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Overview 
 
This lab introduces TCP fairness in Wide Area Networks (WAN) and explains how 
competing TCP connections converge to fairness. The lab describes how to calculate the 
TCP fairness index, a metric that quantifies how fair the aggregate connection is divided 
between active connections. Finally, the lab conducts throughput tests in an emulated 
high-latency network and derives the fairness index. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Define TCP fairness. 
2. Calculate TCP fairness index. 
3. Emulate a WAN and calculating fairness index among parallel streams. 
4. Emulate a WAN and calculating fairness index among competing TCP connections.  

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Fairness concepts. 
2. Section 2: Lab topology. 
3. Section 3: Calculating fairness among parallel flows. 
4. Section 4: Calculating fairness index with different congestion control 

algorithms. 
 
 
1 Fairness concepts 
 
 
1.1 TCP bandwidth allocation 
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Many networks do not use any bandwidth reservation mechanism for TCP flows passing 
through a router. Instead, routers simply make forwarding decisions based on the 
destination field of the IP header. As a result, flows may attempt to use as much 
bandwidth as possible. In this situation, it is the TCP congestion control algorithm that 
allocates bandwidth to the competing flows.  
 
Consider the scenario where two TCP flows share a bottleneck link with bandwidth 
capacity R, as illustrated in Figure 1. Assume that the two senders are in equal conditions 
(round-trip time, maximum segment size, configuration parameters) and that they use 
the same congestion control algorithm. Furthermore, assume that the two flows are in 
steady state and that the congestion control algorithm operates according to the additive 
increase multiplicative decrease (AIMD) rule1. A fair bandwidth allocation would result in 
a bandwidth partition of R/2 to each flow.  
 

Bottleneck 

R
Sender 

TCP flow 2

Sender 

TCP flow 1

Router Router

 
Figure 1. Two TCP flows that share a bottleneck link of capacity R. 

 
Figure 2 shows the bandwidth allocation region for the two flows1. The bandwidth 
allocation to flow 1 is on x-axis and to flow 2 is on the y-axis. If TCP is to share the 
bottleneck bandwidth equally between the two flows, then the bandwidth will fall along 
the fairness line emanating from the origin. Note that the origin (0, 0) is a fair but 
undesirable solution. When the allocations sum to 100% of the bottleneck capacity, the 
allocation is efficient. This is shown by the efficiency line. Note that potential efficient 
solutions include points A (R, 0) and points B (0, R). On point A, flow 1 receives 100% of 
the capacity, and on point B flow 2 receives 100% of the capacity. Clearly, these solutions 
are not desirable, as they lead to starvation and unfairness.  
 
Assume that the sending rates of senders 1 and 2 at a given time are indicated by point 
p1. As the amount of aggregate bandwidth jointly consumed by the two flows is less than 
R, no loss will occur, and TCP will gently increase the bandwidth allocation (this process is 
called additive increase phase). Eventually, the bandwidth jointly consumed by the two 
connections will be greater than R, and a packet loss will occur at a point, say p2. TCP 
reacts to a packet loss by aggressively decreasing the sending rate by half (this operation 
is called multiplicate decrease). The resulting bandwidth allocations are realized at point 
p3. Since the joint bandwidth use is less than R at point p3, TCP will again increase the 
allocation to flows 1 and 2. Eventually, the TCP additive increase phase will lead to the 
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operating point p4, where a loss will again occur, and the two flows again will see a 
decrease in the bandwidth allocation, and so on. The bandwidth realized by the two flows 
eventually will fluctuate along the fairness line, near the optimal operating point Opt (R/2, 
R/2). Chiu and Jain1 describe the reasons of why TCP converges to a fair and efficient 
allocation. This convergence occurs independently of the starting point2, 3. 
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Figure 2. Bandwidth allocation region realized by two competing TCP flows.  

 
 
1.2 TCP fairness index calculation 

 
A useful index to quantify fairness is Jain’s index4. The index has the following properties: 
 

1. Population size independence: the index is applicable to any number of flows. 
2. Scale and metric independence: the index is independent of scale, i.e., the unit of 

measurement does not matter.  
3. Boundedness: the index is bounded between 0 and 1. A totally fair system has an 

index of 1 and a totally unfair system has an index of 0.  
4. Continuity: the index is continuous. Any change in allocation is reflected in the 

fairness index.  
 
