

NETWORK TOOLS AND PROTOCOLS

Lab 10: Measuring TCP Fairness

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 10: TCP Fairness

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Fairness concepts .. 3

1.1 TCP bandwidth allocation .. 3

1.2 TCP fairness index calculation .. 5

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 8

2.2 Emulating 10 Gbps high-latency WAN ... 8

2.3 Testing connection ... 10

3 Calculating fairness among parallel flows .. 13

4 Calculating fairness among several hosts with the same congestion control
algorithm ... 14

5 Calculating fairness among hosts with different congestion control algorithms 17

References .. 19

Lab 10: TCP Fairness

Overview

This lab introduces TCP fairness in Wide Area Networks (WAN) and explains how
competing TCP connections converge to fairness. The lab describes how to calculate the
TCP fairness index, a metric that quantifies how fair the aggregate connection is divided
between active connections. Finally, the lab conducts throughput tests in an emulated
high-latency network and derives the fairness index.

Objectives

By the end of this lab, students should be able to:

1. Define TCP fairness.
2. Calculate TCP fairness index.
3. Emulate a WAN and calculating fairness index among parallel streams.
4. Emulate a WAN and calculating fairness index among competing TCP connections.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Fairness concepts.
2. Section 2: Lab topology.
3. Section 3: Calculating fairness among parallel flows.
4. Section 4: Calculating fairness index with different congestion control

algorithms.

1 Fairness concepts

1.1 TCP bandwidth allocation

Lab 10: TCP Fairness

Many networks do not use any bandwidth reservation mechanism for TCP flows passing
through a router. Instead, routers simply make forwarding decisions based on the
destination field of the IP header. As a result, flows may attempt to use as much
bandwidth as possible. In this situation, it is the TCP congestion control algorithm that
allocates bandwidth to the competing flows.

Consider the scenario where two TCP flows share a bottleneck link with bandwidth
capacity R, as illustrated in Figure 1. Assume that the two senders are in equal conditions
(round-trip time, maximum segment size, configuration parameters) and that they use
the same congestion control algorithm. Furthermore, assume that the two flows are in
steady state and that the congestion control algorithm operates according to the additive
increase multiplicative decrease (AIMD) rule1. A fair bandwidth allocation would result in
a bandwidth partition of R/2 to each flow.

Bottleneck

R
Sender

TCP flow 2

Sender

TCP flow 1

Router Router

Figure 1. Two TCP flows that share a bottleneck link of capacity R.

Figure 2 shows the bandwidth allocation region for the two flows1. The bandwidth
allocation to flow 1 is on x-axis and to flow 2 is on the y-axis. If TCP is to share the
bottleneck bandwidth equally between the two flows, then the bandwidth will fall along
the fairness line emanating from the origin. Note that the origin (0, 0) is a fair but
undesirable solution. When the allocations sum to 100% of the bottleneck capacity, the
allocation is efficient. This is shown by the efficiency line. Note that potential efficient
solutions include points A (R, 0) and points B (0, R). On point A, flow 1 receives 100% of
the capacity, and on point B flow 2 receives 100% of the capacity. Clearly, these solutions
are not desirable, as they lead to starvation and unfairness.

Assume that the sending rates of senders 1 and 2 at a given time are indicated by point
p1. As the amount of aggregate bandwidth jointly consumed by the two flows is less than
R, no loss will occur, and TCP will gently increase the bandwidth allocation (this process is
called additive increase phase). Eventually, the bandwidth jointly consumed by the two
connections will be greater than R, and a packet loss will occur at a point, say p2. TCP
reacts to a packet loss by aggressively decreasing the sending rate by half (this operation
is called multiplicate decrease). The resulting bandwidth allocations are realized at point
p3. Since the joint bandwidth use is less than R at point p3, TCP will again increase the
allocation to flows 1 and 2. Eventually, the TCP additive increase phase will lead to the

Lab 10: TCP Fairness

operating point p4, where a loss will again occur, and the two flows again will see a
decrease in the bandwidth allocation, and so on. The bandwidth realized by the two flows
eventually will fluctuate along the fairness line, near the optimal operating point Opt (R/2,
R/2). Chiu and Jain1 describe the reasons of why TCP converges to a fair and efficient
allocation. This convergence occurs independently of the starting point2, 3.

