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Introduction

- Network Function Virtualization (NFV) is a technology that
permits the implementation of Network Functions (NFs) on
datacenters’ commodity servers

- Network functions include
- Firewall, access control lists
- Routers, switches, NAT, DHCP

All major services of the data center can be virtualized.
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Introduction

- Consider the weighted network below
- A set of datacenter that implement particular functions

- There is a set of function F = {0, 1}

- A client request is interested in both functions to apply them to a
flow from ingress switch O to egress switch 3

- A datacenter d implements fy C F

- The cost and resources to implement
a function are datacenter-dependent

- What should the path of the flow be,
in order to minimize the routing and
deployment costs?

O Datacenter



Introduction

Example:
- Datacenter 1 implements functions O and 1 at costs 1 and 10
- Datacenter 2 implements functions 0 and 1 at costs 10 and 1

Function O at cost 1
Function 1 at cost 10

Function O at cost 10
Function 1 at cost 1




Introduction

Example:
- Datacenter 1 implements functions O and 1 at costs 1 and 10

- Datacenter 2 implements functions 0 and 1 at costs 10 and 1

- The optimal solution places functions 0 and 1 at datacenters 1
and 2 respectively, and route the traffic through (0, 2), (2, 1), (1,3)

Function O at cost 1
Function 1 at cost 10

@ Function 0 instance

Function O at cost 10 . .
® [unction 1 instance

Function 1 at cost 1




Optimization Model

- The network is represented as a graph ¢ = (v, E)

- Each link (i, j) € £ has an associated cost J

- The subset D C V represents the set of datacenters

- A datacenterd € D implements a subset of functions F; C F

- Each request 7 € R is characterized by a 3-tuple (src,., dsty, F)

- A datacenter has a set of resources W = {wq 1, W42, .., Weim }

- To implement function i € Fy , the datacenter uses w} ,wy o, ..., w} ,,

- The setup cost of an instance i € Fy is ¢/,

- Each instance i € F; can serve up to \, requests

- Variable ﬂfi?d indicates whether datacenter d serves function ¢ € F,
requested by r € R

- Variable yé iIndicates the number of instances of function i at d

- Variable lij indicates whether link (i, j) € £ is used by flow r € R
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Optimization Model

- The objective is the maximization of the number of satisfied
network functions (NFs)
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N
Optimization Model

- The objective is the maximization of the number of satisfied
network functions (NFs)
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- Minimization of the NF deployment cost
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Optimization Model

- Minimization of the routing cost

Max - F3 = Z Z G100 =

reR (i,j)eE
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Optimization Model

- Requested functions 0 and 1 are only implemented in one
datacenter

0 0 .
To1 T To2 = 1 Function O

Zﬂ,dil ‘

deD ro, + T <1 Function 1




Optimization Model

- The total amount of resources (memory, CPU, storage) is limited
at each datacenter

- E.g., 15 and 20 storage units used by an instance of function O

and 1 respectively at datacenter 1. Datacenter has 100 storage
units

i1 _ - 0 1 Datacenter 1,
§ WqjYa < Wdy ‘ 15y1 4 20y; < 100 storage resource
ieFy




Optimization Model

- There is a path from the ingress switch O to egress switch 3

Node O: (1 +102) = (189 +13) = 1
Node 1: (16" +16"2 +1649) = (1Y 1V +1%) = 0
Node 2: (16" +16"" +16™7) = (16" + 15" +16") = 0
Node 3: (1§D +1) = (52 +13Y) = -1

Z lij — Z lG: = 1;i = srey, srey # dst,

{ —1;1 = dst,, src, # dst,
j:(i,j)EE j:(4,3)EE 0; otherwise.




Optimization Model

- If a function O is placed at datacenter 1, then the path from the
Ingress switch O to egress switch 3 must include datacenter 1

l{(}l,(})_{_l{(]lg)_{_l[(]l,:}) > 1178,1




Optimization Model

- If a function O is placed at datacenter 1, then the path from the
iIngress switch O to egress switch 3 must include datacenter 1

lélao) _I_ l[(]152) _|_ l[(:'la?’} 2 J-:g,l

- If a function 1 is placed at datacenter 1, then the path from the
Ingress switch O to egress switch 3 must include datacenter 1

l'glao) + llglsz) + léla*g} > . Nl

= Lo




Optimization Model

- If a function O is placed at datacenter 1, then the path from the
iIngress switch O to egress switch 3 must include datacenter 1

lélao) _I_ l[(]152) _|_ l[(:'la?’} 2 J-:g,l

- If a function 1 is placed at datacenter 1, then the path from the
Ingress switch O to egress switch 3 must include datacenter 1

l'glao) + llglsz) + léla*g} > . Nl
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Optimization Model

- Variables :r:i,d Ya l;; are binary, integer, and real — NP hard

- For large instances of the problem, finding the optimal solution is
not practical

max F° = wlzz Z mid—wzzchiyi
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Greedy Approach