Jain’s fairness index is given by the following equation:  
 

𝐼 =  
(∑ 𝑇𝑖

𝑛
𝑖=1 )2

𝑛 ∑ 𝑇𝑖
2𝑛

𝑖=1

 

 
where 

• 𝐼 is the fairness index, with values between 0 and 1. 

• 𝑛 is the total number of flows. 

• 𝑇1, 𝑇2, . . . , 𝑇𝑛 are the measured throughput of individual flows. 
 



    
Lab 10: TCP Fairness 

As an example of fairness index calculation, consider the three flows shown in Figure 3. 
Given the bottleneck capacity of 9 Gbps, assume that the bandwidth allocations for flows 
1, 2, and 3 are 5 Gbps, 3 Gbps, and 1 Gbps. The fairness index for this allocation is: 
 

𝐼 =
(∑ 𝑇𝑖

3
𝑖=1 )2

3 ∑ 𝑇𝑖
23

𝑖=1

=  
(5 ⋅ 109 + 3 ⋅ 109 +  1 ⋅ 109)2

3 ⋅ ((5 ⋅ 109)2 + (3 ⋅ 109)2 +  (1 ⋅ 109)2)
= 0.77 

 
 

Bottleneck 

9 Gbps

Sender 
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TCP flow 1

Router Router
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Figure 3. Three TCP flows that share a bottleneck link of capacity 9 Gbps. 

 
Note that by property 2 (scale and metric independence), the fairness index of the above 
example is the same as that of an allocation of 5 Mbps, 3 Mbps, and 1 Mbps (or more 
generally, an allocation of 5, 3, and 1 units). Also, note that an optimal fair allocation of 3 
Gbps to each flow would produce a fairness index of 1. 
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 4. Lab topology 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
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Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 5. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 10.mn topology file and click on Open. 
 

 
Figure 6. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 7. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
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2.1 Starting host h1 and host h2 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 
Figure 8. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 9. Connectivity test using ping command. 

 
Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are 
ready to start the throughput measurement process.  
 
 
2.2 Emulating 10 Gbps high-latency WAN 

 
This section emulates a high-latency WAN. We will first emulate 20ms delay between 
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth 
between host h1 and host h2 to 10 Gbps.  
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Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 10. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 20ms delay on switch S1’s s1-eth1 
interface. 
 
sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms 

 

 
Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 10 Gbps 
on switch S1’s s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

 
Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface. 
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2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 13. Output of ping 10.0.0.2 command. 

 

The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test 
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 
Step 3. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 14. Starting iPerf3 server on host h2. 

 
Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. 
 
iperf3 -c 10.0.0.2          
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Figure 15. Running iPerf3 client on host h1. 

 
Although the link was configured to 10 Gbps, the test results show that the achieved 
throughput is 3.20 Gbps. This is because the TCP buffer size was not modified at this point.  
 
Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
Step 6. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation: 
 
𝐵𝑊 = 10,000,000,000 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 
 
𝑅𝑇𝑇 = 0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 
𝐵𝐷𝑃 = 10,000,000,000 ∗ 0.02 =  200,000,000 𝑏𝑖𝑡𝑠 
          = 25,000,000 𝑏𝑦𝑡𝑒𝑠 ≈ 25 𝑀𝑏𝑦𝑡𝑒𝑠  
 

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes 
value for the BDP instead of 25,000,000 bytes. 

 
1 𝑀𝑏𝑦𝑡𝑒 =  10242 𝑏𝑦𝑡𝑒𝑠 
 
𝐵𝐷𝑃 =  25 𝑀𝑏𝑦𝑡𝑒𝑠 = 25 ∗ 10242 𝑏𝑦𝑡𝑒𝑠 =  26,214,400 𝑏𝑦𝑡𝑒𝑠 
 
2 ·  𝐵𝐷𝑃 =  2 · 26,214,400 𝑏𝑦𝑡𝑒𝑠 = 52,428,800 𝑏𝑦𝑡𝑒𝑠  
 
Now, we have calculated the maximum value of the TCP sending and receiving buffer size. 
In order to apply the new values, on host h1’s terminal type the command showed down 
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 
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Figure 16. Receive window change in sysctl. 

 
Step 7. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 17. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2. 
 
Step 8. To change the current receive-window size value(s), use the following command 
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 18. Receive window change in sysctl. 

 
Step 9. To change the current send-window size value(s), use the following command on 
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 19. Send window change in sysctl. 

 
Step 10. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal: 
 
iperf3 -s          
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Figure 20. Host h2 running iPerf3 as server. 

 
Step 11. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in host h1’s terminal: 
 
iperf3 -c 10.0.0.2      

  

 
Figure 21. iPerf3 throughput test. 

