JOINT ROUTING AND PLACEMENT OF
VIRTUAL NETWORK FUNCTIONS

Jorge Crichigno!2, D. Oliveira®, M. Pourvali®, N. Ghani?, D. Torres?
lUniversity of South Carolina, SC, USA
°Northern New Mexico College, NM, USA
3University of South Florida, FL, USA



Agenda

- Introduction

- Optimization model
- Numerical examples
- Concluding remarks



Introduction

- Network Function Virtualization (NFV) is a technology that
permits the implementation of Network Functions (NFs) on
datacenters’ commodity servers

- Network functions include
- Firewall, access control lists
- Routers, switches, NAT, DHCP

All major services of the data center can be virtualized.

« ‘@
[ Application

Applications .| Consumption

Virtual Virtual Virtual 0
Software Machines Networks Storage _ i
Hardware Compute Network Storage
Capacity Capacity Capacity
Virtual Desktop
Laptop

- q_'
Tablet

® - ® Mobile
Location Independence

Desktop
Internet

http://mwww.vmware.com/



Introduction

- Consider the weighted network below
- A set of datacenter that implement particular functions

- There is a set of function F = {0, 1}

- A client request is interested in both functions to apply them to a
flow from ingress switch O to egress switch 3

- A datacenter d implements fy C F

- The cost and resources to implement
a function are datacenter-dependent

- What should the path of the flow be,
in order to minimize the routing and
deployment costs?

O Datacenter



Introduction

Example:
- Datacenter 1 implements functions O and 1 at costs 1 and 10
- Datacenter 2 implements functions 0 and 1 at costs 10 and 1

Function O at cost 1
Function 1 at cost 10

Function O at cost 10
Function 1 at cost 1




Introduction

Example:
- Datacenter 1 implements functions O and 1 at costs 1 and 10

- Datacenter 2 implements functions 0 and 1 at costs 10 and 1

- The optimal solution places functions 0 and 1 at datacenters 1
and 2 respectively, and route the traffic through (0, 2), (2, 1), (1,3)

Function O at cost 1
Function 1 at cost 10

@ Function 0 instance

Function O at cost 10 . .
® [unction 1 instance

Function 1 at cost 1




Optimization Model

- The network is represented as a graph ¢ = (v, E)

- Each link (i, j) € £ has an associated cost J

- The subset D C V represents the set of datacenters

- A datacenterd € D implements a subset of functions F; C F

- Each request 7 € R is characterized by a 3-tuple (src,., dsty, F)

- A datacenter has a set of resources W = {wq 1, W42, .., Weim }

- To implement function i € Fy , the datacenter uses w} ,wy o, ..., w} ,,

- The setup cost of an instance i € Fy is ¢/,

- Each instance i € F; can serve up to \, requests

- Variable ﬂfi?d indicates whether datacenter d serves function ¢ € F,
requested by r € R

- Variable yé iIndicates the number of instances of function i at d

- Variable lij indicates whether link (i, j) € £ is used by flow r € R




.
Optimization Model

- The objective is the maximization of the number of satisfied
network functions (NFs)

_ i .0 1 .0 . 1
Max Fy = E E E Ty =T+ Toq Tt T
reRieF;deD




N
Optimization Model

- The objective is the maximization of the number of satisfied
network functions (NFs)

_ L 0 L -0 -
Max Fy = E E E Ty =T+ Toq Tt T
reRieF;deD

- Minimization of the NF deployment cost

Max —Fo =3 Y chyh =y + 10y} + 1043 + 1y
deD ieFy




Optimization Model

- Minimization of the routing cost

Max - F3 = Z Z G100 =

reR (i,j)eE

10;3351]_|_£S}:2]_|_10£Il;1:u)+331:2)+531:3)+332:D)_I_Ilgﬂsl)_I_Ilgﬂﬁ)_l_llgll)_l_llgiﬂ)




Optimization Model

- Requested functions 0 and 1 are only implemented in one
datacenter

0 0 .
To1 T To2 = 1 Function O

Zﬂ,dil ‘

deD ro, + T <1 Function 1




Optimization Model

- The total amount of resources (memory, CPU, storage) is limited
at each datacenter

- E.g., 15 and 20 storage units used by an instance of function O

and 1 respectively at datacenter 1. Datacenter has 100 storage
units

i1 _ - 0 1 Datacenter 1,
§ WqjYa < Wdy ‘ 15y1 4 20y; < 100 storage resource
ieFy




Optimization Model

- There is a path from the ingress switch O to egress switch 3

Node O: (1 +102) = (189 +13) = 1
Node 1: (16" +16"2 +1649) = (1Y 1V +1%) = 0
Node 2: (16" +16"" +16™7) = (16" + 15" +16") = 0
Node 3: (1§D +1) = (52 +13Y) = -1

Z lij — Z lG: = 1;i = srey, srey # dst,

{ —1;1 = dst,, src, # dst,
j:(i,j)EE j:(4,3)EE 0; otherwise.