- Greedy approach based on Dijkstra algorithm

Algorithm 1 Greedy Routing and Placement of NFs

1. INPUT: G(V, E), c*'V(i,j) € E,R,F,D

2. OUTPUT: z% 4, y§, 1¥ values

3.setzl ;=0,y5=0,lY =0foralr€ R,i€ Fr,de D, (i,j) € E
4 forall r € Rdo

5. D(r)={}

6. k=1

7. forall i€ F, do

8. dj. = datacenter that implements 7 at minimum cost and has enough resources

to serve an additional request

9 update resources of dj

10 update y;,

11 set x:.vd ——5 |

12 D(r) = D(r) U dg

13 k=k+1

14, end for

15. end for

16. for all » € R do

17 sTrec = srer

18 C(r) = {src}

19 for k = 110 |D(r)| do
20. dst = dj.
21. if d. 3 C(r) then
2% SP = Dijkstra(src, dst)
23. set I} = 1 for all link (i,j) € SP
24. C(r) = C(r) Udp
25. C(r) = C(r) U j, for all datacenter ;7 € SP, j € D(r)
26. end if
2. src = dst
28.  end for

29. dst = dst,

30. SP = Dijkstra(src,dst)
31, setl! =1 forall (i,j) € SP
32. end for

33. return z} 4, y5, 1Y

Placement of network functions,
one request at a time

Routing of flows through datacenters
— implementing the functions, one request
at a time




Numerical Examples

- The number of types of resources at a datacenter was set to three
(e.g., RAM, storage, CPU)

- The amount of resources of a type at a datacenter is uniform in [.33,
300]

- There are five network functions; each datacenter implements
three functions

- The amount of resources of a type needed for an instance of a
function is uniform in [0,100]

- The cost of instantiate a function is uniform in [0, 100]
- Datacenters were randomly located in the topology below




Numerical Example 1

Requests: 15, Datacenters: 3
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where ovr p is the optimal value obtained with the LP scheme,
and ov,, is the optimal value obtained with the ILP or greedy
heuristic.

5

Normalized Number of Satisfied NFs [%]
.8 \ \

-50,
1

3
Number of Functions per Request

* When there is a small number of datacenters (3) and multiple requests (15), ILP has a comparable
performance to that of LP; deployment cost increases with the number of function per request

* The gap of the heuristic increases with the number of function per requests; finding the optimal solution
requires the evaluation of a large nhumber of combinations



Numerical Example 1
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* Deployment cost increases with the number of functions per request



Numerical Example 1
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* For LP and ILP, the increase in routing cost is mostly flat; i.e., when the number of datacenters is small,
routing is ‘less important’, because the implementation of functions are concentrated in few datacenters



Numerical Example 2

Requests: 15, Datacenters: 11
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* When there is a large number of datacenters (11) and multiple requests (15), ILP continues to have a
comparable performance to LP

» Deployment cost increases substantially when the number of functions per request increases from 1 to 3.
However, the increase in cost is minimal when the number of functions per request increases from 3 to 5;
I.e., a single instance serves multiple requests without an increase of deployment of functions



Numerical Example 2
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« For LP and ILP, the routing cost increases with the number of function per requests; i.e., when the
number of datacenters is large, routing is ‘more important’, because the implementation of functions are
dispersed in many datacenters



Concluding Remarks

- We are currently working on an optimization scheme for the joint
routing and placement of virtual network functions (NFs) problem

- The proposed ILP maximizes the number of satisfied NFs while at
the same time minimizes the deployment and routing costs

- A heuristics and ILP are currently being tested

- The implementation of the proposed schemes in small testbeds
using ONOS SDN is being implemented

Open Network Operating System (ONOS) SDN, [Online]. Available: http://onosproject.org/
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Numerical Example 3
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* ILP and LP performances similar; ~2% gap

» As the number of request increases, the heuristic gap substantially increases; finding the optimal solution
requires the evaluation of a large nhumber of combinations
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» Deployment cost increases with the number of requests; ILP performance is comparable to that of LP —
'small’ performance gap



Numerical Example 3
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* Routing cost increases with the number of requests; ILP performance is comparable to that of LP —'small’
performance gap

» While the gap of the routing cost of the greedy approach decreases with the number of requests, the
number of satisfied requests is mostly flat



Introduction

About Linear Programming

- Many of the problems for which we want algorithms are optimization
tasks

- Optimization tasks seek a solution that (1) satisfies -certain
constraints and (2) is the best, with respect to a criterion

- Linear programming describes a broad class of optimization tasks in
which both the constraints and the optimization criterion are linear
functions




Introduction

About Reductions

- Sometimes a computational task is sufficiently general that any
subroutine for it can also be used to solve a variety of other
tasks, which at glance might seem unrelated

- Once we have an algorithm for a problem, we can use it to solve
other problems

Algorithm for the Routing and Placement of Network Functions

Solution

Instance | for |
—+—m» Pre-process —»| Algorithm for LP ——» Post-process >




