts on the
10.0.0.0/24 network

« PC1l is used as the management
interface for the Tofino switch

« The goal Is to allow connections
Initiated from PC1 to PC2 only, at the
level of TCP and ICMP protocols

South Carolina

172.168.1.0/24

. A E mal
S eth0 vethO ~) vethl
- d [
PC1 Tofino Model

10.0.0.0/24

Management Network

Implemented Solution

* Registers
* Registers are used within P4 to save arbitrary data
« Multiple packets can access or modify register data
* We use them here to store and access the ICMP identifier field of packets

ICMP register TCP register
T e | vaue W mde | vaue
register_index1 ICMP Flow Identifierl register_index1 TCP Flow Identifierl
register_index2 ICMP Flow Identifier2 register_index2 TCP Flow Identifier2
register_indexN ICMP Flow IdentifierN register_indexM TCP Flow IdentifierM

South Carolina

Implemented Solution

e Hashes

* A hash function maps any given input values to an output of fixed length

* In P4, we specify the hashing algorithm (CRC16) then initialize the variable
that the hash will be stored in

« Subsequently, the hash will be used to access the register entry corresponding
to flow we are monitoring

Hash<bit<l6>>(HashAlgorithm t.CRC16) hash;

Line 1 specifies the algorithm we will use for the hash
bit<l6> sel hash;

Line 2 initializes the variable that the hash will be stored in

A
v

The input of the hash function is the source and destination
IP addresses of the packet. The output is a 16-bit hash value
and will be stored in the variable sel_hash. This will later be
used as the register index for the flow

sel hash = hash.get({hdr.ipv4.src addr, hdr.ipv4.dst addr}); |«—

South Carolina

Implemented Solution

write data.execute(sel hash);

—

sel_hash ICMP Flow Identifier
sel_hash = hash.get({hdr.ipv4.src_addr, hdr.ipv4.dst addr}); se|l hash ICMP Flow ldentifier
— sel_hash ICMP Flow ldentifier

read data.execute(sel hash2); «—

South Carolina

Implemented Solution

 Match-action Tables

« Match-action tables allow the programmer to define actions to be executed on a
certain match (key), specified in the control plane

« The icmp_policy and tcp_policy tables were designed to implement policies for the
ICMP and TCP protocols

* The key for the tables identify the flow ID
« For example, in ICMP the flow ID is the source and destination IP addresses

table icmp policy {
key = {
hdr.ipv4.src addr: 1pm;

hdr.ipv4.dst addr: ternary;
}

actions = {

}

size = 1024;

South Carolina

Implemented Solution

 Match-action Tables

 There are no actions in the policy tables (NoAction), since no logic needs to be
applied from the control plane

« When a match occurs, we can interpret this as “true — the packet matches the
policy, forward the packet” and on no match, as “false — the packet does not match

the policy, drop the packet”

« The size of the table is 1024, which is the number of entries in the table (i.e.,

number of policies we can implement)

table icmp policy {
key = {
hdr.ipv4.src addr: 1pm;
hdr.ipv4.dst addr: ternary;
}

actions = {

}

size = 1024;

South Carolina

Implemented Solution

* Apply Logic
« First check which of the ICMP or TCP headers are valid before processing

apply {
[/ ICMP eee [/ TCP
if (hdr.icmp.isvValid()) { else if [hdr.tcp,iﬁvalid{l} {

 |If the ICMP packet is an echo request, store the ICMP ID in a register at
the hashed index then forward

if (hdr.icmp.isValid()) {
1f (hdr.icmp.type == 8) { // ICMP echo request
if (icmp policy.apply().hit) {

sel hash = hash.get({hdr.ipv4.src addr, hdr.ipv4.dst addr}); // Store hash value of source and destination address
write data.execute(sel hash); //Write To ICMP Register Based On Hashed Value (store identifier in header)

ipv4 host.apply();
}

South Carolina

Implemented Solution

* Apply Logic
« |f the ICMP packet is an echo reply, read the value at the hashed index and forward
If the current ICMP ID matches
« The hashed index is the source and destination IP addresses reverse

* This results in the same hash value of the ICMP request, where the flow ID was
stored