B (0, R)

A (R, 0)

Opt (R/2, R/2)

Bandwidth Sender 1

B
a

n
d

w
id

th
 S

e
n

d
e

r
2

Fairness line

(equal-shared bandwidth)

Efficiency line

(100% bandwidth utilized)

p1

p2

p3

p4

p5

Start

Additive increase

(up at 45
o
)

Multiplicative decrease

(line points to origin)

Legend:

Figure 2. Bandwidth allocation region realized by two competing TCP flows.

1.2 TCP fairness index calculation

A useful index to quantify fairness is Jain’s index4. The index has the following properties:

1. Population size independence: the index is applicable to any number of flows.
2. Scale and metric independence: the index is independent of scale, i.e., the unit of

measurement does not matter.
3. Boundedness: the index is bounded between 0 and 1. A totally fair system has an

index of 1 and a totally unfair system has an index of 0.
4. Continuity: the index is continuous. Any change in allocation is reflected in the

fairness index.

Jain’s fairness index is given by the following equation:

𝐼 =
(∑ 𝑇𝑖

𝑛
𝑖=1)2

𝑛 ∑ 𝑇𝑖
2𝑛

𝑖=1

where

• 𝐼 is the fairness index, with values between 0 and 1.

• 𝑛 is the total number of flows.

• 𝑇1, 𝑇2, . . . , 𝑇𝑛 are the measured throughput of individual flows.

Lab 10: TCP Fairness

As an example of fairness index calculation, consider the three flows shown in Figure 3.
Given the bottleneck capacity of 9 Gbps, assume that the bandwidth allocations for flows
1, 2, and 3 are 5 Gbps, 3 Gbps, and 1 Gbps. The fairness index for this allocation is:

𝐼 =
(∑ 𝑇𝑖

3
𝑖=1)2

3 ∑ 𝑇𝑖
23

𝑖=1

=
(5 ⋅ 109 + 3 ⋅ 109 + 1 ⋅ 109)2

3 ⋅ ((5 ⋅ 109)2 + (3 ⋅ 109)2 + (1 ⋅ 109)2)
= 0.77

Bottleneck

9 Gbps

Sender

TCP flow 3

Sender

TCP flow 1

Router Router

Sender

TCP flow 2

5 Gbps

1 Gbps

3 Gbps

Figure 3. Three TCP flows that share a bottleneck link of capacity 9 Gbps.

Note that by property 2 (scale and metric independence), the fairness index of the above
example is the same as that of an allocation of 5 Mbps, 3 Mbps, and 1 Mbps (or more
generally, an allocation of 5, 3, and 1 units). Also, note that an optimal fair allocation of 3
Gbps to each flow would produce a fairness index of 1.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0

Lab 10: TCP Fairness

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 10.mn topology file and click on Open.

Figure 6. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 10: TCP Fairness

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 9. Connectivity test using ping command.

Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth
between host h1 and host h2 to 10 Gbps.

Lab 10: TCP Fairness

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 20ms delay on switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms

Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface.

Lab 10: TCP Fairness

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Step 3. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1 ’s terminal.

iperf3 -c 10.0.0.2

Lab 10: TCP Fairness

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.20 Gbps. This is because the TCP buffer size was not modified at this point.

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 6. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation:

𝐵𝑊 = 10,000,000,000 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

𝑅𝑇𝑇 = 0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝐵𝐷𝑃 = 10,000,000,000 ∗ 0.02 = 200,000,000 𝑏𝑖𝑡𝑠
 = 25,000,000 𝑏𝑦𝑡𝑒𝑠 ≈ 25 𝑀𝑏𝑦𝑡𝑒𝑠

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 𝑀𝑏𝑦𝑡𝑒 = 10242 𝑏𝑦𝑡𝑒𝑠

𝐵𝐷𝑃 = 25 𝑀𝑏𝑦𝑡𝑒𝑠 = 25 ∗ 10242 𝑏𝑦𝑡𝑒𝑠 = 26,214,400 𝑏𝑦𝑡𝑒𝑠

2 · 𝐵𝐷𝑃 = 2 · 26,214,400 𝑏𝑦𝑡𝑒𝑠 = 52,428,800 𝑏𝑦𝑡𝑒𝑠

Now, we have calculated the maximum value of the TCP sending and receiving buffer size.
In order to apply the new values, on host h1’s terminal type the command showed down
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Lab 10: TCP Fairness

Figure 16. Receive window change in sysctl.

Step 7. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 17. Send window change in sysctl.

Next, the same commands must be configured on host h2.

