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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’

« Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)
form of congestion control
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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’

« Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)
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TCP Traditional Congestion Control

« The principles of window-based CC were described in the 1980s’

« Traditional CC algorithms follow the additive-increase multiplicative-decrease (AIMD)
form of congestion control
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BBR: Model-based CC

- TCP Bottleneck Bandwidth and RTT (BBR) is a rate-based congestion-control
algorithm’
* BBR represented a disruption to the traditional CC algorithms:

» is not governed by AIMD control law
» does not use packet loss as a signal of congestion

« At any time, a TCP connection has one slowest link bottleneck bandwidth (btlbw)
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1. N. Cardwell et al. "BBR v2, A Model-based Congestion Control." IETF 104, March 2019.
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Parallel Streams

« Conventional file transfer protocols use a control channel and a (single) data channel

(FTP model)
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Parallel Streams

« Conventional file transfer protocols use a control channel and a (single) data channel
(FTP model)

 gridFTP is an extension of the FTP protocol

« Afeature of gridF TP is the use of parallel streams
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Advantages of Parallel Streams

« Combat random packet loss not due congestion
» Parallel streams increase the recovery speed after the multiplicative decrease
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» Parallel streams increase the recovery speed after the multiplicative decrease
« Mitigate TCP round-trip time (RTT) bias

» Alow-RTT flow gets a higher share of the bandwidth than that of a high-RTT flow
» Increase bandwidth allocated to big science flows
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Maximum Segment Size (MSS)

« TCP receives data from application layer and places it in send buffer
« Data is typically broken into MSS units
« Atypical MSS is 1,500 bytes, but it can be as large as 9,000 bytes
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Advantages of Large MSS

 Less overhead

* The recovery after a packet loss is proportional to the MSS
» During the additive increase phase, TCP increases the congestion window by approximately one MSS
every RTT
» By using a 9,000-byte MSS instead of a 1,500-byte MSS, the throughput increases six times faster
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TCP Buffer Size

* In many WANSs, the round-trip time (RTT) is dominated by the propagation delay
« To keep the sender busy while ACKs are received, the TCP buffer must be:

Traditional congestion controls: TCP buffer size 2 2BDP

BBRv1 and BBRVZ: TCP buffer size must be considerable larger than 2BDP
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Fairness

* Networks do not use bandwidth reservation mechanism for TCP flows
* Routers simply forward packets based on destination IP address
« The TCP congestion control algorithm ‘allocates’ bandwidth
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Active Queue Management (AQM)

 AQM encompasses a set of algorithms to reduce network congestion
« AQM algorithms try to prevent buffers from remaining full
* If the buffer is full, a packet must be dropped

« A simple policy is Tail Drop: newly arriving packets are dropped until the queue has enough room to
accept incoming traffic
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Active Queue Management (AQM)

 AQM encompasses a set of algorithms to reduce network congestion
« AQM algorithms try to prevent buffers from remaining full
* If the buffer is full, a packet must be dropped

« A simple policy is Tail Drop: newly arriving packets are dropped until the queue has enough room to
accept incoming traffic

« Random Early Detection: when the queue size is between min. and max. thresholds, drop with certain
probability
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Summary

There are many aspects of TCP / transport protocol that are essential to consider for
high-performance networks

« Parallel streams

« MSS

 TCP buffers

* Router’s buffers, and others

Still there is a need for applied research; e.qg.,

« Performance studies of new congestion control algorithms
« TCP pacing

* Application of programmable switches
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