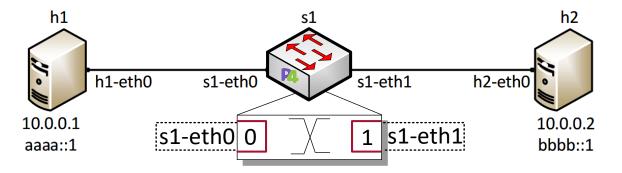


Writing Fine-grained Measurements App with P4 Programmable Switches

Hands-on Session 1: Intro to P4 and BMv2, writing a parser, and compiling P4 code

Elie Kfoury, Jorge Crichigno University of South Carolina http://ce.sc.edu/cyberinfra


University of South Carolina (USC) Energy Sciences Network (ESnet)

September 18, 2023

Lab 4: Parser Implementation

Lab Topology and Objectives

- The topology consists of two hosts: h1 and h2; one P4 switch: s1
- Defining the headers for Ethernet, IPv4 and IPv6
- Implementing the parser
- Testing and verifying the switch behavior when IPv4 and IPv6 packets are received

Headers Format

• Ethernet header:

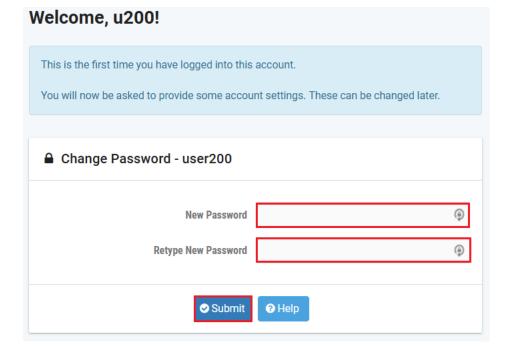
48 bits	48 bits	16 bits
Destination Address	Source Address	Ether Type

• IPv4 header:

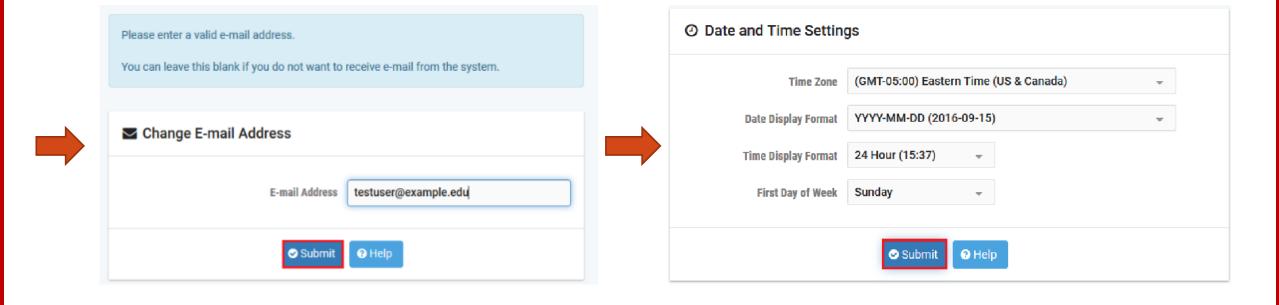
Bit	0 1 2 3	4 5 6 7	8 9 10 11 12 13	14 15	16 17 18	19 20 21 22 23 24 25 26 27 28 29 30 31		
0	Version	IHL	DSCP	ECN	Total Length			
32	Identifier				Flags	Fragment Offset		
64	Time ¹	To Live	Protocol		Header Checksum			
96	Source IP Address							
128	Destination IP Address							
160	Options (if IHL > 5)							

• IPv6 header:

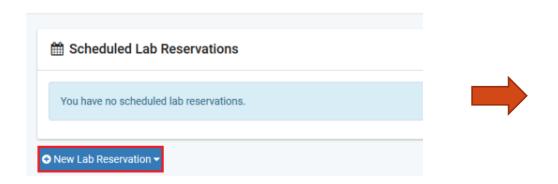
Bit	0 1 2 3	4 5 6 7 8 9 10 11	12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 3:					
0	Version	Traffic Class	Flow Label							
32		Payload Length		Next Header	Hop Limit					
64	·									
	Source IP Address									
192		Destination IP Address								


