Implementation of DNS Sinkholes in Next-Generation Firewalls

Christian Tsirlis, Brad Wilson Advisor: Jorge Crichigno

Department of Integrated Information Technology University of South Carolina

December 2nd, 2021

Agenda

- Purpose
- Introduction
- Problem description
- Proposed solution and implementation
 - Anti-spyware profile
 - External dynamic list
- DNS Sinkhole Validation
 - Use of nslookup command
- Analyzing traffic logs
- Conclusion

Purpose

- Understand DNS Sinkholes
- Implement DNS Sinkholes in Security Policies
- Protect network from malicious attackers inside and outside of the network
- Analyze DNS and web browser traffic traversing the network
- Build stronger policies to minimize attacks

Introduction

A DNS sinkhole is a technique used to protect hosts from malicious domains.

Problem Description

- Suspected malicious activity from internal network attempting to access malicious domains.
- Effectiveness of security policies using DNS sinkholes to protect internal network.

Proposed Solution and Implementation

- Sinkhole anti-spyware profile created.
 - Alerts network administrations and logs traffic.
 - Used in security policy to perform sinkhole action.

- Sinkhole external dynamic list created.
 - Unique list to test sinkhole effectiveness.
 - Used in anti-spyware profile to filter DNS request.

Proposed Solution and Implementation

Security policy with anti-spyware profile attached.

- Closer look at the security policy rule.
 - Focusing on the Actions tab.
 - Anti-spyware was added as a profile setting.

DNS Sinkhole Validation

- How to verify?
 - nslookup returns the ip address of the requested domain.
 - We used the nslookup command to confirm if the sinkhole was working.
- Results
 - DNS Sinkhole works with nslookup.
 - Web browser can evade DNS sinkhole using encrypted web browser traffic.

```
root@PC1:/home/admin# nslookup my.sc.edu
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
my.sc.edu canonical name = claiming.onecarolina.sc.edu.
Name: claiming.onecarolina.sc.edu
Address: 65.122.170.55
```


Analyzing Traffic Logs

- Search traffic logs by "sinkhole" action.
 - Ability to know the source address of DNS request.
 - Provides the URL requested by client.

	(action eq sinkhole)										→ × + 👼 👼 💁
		Туре	Name	From Zone	To Zone	Source address	Destination address	To Port	Application	Action	URL
B	ŧ	spyware	Suspicious Domain	Internal	Outside	192.168.100.10	8.8.8.8	53	dns	sinkhole	Suspicious DNS Query (my.sc.edu)
B	ā	spyware	Suspicious Domain	Internal	Outside	192.168.100.10	8.8.8.8	53	dns	sinkhole	Suspicious DNS Query (google.com)

Conclusion

- Why is this work important?
 - Our test highlights, that there are some weaknesses in DNS sinkholes and how web browsers can encrypt data, which makes the domain request impossible to see.
- Future work includes deeper packet analysis
- Use of URL filtering with DNS sinkhole is effective
- Questions?
- Thank you for listening and watching