-

else if (hdr.icmp.type == 0) { // ICMP echo reply

// hash with dst and src address

sel hash2 = hash2.get({hdr.ipv4.dst addr, hdr.ipv4.src addr});

// Register to Read identifier from hash index location (grab stored identifier)
register data entry = read data.execute(sel hash2);

if (register data entry == hdr.icmp.identifier) { // if retrieved id == header of incoming reply packet
ipv4 host.apply();

}

South Carolina

Implemented Solution

* Apply Logic
« |f the TCP packet is valid and hits on tcp_policy, store the source and destination
port at the hashed index of the register

« |f the TCP packet does not hit on tcp_policy, read the value at the hashed index. If
the stored source and destination ports match the current packet, proceed
In forwarding

« Otherwise, drop all packets

« The hashed index consists of the source and destination IP addresses and port
numbers

South Carolina

Implemented Solution

TCP apply block

// TCP

1.’

else if (hdr.tcp.isValid()) {

(tcp policy.apply().hit) {

V/ Hash src, dst addresses and src, dst ports into sel hash

sel hash tcp = hash tcp.get({hdr.ipv4.src addr, hdr.ipv4.dst addr, hdr.tcp.srcPort, hdr.tcp.dstPort});
write data tcp.execute(sel hash tcp); // Store source and dest port at location of hash

ipv4 host.apply():;

} else {

// Hash src, dst addresses and src, dst ports and store in sel hash2

sel hash2 tcp = hash2 tcp.get({hdr.ipv4.dst addr, hdr.ipv4.src addr, hdr.tcp.dstPort, hdr.tcp.srcPort});

// Return a boolean result, determining if src and dst ports match incoming packet
bit<l> is match;
is match = read data tcp.execute(sel hash2 tcp);

i1f (is match == 1) {
ipv4 host.apply();
}

South Carolina

ICMP Evaluation

* When attempting to initiate a ping from PC1 to PC2, the action is successful
* However, attempting to ping PC1 from PC2 fails due to the implemented policy

admin@PC1:~$S ping 10.0.0.2 -c 1
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: i1cmp_seqg=1 ttl=64 time=28.8 ms

PC1->PC2
- 10.0.0.2 ping statistics ---
1 packets transmi
rtt min/avg/max/mdev

admin@PC2:~S ping 10.0.0.1 -c
PING 10.0.0.1 (10.0.0.1) 56(84)
PC2 -> PC1
10.0.0.1 ping statistics
1 packets transmitted, 0 received, 100%

TCP Evaluation

« Setting up an iPerf server on PC2 and configuring PC1 as the client results in
a successful client-server connection

« Attempting to initiate PC1 as the server and PC2 as the client leads to
connection refusal, again, due to TCP forwarding rules and apply logic

Successful connection

admin@PC1:~$ iperf -c

Client connecting to .0.0.2, TCP port 5001 Server listening on TCP port 5001
TCP windo i 85.0 KE (default) CP window size: 128 KByte (default)
rt 5001 connected with 10.0.0.1 port 34168
f Bandwidth
387 Kbits/sec

admin@PC2:~S iperf -c 10.0.0.1

: : LN progress
Server listening on TCP port 5001
size: 128 KByte (default)

Conclusion

« We implemented a stateful packet filter on a BMv2 software switch and on
Tofino hardware switch

 Our P4 code successfully demonstrates the packet filter in accordance with
environment configuration and forwarding tables

 We tested our code to allow connections originating from the internal network
only

« For future work, we plan on implementing timeout on stale entries and collision
resolving on flows that produce the same hash value

South Carolina

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Project Objective
	Slide 5: Implemented Solution
	Slide 6: Implemented Solution
	Slide 7: Implemented Solution
	Slide 8: Implemented Solution
	Slide 9: Implemented Solution
	Slide 10: Implemented Solution
	Slide 11: Implemented Solution
	Slide 12: Implemented Solution
	Slide 13: Implemented Solution
	Slide 14: Implemented Solution
	Slide 15: ICMP Evaluation
	Slide 16: TCP Evaluation
	Slide 17: Conclusion