Accessing the Platform

- Please use the following link to access the platform:
 - https://netlab.cec.sc.edu/
- Login using your credentials



Cyberinfrastructure Lab @ UofSC



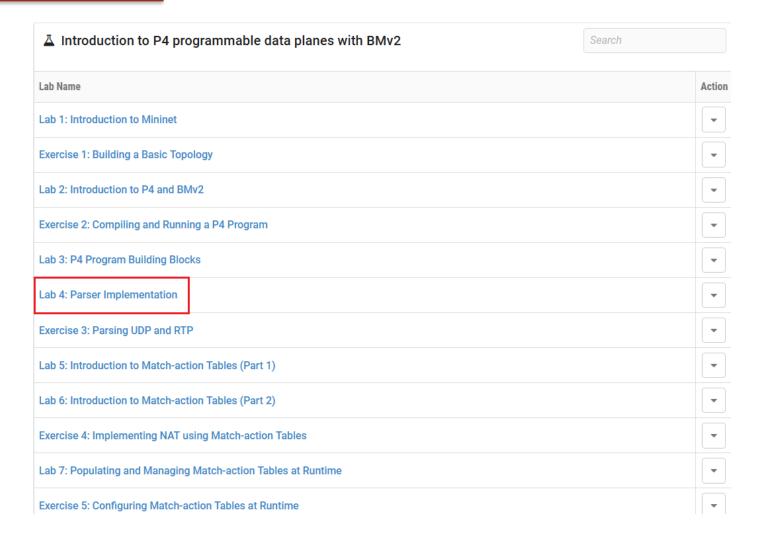
Accessing the Platform

- Please use the following link to access the platform:
 - https://netlab.cec.sc.edu/
- Login using your credentials

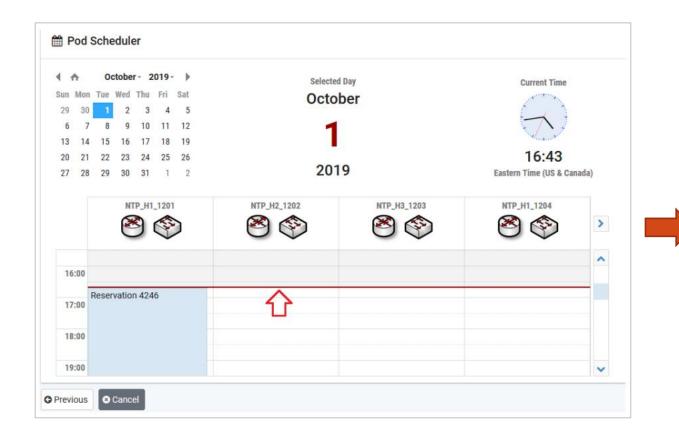
- Click on New Lab Reservation
- Click on Schedule Lab for Myself

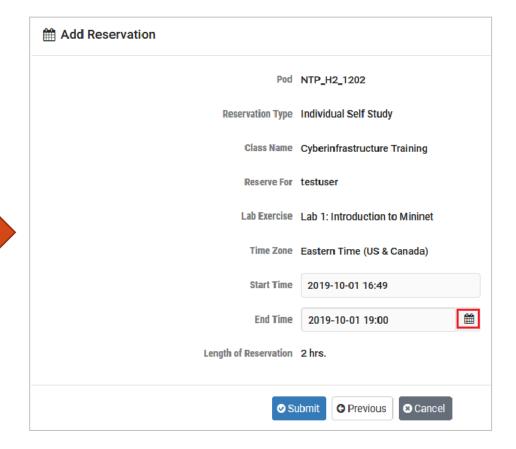
- Select the course
- For this session, we will use "Intro. To P4 Programmable Data Planes"

Multiple course topics are available. Please select one.


Intro. to P4 Programmable Data Planes

Introduction to P4 programmable data planes with BMv2


P4 Applications and Custom Processing


This lab series presents P4 applications, stateful elements, and custom packet processing

- Select the Lab
- For this session, we will run:
 - Lab 4: Parser Implementation

Select the next available POD and allocate time

Website URL and Accessing the Platform

Tutorial website with slides and URL to resources:

https://research.cec.sc.edu/cyberinfra/workshop-techex1

Access to virtual platform for this tutorial:

https://netlab.cec.sc.edu/