
JOINT ROUTING AND PLACEMENT OF

VIRTUAL NETWORK FUNCTIONS

Jorge Crichigno1,2, D. Oliveira3, M. Pourvali3, N. Ghani3 , D. Torres2

1University of South Carolina, SC, USA
2Northern New Mexico College, NM, USA

3University of South Florida, FL, USA

1



Agenda

• Introduction

• Optimization model

• Numerical examples

• Concluding remarks

2



Introduction

• Network Function Virtualization (NFV) is a technology that

permits the implementation of Network Functions (NFs) on

datacenters’ commodity servers

• Network functions include

• Firewall, access control lists

• Routers, switches, NAT, DHCP

3

http://www.vmware.com/



Introduction

• Consider the weighted network below

• A set of datacenter that implement particular functions

• There is a set of function

• A client request is interested in both functions to apply them to a

flow from ingress switch 0 to egress switch 3

• A datacenter d implements

4

Datacenter

• The cost and resources to implement

a function are datacenter-dependent

• What should the path of the flow be,

in order to minimize the routing and

deployment costs?



Introduction

Example:

• Datacenter 1 implements functions 0 and 1 at costs 1 and 10

• Datacenter 2 implements functions 0 and 1 at costs 10 and 1

5

Function 0 at cost 1

Function 1 at cost 10

Function 0 at cost 10

Function 1 at cost 1



Introduction

Example:

• Datacenter 1 implements functions 0 and 1 at costs 1 and 10

• Datacenter 2 implements functions 0 and 1 at costs 10 and 1

• The optimal solution places functions 0 and 1 at datacenters 1

and 2 respectively, and route the traffic through (0, 2), (2, 1), (1,3)

6

Function 0 instance

Function 1 instance

Function 0 at cost 1

Function 1 at cost 10

Function 0 at cost 10

Function 1 at cost 1



Optimization Model

• The network is represented as a graph

• Each link has an associated cost

• The subset represents the set of datacenters

• A datacenter implements a subset of functions

• Each request is characterized by a 3-tuple

• A datacenter has a set of resources

• To implement function , the datacenter uses

• The setup cost of an instance is

• Each instance can serve up to requests

• Variable indicates whether datacenter d serves function

requested by

• Variable indicates the number of instances of function i at d

• Variable indicates whether link is is used by flow

7



Optimization Model

• The objective is the maximization of the number of satisfied

network functions (NFs)

8



Optimization Model

• The objective is the maximization of the number of satisfied

network functions (NFs)

• Minimization of the NF deployment cost

9



Optimization Model

• Minimization of the routing cost

10



Optimization Model

• Requested functions 0 and 1 are only implemented in one

datacenter

11

Function 0

Function 1



Optimization Model

• The total amount of resources (memory, CPU, storage) is limited

at each datacenter

• E.g., 15 and 20 storage units used by an instance of function 0

and 1 respectively at datacenter 1. Datacenter has 100 storage

units

12

Datacenter 1, 

storage resource



Optimization Model

• There is a path from the ingress switch 0 to egress switch 3

13

Node 0:

Node 1:

Node 2:

Node 3:



Optimization Model

• If a function 0 is placed at datacenter 1, then the path from the

ingress switch 0 to egress switch 3 must include datacenter 1

14



Optimization Model

• If a function 0 is placed at datacenter 1, then the path from the

ingress switch 0 to egress switch 3 must include datacenter 1

• If a function 1 is placed at datacenter 1, then the path from the

ingress switch 0 to egress switch 3 must include datacenter 1

15



Optimization Model

• If a function 0 is placed at datacenter 1, then the path from the

ingress switch 0 to egress switch 3 must include datacenter 1

• If a function 1 is placed at datacenter 1, then the path from the

ingress switch 0 to egress switch 3 must include datacenter 1

16



Optimization Model

• Variables , , are binary, integer, and real – NP hard

• For large instances of the problem, finding the optimal solution is

not practical

17



Greedy Approach

• Greedy approach based on Dijkstra algorithm

18

Placement of network functions, 

one request at a time

Routing of flows through datacenters 

implementing the functions, one request 

at a time



Numerical Examples

• The number of types of resources at a datacenter was set to three

(e.g., RAM, storage, CPU)

• The amount of resources of a type at a datacenter is uniform in [.33,

300]

• There are five network functions; each datacenter implements

three functions

• The amount of resources of a type needed for an instance of a

function is uniform in [0,100]

• The cost of instantiate a function is uniform in [0, 100]

• Datacenters were randomly located in the topology below

19



Numerical Example 1

20

• When there is a small number of datacenters (3) and multiple requests (15), ILP has a comparable 

performance to that of LP; deployment cost increases with the number of function per request

• The gap of the heuristic increases with the number of function per requests; finding the optimal solution 

requires the evaluation of a large number of combinations



Numerical Example 1

21

• Deployment cost increases with the number of functions per request



Numerical Example 1

22

• For LP and ILP, the increase in routing cost is mostly flat; i.e., when the number of datacenters is small, 

routing is ‘less important’, because the implementation of functions are concentrated in few datacenters



Numerical Example 2

23

• When there is a large number of datacenters (11) and multiple requests (15), ILP continues to have a 

comparable performance to LP

• Deployment cost increases substantially when the number of functions per request increases from 1 to 3. 

However, the increase in cost is minimal when the number of functions per request increases from 3 to 5; 

i.e., a single instance serves multiple requests without an increase of deployment of functions



Numerical Example 2

24

• For LP and ILP, the routing cost increases with the number of function per requests; i.e., when the 

number of datacenters is large, routing is ‘more important’, because the implementation of functions are 

dispersed in many datacenters



Concluding Remarks

25

• We are currently working on an optimization scheme for the joint

routing and placement of virtual network functions (NFs) problem

• The proposed ILP maximizes the number of satisfied NFs while at

the same time minimizes the deployment and routing costs

• A heuristics and ILP are currently being tested

• The implementation of the proposed schemes in small testbeds

using ONOS SDN is being implemented

Open Network Operating System (ONOS) SDN, [Online]. Available: http://onosproject.org/



THANK YOU

26



Numerical Example 3

27

• ILP and LP performances similar; ~2% gap

• As the number of request increases, the heuristic gap substantially increases; finding the optimal solution 

requires the evaluation of a large number of combinations



Numerical Example 3

28

• Deployment cost increases with the number of requests; ILP performance is comparable to that of LP –

’small’ performance gap 



Numerical Example 3

29

• Routing cost increases with the number of requests; ILP performance is comparable to that of LP –’small’ 

performance gap

• While the gap of the routing cost of the greedy approach decreases with the number of requests, the 

number of satisfied requests is mostly flat



Introduction

About Linear Programming

• Many of the problems for which we want algorithms are optimization

tasks

• Optimization tasks seek a solution that (1) satisfies certain

constraints and (2) is the best, with respect to a criterion

• Linear programming describes a broad class of optimization tasks in

which both the constraints and the optimization criterion are linear

functions

30



Introduction

About Reductions

• Sometimes a computational task is sufficiently general that any

subroutine for it can also be used to solve a variety of other

tasks, which at glance might seem unrelated

• Once we have an algorithm for a problem, we can use it to solve

other problems

31


