

ZEEK INSTRUSION DETECTION SERIES

Lab 11: Preprocessing of Zeek Output Logs for
Machine Learning

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 2

Contents

Overview ... 3

Objective ... 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to machine learning in network security ... 4

1.1 ARFF file format .. 5

2 Aggregating network capture datasets .. 6

2.1 Starting a new instance of Zeek ... 6

2.2 Launching Mininet .. 7

2.3 Setting up the zeek2 virtual machine for live network capture 9

2.4 Using the zeek1 virtual machine for network scanning activities 10

2.4.1 Terminating live network capture .. 10

3 Preprocessing of Zeek log files .. 11

3.1 Preprocessing the malicious dataset ... 11

3.2 Preprocessing of the benign dataset ... 15

3.3 Creation of the test and training datasets ... 17

3.4 Adding the .arff file headers .. 19

3.5 Closing the current instance of Zeek .. 20

References .. 21

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 3

Overview

This lab introduces the application of machine learning in the network security field. After
using Zeek’s scripting language to generate anomaly-based output files, it is necessary to
format these datasets to be used by machine learning classifiers.

Objective

By the end of this lab, students should be able to:

1. Explain the benefits of leveraging machine learning for network analysis.
2. Understand Attribute-Relation File Format (ARFF).
3. Aggregate and preprocess a dataset to be used by a machine learning classifier.

Lab topology

Figure 1 shows the lab topology. The topology uses 10.0.0.0/8 which is the default
network assigned by Mininet. The zeek1 and zeek2 virtual machines will be used to
generate and collect network traffic.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to machine learning in network security.
2. Section 2: Aggregating network capture datasets.
3. Section 3: Preprocessing of Zeek log files.

1 Introduction to machine learning in network security

Machine learning is programming computers to optimize a performance criterion using
example data or past experience1. Machine learning is particularly useful for computing
empirical correlations, and in cases where it is difficult to write a computer program to
solve a given problem. In recent years, technological advances in machine learning have
propelled its application on various domains and sectors. Cyber-security is a critical area
in which machine learning (ML) is increasingly becoming significant.

By using Zeek and text processing languages, it is possible to identify the presence of an
anomaly. Once an anomaly is detected, Zeek’s scripts can be implemented to extract
relevant fields and build a dataset.

In this lab series, we will train machine learning classifiers using these anomaly-based
datasets in order to build a model that can be used for future predictions.

This lab focuses on reformatting Zeek log files into Attribute-Relation File Format (ARFF)
files, to be used by Weka software. Weka is a workbench for machine learning that is
intended to help in the application of machine learning techniques to a variety of real-
world problems2.

Supervised learning is a common approach used in machine learning. Supervised learning
consists of a target / outcome variable (or dependent variable) which is to be predicted
from a given set of predictors (independent variables). When training a machine learning
classifier using supervised learning, it is important to include both a training and test
dataset:

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 5

• Training dataset: dataset used by the classifier to “learn” correlations and
feature weights. Data should include instances of both variable and control group,
while containing a classification label.

• Testing dataset: dataset used by the classifier to test accuracy. If the classifier
is able to accurately predict labels for the training dataset but not for the testing
dataset, then it is necessary to adjust and retrain the classifier.

1.1 ARFF file format

The Weka software contains a variety of different machine learning algorithms to train a
number of classifiers. Each classifier will require different datasets; for instance, decision
trees can only handle numeric or nominal values, and strings cannot be used as an input
without being listed nominally.

The majority of machine learning classifiers accept numeric data inputs. Therefore, we
will need to preprocess our log file datasets to contain only numeric and nominal data.
Additionally, Weka requires each input dataset to be formatted in an .arff file format.

ARFF files contain comma-separated values and additional headers and labels. Below is a
sample of a properly formatted .arff file that we will be developing in this lab.

The ARFF file headers can be summarized as follows:

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 6

• @RELATION: name of the dataset.

• @ATTRIBUTE: specifies the label and the data type for each column:
o NUMERIC: integer data type.
o NOMINAL: values match entries defined within the brackets {}.

• @DATA: lists the input data.

Now that we have introduced ARFF files and understand what an input dataset should
look like, we can start aggregating and preprocessing a dataset using Zeek.

2 Aggregating network capture datasets

To create our dataset, we need to make sure there is a certain level of entropy in the data
to guarantee that the machine learning classifier will learn properly. Therefore, we need
to combine both benign and malicious datasets.