Optimization Model

- If a function O is placed at datacenter 1, then the path from the
Ingress switch O to egress switch 3 must include datacenter 1

l{(}l,(})_{_l{(]lg)_{_l[(]l,:}) > 1178,1




Optimization Model

- If a function O is placed at datacenter 1, then the path from the
iIngress switch O to egress switch 3 must include datacenter 1

lélao) _I_ l[(]152) _|_ l[(:'la?’} 2 J-:g,l

- If a function 1 is placed at datacenter 1, then the path from the
Ingress switch O to egress switch 3 must include datacenter 1

l'glao) + llglsz) + léla*g} > . Nl

= Lo




Optimization Model

- If a function O is placed at datacenter 1, then the path from the
iIngress switch O to egress switch 3 must include datacenter 1

lélao) _I_ l[(]152) _|_ l[(:'la?’} 2 J-:g,l

- If a function 1 is placed at datacenter 1, then the path from the
Ingress switch O to egress switch 3 must include datacenter 1

l'glao) + llglsz) + léla*g} > . Nl

= Lo



Optimization Model

- Variables :r:i,d Ya l;; are binary, integer, and real — NP hard

- For large instances of the problem, finding the optimal solution is
not practical

max F° = wlzz Z mid—wzzchiyi

reERiIEF, deED|icEF deDicFy
my ¥ e W
reR (i.j)eEE
g < 1 r€R,ieF, (2)
de D
Ty Ya reRicF,deDlicFy 3)

wg; deDireRje{l,2,..,|[Wi} @

18g
S
&
A IA

Ny, deD.ieFy (5)

(]
_:qua.
=}
[

—1;i = dst,, sre, # dst,

Z Ly - Z 551:—{ ;i = srep, srey # dst, (6)

0; otherwise. icV.rc R

J:{i.d)EE Ji{FA)EE
Z 19 > zi, reRicF.deD|icF, 7
(d.j)eE
i, € {0,1} reRicF,deDlicFy (8)
vs € Z% deD,ieF, (9)
I7 € {0,1} reR(i.j)eEE (10)




Greedy Approach

- Greedy approach based on Dijkstra algorithm

Algorithm 1 Greedy Routing and Placement of NFs

1. INPUT: G(V, E), c*'V(i,j) € E,R,F,D

2. OUTPUT: z% 4, y§, 1¥ values

3.setzl ;=0,y5=0,lY =0foralr€ R,i€ Fr,de D, (i,j) € E
4 forall r € Rdo

5. D(r)={}

6. k=1

7. forall i€ F, do

8. dj. = datacenter that implements 7 at minimum cost and has enough resources

to serve an additional request

9 update resources of dj

10 update y;,

11 set x:.vd ——5 |

12 D(r) = D(r) U dg

13 k=k+1

14, end for

15. end for

16. for all » € R do

17 sTrec = srer

18 C(r) = {src}

19 for k = 110 |D(r)| do
20. dst = dj.
21. if d. 3 C(r) then
2% SP = Dijkstra(src, dst)
23. set I} = 1 for all link (i,j) € SP
24. C(r) = C(r) Udp
25. C(r) = C(r) U j, for all datacenter ;7 € SP, j € D(r)
26. end if
2. src = dst
28.  end for

29. dst = dst,

30. SP = Dijkstra(src,dst)
31, setl! =1 forall (i,j) € SP
32. end for

33. return z} 4, y5, 1Y

Placement of network functions,
one request at a time

Routing of flows through datacenters
— implementing the functions, one request
at a time




Numerical Examples

- The number of types of resources at a datacenter was set to three
(e.g., RAM, storage, CPU)

- The amount of resources of a type at a datacenter is uniform in [.33,
300]

- There are five network functions; each datacenter implements
three functions

- The amount of resources of a type needed for an instance of a
function is uniform in [0,100]

- The cost of instantiate a function is uniform in [0, 100]
- Datacenters were randomly located in the topology below




Numerical Example 1

Requests: 15, Datacenters: 3

—ILP
—Greedy

£30-—LP i
4
=)
2 ////,/A
[
£ 25
[}
[4)]
bS] /
§20 7
£ \\\\\\\\\\\
=]
P4

5

10/

3
Number of Functions per Request

Requests: 15, Datacenters: 3

\
—Ip (3ap::

.20 —Greedy| ..

-
o

ovrLp — OUqlg

ovLp
25

where ovr p is the optimal value obtained with the LP scheme,
and ov,, is the optimal value obtained with the ILP or greedy
heuristic.