 
Note the measured throughput now is approximately 9.38 Gbps, which is close to the 
value assigned in our tbf rule (10 Gbps).  
 
Step 12. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3 Calculating fairness among parallel flows 
 
In this section, an iPerf3 test that includes several parallel streams is conducted, followed 
by the calculation of the fairness index. 
 
Step 1. Now a test is conducted using parallel streams. To launch iPerf3 in server mode, 
run the command iperf3 -s in host h2’s terminal as shown in Figure 22: 
 
iperf3 -s          

 



    
Lab 10: TCP Fairness 

 
Figure 22. Host h2 running iPerf3 as server. 

 
Step 2. Now the iPerf3 client should be launched with the -P option specified to start 
parallel streams. The -J option is also specified to indicate that JSON output is desired, 
and the redirection operator > to store the output in a file. Run the following command 
in host h1’s terminal as shown in Figure 23: 
 
iperf3 -c 10.0.0.2 -P 8 -J > out.json      

 

 
Figure 23. Host h1 running iPerf3 as client with 8 parallel streams and saving output in file. 

 
Step 3. The client includes a script called fairness.sh. Basically, this script accepts as 
input the JSON file exported by iPerf3 and calculates the fairness index. Run the following 
command to calculate the fairness index: 
 
fairness.sh out.json      

 

 
Figure 24. Calculating the fairness index between the parallel streams. 

 
In the above test, the fairness index is .91395, or 91% fair. Note that this result may vary 
according to the result of your emulation test. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
4 Calculating fairness among several hosts with the same congestion 

control algorithm 
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In the previous section, we calculated the fairness index among several parallel streams, 
all initiated by a single host. In this section we calculate the fairness index among two 
transmitting devices. Specifically, an iPerf3 client is executed on host h1 and connected 
to host h2 (iPerf3 server); another iPerf3 client is executed on host h3 and connected to 
host h4 (iPerf3 server). 
 
To calculate the fairness index, the transmitting hosts should initiate their transmissions 
simultaneously. Since it is difficult to start the clients at the same time, the client’s 
machine provides a script that automates this process.  
 
Step 1. Close the terminals of host h1 and host h2.  
 
Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.  
 

 
Figure 25. Opening Mininet’s terminal. 

 

 
Figure 26. Mininet’s terminal. 

 
Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.  
 
source concurrent_same_algo         
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Figure 27. Running the tests simultaneously for 120 seconds. Both host h1 and host h3 are using 
Reno. 

 

 
Figure 28. Throughput of host h1 and host h3. 

 
The above graph shows that the throughput of host h1 is close to that of host h3. 
Therefore, the fairness index should be close to 1 (100%). Note that this result may vary 
according to the result of your emulation test. 
 
Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is 
displayed at the end as shown in the figure below. 
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Figure 29. Calculated fairness index. 

 
The above figure shows a fairness index of .99595. This value indicates that the bottleneck 
bandwidth was 99% fairly shared among host h1 and host h3. Note that this result may 
vary according to the result of your emulation test. 
 
 
 
5 Calculating fairness among hosts with different congestion control 

algorithms 
 
In the previous test, we calculated the fairness index while using the same congestion 
control algorithm (Reno). In this section we repeat the test, but with host h1 using Reno 
and host h3 using BBR. 
 
Step 1. Go back to Mininet’s terminal, i.e., the one launched when MiniEdit was started.  

 

 
Figure 30. Opening Mininet’s terminal. 

 
Step 2. Issue the following command on Mininet’s terminal as shown in the figure below.  
 
source concurrent_diff_algo         
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Figure 31. Running the tests simultaneously for 20 seconds. Host h1 is using Reno while host h3 
is using BBR. 

 

 
Figure 32. Throughput of host h1 and host h3. 

 
The above graph shows that the device configured with BBR has a larger bandwidth 
allocation than that configured with Reno. Therefore, the fairness index will not be close 
to 1 (100%). 
 
Step 3. Close the graph window and go back to Mininet’s terminal. The fairness index is 
displayed at the end as shown in the figure below. 
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Figure 33. Calculated fairness index. 

 
The above figure shows a fairness index of .86036 (~ 86%), which is very far from 100%. 
This value indicates that the bottleneck bandwidth was 86% fairly shared among host h1 
and host h3. Note that this result may vary according to the result of your emulation test. 
 
This concludes Lab 10. Stop the emulation and then exit out of MiniEdit. 
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