Step 8. To change the current receive-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 18. Receive window change in sysctl.

Step 9. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 19. Send window change in sysctl.

Step 10. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal:

iperf3 -s

Lab 10: TCP Fairness

Figure 20. Host h2 running iPerf3 as server.

Step 11. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in host h1’s terminal:

iperf3 -c 10.0.0.2

Figure 21. iPerf3 throughput test.

Note the measured throughput now is approximately 9.38 Gbps, which is close to the
value assigned in our tbf rule (10 Gbps).

Step 12. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Calculating fairness among parallel flows

In this section, an iPerf3 test that includes several parallel streams is conducted, followed
by the calculation of the fairness index.

Step 1. Now a test is conducted using parallel streams. To launch iPerf3 in server mode,
run the command iperf3 -s in host h2’s terminal as shown in Figure 22:

iperf3 -s

Lab 10: TCP Fairness

Figure 22. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the -P option specified to start
parallel streams. The -J option is also specified to indicate that JSON output is desired,
and the redirection operator > to store the output in a file. Run the following command
in host h1’s terminal as shown in Figure 23:

iperf3 -c 10.0.0.2 -P 8 -J > out.json

Figure 23. Host h1 running iPerf3 as client with 8 parallel streams and saving output in file.

Step 3. The client includes a script called fairness.sh. Basically, this script accepts as
input the JSON file exported by iPerf3 and calculates the fairness index. Run the following
command to calculate the fairness index:

fairness.sh out.json

Figure 24. Calculating the fairness index between the parallel streams.

In the above test, the fairness index is .91395, or 91% fair. Note that this result may vary
according to the result of your emulation test.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Calculating fairness among several hosts with the same congestion

control algorithm

Lab 10: TCP Fairness

In the previous section, we calculated the fairness index among several parallel streams,
all initiated by a single host. In this section we calculate the fairness index among two
transmitting devices. Specifically, an iPerf3 client is executed on host h1 and connected
to host h2 (iPerf3 server); another iPerf3 client is executed on host h3 and connected to
host h4 (iPerf3 server).

To calculate the fairness index, the transmitting hosts should initiate their transmissions
simultaneously. Since it is difficult to start the clients at the same time, the client’s
machine provides a script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 25. Opening Mininet’s terminal.

Figure 26. Mininet’s terminal.

Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_same_algo

Lab 10: TCP Fairness

Figure 27. Running the tests simultaneously for 120 seconds. Both host h1 and host h3 are using
Reno.

Figure 28. Throughput of host h1 and host h3.

The above graph shows that the throughput of host h1 is close to that of host h3.
Therefore, the fairness index should be close to 1 (100%). Note that this result may vary
according to the result of your emulation test.

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 10: TCP Fairness

Figure 29. Calculated fairness index.

The above figure shows a fairness index of .99595. This value indicates that the bottleneck
bandwidth was 99% fairly shared among host h1 and host h3. Note that this result may
vary according to the result of your emulation test.

5 Calculating fairness among hosts with different congestion control

algorithms

In the previous test, we calculated the fairness index while using the same congestion
control algorithm (Reno). In this section we repeat the test, but with host h1 using Reno
and host h3 using BBR.

Step 1. Go back to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 30. Opening Mininet’s terminal.

Step 2. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_diff_algo

Lab 10: TCP Fairness

Figure 31. Running the tests simultaneously for 20 seconds. Host h1 is using Reno while host h3
is using BBR.

Figure 32. Throughput of host h1 and host h3.

The above graph shows that the device configured with BBR has a larger bandwidth
allocation than that configured with Reno. Therefore, the fairness index will not be close
to 1 (100%).

Step 3. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 10: TCP Fairness

Figure 33. Calculated fairness index.

The above figure shows a fairness index of .86036 (~ 86%), which is very far from 100%.
This value indicates that the bottleneck bandwidth was 86% fairly shared among host h1
and host h3. Note that this result may vary according to the result of your emulation test.

This concludes Lab 10. Stop the emulation and then exit out of MiniEdit.

References

1. D. Chiu, R. Jain, “Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks,” Journal of Computer Networks and ISDN
Systems, vol. 17, issue 1, pp. 1-14, Jun. 1989.

2. A. Tanenbaum, D. Wetherall, “Computer networks,” 5th Edition, Prentice Hall,
2011.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. R. Jain, D. Chiu, W. Hawe, “A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems,” DEC Research Report TR-301,
Sep. 1984.