5

Normalized Number of Satisfied NFs [%]
.8 \ \

-50,
1

3
Number of Functions per Request

* When there is a small number of datacenters (3) and multiple requests (15), ILP has a comparable
performance to that of LP; deployment cost increases with the number of function per request

* The gap of the heuristic increases with the number of function per requests; finding the optimal solution
requires the evaluation of a large nhumber of combinations



Numerical Example 1

Requests: 15, Datacenters: 3

35 700 Requests: 15, Datacenters: 3
— e —ILp
—Greedy | —Greedy
230l —1p T 600 —p
z 2
o
@ O 500 S
225 B E —
E‘n_“ / 5400 A
o ]
- A 2 /
é 2 8 300
1
2 z /
5
10/ 20
1 3 5 10()1 3 5
Number of Functions per Request Number of Functions per Request
. Requests: 15, Datacenters: 3 30 Requests: 15, Datacenters: 3
x10 —
& T £ —ILP
@ s
w -15 = —Greed
: i S v
B -20 — Greedy . O 10
= c
2 2 0
3% £ T
“ 2 -10 ™
% %0 § 20 o
8 B
£ -35 L
z z-
g -40 = -40
g £
@ .45 = -50
€
S 50 Z° 5 \
™Y 3 5 1 3 5
Number of Functions per Request Number of Functions per Request

* Deployment cost increases with the number of functions per request



Numerical Example 1

35 Requests: 15, Datacenters: 3 75 Requests: 15, Datacenters: 3

—ILP —ILP

—Greedy — Greedy 7 s
—LP — —LP

/

\

3
Number of Functions per Request

~
[=]
i

g

[+2]
(5]

8

)]
o

_

(4]
a

Routing Cost

n
o

ot

e

)]
o

Number of Satisfied NFs

/

—

w
B~
($)]

e

-
3]
'S
O
4]

3
Number of Functions per Request

_ Requests: 15, Datacenters: 3 Requests: 15, Datacenters: 3
-0 T 40
‘@ —ILP
(2]
LZL -15 —ILP g 30 —Greedy
2 -20 —Greedy = e
7 §
2 20
n‘g 25 g
s =]
2-30 & 10
=}
=
z T 0
g0 g
[=]
N b //’4
S .45 BT ——
g -
[]
Z -50 1 3 5
1 S 5 Number of Functions per Request
Number of Functions per Request per hieq

* For LP and ILP, the increase in routing cost is mostly flat; i.e., when the number of datacenters is small,
routing is ‘less important’, because the implementation of functions are concentrated in few datacenters



Numerical Example 2

Requests: 15, Datacenters: 11

Requests: 15, Datacenters: 11

3

550
—ip
—Greedy
250 —1p =
pd
h=]
3
340 —
= /
w
S0
o}
o
£
Z 20
10 150 ? i

-
(&3]
-

(4]

3 3
Number of Functions per Request Number of Functions per Request

Requests: 15, Datacenters: 11 Requests: 15, Datacenters: 11

—ILP
-5 —Greedy

—ILP
—Greedy -

(]
(=]

N
5]

—_
w

R

\

:

Normalized Number of Satisfied NFs [%)]
8
. /
Normalized NF Deployment Cost [%]
n
o

—
3]
(=]

—
[4)]

Number of Functions per Request 3
umoer ot perrieq Number of Functions per Request

* When there is a large number of datacenters (11) and multiple requests (15), ILP continues to have a
comparable performance to LP

» Deployment cost increases substantially when the number of functions per request increases from 1 to 3.
However, the increase in cost is minimal when the number of functions per request increases from 3 to 5;
I.e., a single instance serves multiple requests without an increase of deployment of functions



Numerical Example 2

60 Requests: 15, Datacenters: 11 85 Requests: 15, Datacenters: 11
—ILP —:;P .
—Greed ||—Greeay

50 __p v et & —LP

~
31

=]
\

—

8

Routing Cost
~
o

[o2]
(5]

/

Number of Satisfied NFs

\B
\°

—
o

[4,]

a1

-
(&3]

iy

(4]

3 3
Number of Functions per Request Number of Functions per Request

Requests: 15, Datacenters: 11

Requests: 15, Datacenters: 11

iy
= —ILP 36 s Py
w -5 — -
Zz Greedy oy 80r —Greedy
g -10 = !
< g |
51 o
? 50 p20
- T 315
.8 25 @
£ b=l i
3-30 E 10
© i
g E @
3 2 5
-40 0 :
% N ;
Z -45 -5 i 5|

—
3]
.

3 3
Number of Functions per Request Number of Fungtions per Request

« For LP and ILP, the routing cost increases with the number of function per requests; i.e., when the
number of datacenters is large, routing is ‘more important’, because the implementation of functions are
dispersed in many datacenters



Concluding Remarks

- We are currently working on an optimization scheme for the joint
routing and placement of virtual network functions (NFs) problem

- The proposed ILP maximizes the number of satisfied NFs while at
the same time minimizes the deployment and routing costs

- A heuristics and ILP are currently being tested

- The implementation of the proposed schemes in small testbeds
using ONOS SDN is being implemented

Open Network Operating System (ONOS) SDN, [Online]. Available: http://onosproject.org/



THANK YOU




Numerical Example 3

80 Datacenters: 11, Functions per Request: 5
—IP

50— Greedy A
—LP i

=
o
=

e

\

Number of Satisfied NFs
4]
o

o

-
(2]

7 9 11 13 15

Number of Requests
— Datacenters: 11, Functions per Request: 5
& : ¢
T ov — 0Uq1
lf .5__Greed e - LP a g

Yy - —

z-10 : AN Gap
% 15 N ovLp
- '
520 L
g where ovp p is the optimal value obtained with the LP scheme,
z% 5 and ov,, is the optimal value obtained with the ILP or greedy
g% heuristic.
€40 :
5] H
z 45 3 5 7 s 11 13 15

Number of Requests

* ILP and LP performances similar; ~2% gap

» As the number of request increases, the heuristic gap substantially increases; finding the optimal solution
requires the evaluation of a large nhumber of combinations



Numerical Example 3

0 . Datacenters: 11, Functions per Request: 5 800 Datacenters: 11, Functions per Request: 5
—ILP —iP / \
50 — Greedy % 7001 — Greedy /
g =t g 600 1P
340 : 2 o
2 ; : £ 50 /
2 : : g
ES i /// —y S400 \ S
5 | : 2
o i : @ 300
220 / : S / -
zZ, : oS
_— 100 == —=
0 i i 0

1 3 5 7 9 11 13 15
1 3 5 7 9 11 13 15
Number of Requests Number of Requests

9 Datacenters: 11, Functions per Request. 5 250 Datacenters: 11, Functions per Request: 5
o H
= 5 1P ; ® |[—ue
% | —Greedy N L % —Greed
z : 2000 y
g -10 /\ 8
o E‘ /N
o £ 100
£.25 E
3 = . —
2 -30 z 50 R

@
% .35 % \,”"",_‘ \
= E
N _
£ -40 : g
(=} H 50
Z 45 : . 1 3 5 7 9 1 13 15

1 3 5 7 9 11 13 15
Number of Requests Number of Requests

» Deployment cost increases with the number of requests; ILP performance is comparable to that of LP —
'small’ performance gap



Numerical Example 3

Datacenters: 11, Functions per Request: 5

2]
[=]

Datacenters: 11, Functions per Request: 5

: H 90 g
—IP w0 | P T
50— Greedy y | —Greedy
£ —Lp 70-[—LP
T 40 : ¢ = 60
] : 8 50
fo e . : i S
b 5 : H :
e i i <] i
g0 et 30 e
é / 20 M‘ ..................................................................................................................
10/ . 10 : H i
0 i i o 3 5 7 si 1i1 1i3 15
1 3 5 7 9 1 13 15 Number of R t
Number of Requests umber o Requests
_ Datacenters: 11, Functions per Request: 5 120 Datacenters: 11, Functions per Request: 5
g - :
¢ o5 P - S B —ILP
< — Greedy A © 100 —Greedy
T -10 : : = H / \
$ | \ Z a0 :
2 .15 i O {
- ./
[ [=}
Q. ['n i i
_g 25 3 40
230 N
o] 20 ..................
T35 £ ;
5 40 I i S
= : :
% -45 : i .20 i i
1 3 5 7 9 1 13 15 1 3 5 7 9 11 13 15
Number of Requests Number of Requests

* Routing cost increases with the number of requests; ILP performance is comparable to that of LP —'small’
performance gap

» While the gap of the routing cost of the greedy approach decreases with the number of requests, the
number of satisfied requests is mostly flat



Introduction

About Linear Programming

- Many of the problems for which we want algorithms are optimization
tasks

- Optimization tasks seek a solution that (1) satisfies -certain
constraints and (2) is the best, with respect to a criterion

- Linear programming describes a broad class of optimization tasks in
which both the constraints and the optimization criterion are linear
functions




Introduction

About Reductions

- Sometimes a computational task is sufficiently general that any
subroutine for it can also be used to solve a variety of other
tasks, which at glance might seem unrelated

- Once we have an algorithm for a problem, we can use it to solve
other problems

Algorithm for the Routing and Placement of Network Functions

Solution

Instance | for |
—+—m» Pre-process —»| Algorithm for LP ——» Post-process >