In this lab, we use the smallFlows.pcap file as the control group, identified as benign traffic
with a class label of 0. We then generate a new scantraffic.pcap file to be used as the
variable group, identified as malicious traffic with a class label of 1.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 7

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new
instance. When prompted for a password, type password and hit Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on the
MiniEdit icon as shown below. When prompted for a password, type password and hit
Enter. The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new, virtualized
lab topologies. Load the correct topology by clicking the Open button within the File
tab on the top left of the MiniEdit editor.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 8

Step 3. Navigate to the Zeek-Topologies directory by scrolling to the right of the active
directories and double clicking the Zeek-Topolgies icon, or by clicking the Open button.

Step 4. Select the Topology.mn file by double clicking the Topolgies.mn icon, or by
clicking the Open button.

Step 5. To begin running the virtual machines, navigate to the Run button, found on the
bottom left of the Miniedit editor, and select the Run button, as seen in the image
below.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 9

2.3 Setting up the zeek2 virtual machine for live network capture

Step 1. Launch the zeek2 terminal by holding the right mouse button on the desired
machine and clicking the Terminal button.

Step 2. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface zeek2-eth0 and save the output to a file
named scantraffic.pcap.

tcpdump -i zeek2-eth0 -s 0 -w scantraffic.pcap

The zeek2 virtual machine is now ready to begin collecting live network traffic. Next, we
will use the zeek1 machine to generate scan-based network traffic.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 10

2.4 Using the zeek1 virtual machine for network scanning activities

In this section we use the nmap software to generate TCP-based scan traffic.

Step 1. Minimize the zeek2 Terminal and open the zeek1 Terminal by following the
previous steps. If necessary, right click within the Miniedit editor to activate your cursor.

Step 2. Launch a TCP SYN scan against the zeek2 machine.

nmap -sS 10.0.0.2

2.4.1 Terminating live network capture

Step 1. Minimize the zeek1 Terminal and open the zeek2 Terminal using the navigation
bar at the bottom of the screen. If necessary, right click within the Miniedit editor to
activate your cursor.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 11

Step 2. Use the Ctrl+c key combination to stop live traffic capture. Statistics of the
capture session will we be displayed. 2,014 packets were recorded by the interface, which
were then captured and stored in the new scantraffic.pcap file.

Step 3. Stop the current Mininet session by clicking the Stop button on the bottom left
of the MiniEdit editor and close the MiniEdit editor by clicking the x on the top right of
the editor.

We now have our malicious dataset, and because the smallFlows.pcap file is already
downloaded, we already have our control group, the benign dataset. In the following
section we will begin formatting our datasets into ARFF files.

3 Preprocessing of Zeek log files

To generate ARFF files, we first need to process our packet capture files using Zeek’s
default configuration.

In a real-time environment, at this stage you may include anomaly-specific scripts. Once
an anomaly has been processed by Zeek, the resulting log files will need to be reformatted.

Afterwards, we need to select which features we wish to extract from the Zeek log files
to be used in our training and testing datasets. It is important to carefully select the
relevant features when training a classifier. If features are not strategically selected,
classifiers may create unreliable correlations which may lead to poor accuracy in the
detection process. In this lab we extract a small number of general packet features.

3.1 Preprocessing the malicious dataset

Step 1. Navigate to the TCP-Traffic directory.

cd Zeek-Labs/TCP-Traffic/

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 12

Step 2. Process the scantraffic.pcap file.

zeek –C –r scantraffic.pcap

Step 3. Display the contents of the conn.log file.

column -s, -t conn.log | less -#2 -N -S

Examining the previous command:

• column -s, -t conn.log: calls the column utility to read and columnize the file
contents of the conn.log file. The -s option specifies the separator and the -t
option enables the output to be created as a table.

• | less -#2 -N -S: accepts the output of the column utility and calls the less
utility. The -#2 specifies the default number of positions to scroll horizontally in
the RIGHTARROW and LEFTARROW keys, the -N option marks each row with a line

number and the -S option causes the display to remove any data that would not
fit on the current Terminal screen rather than overflowing to a new line.

The previous command results in the following output.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 13

We can see in the previous image that the conn.log file is nowhere near the .arff file
format. We will need to remove the Zeek padding, column names, change the tab
delimiter and remove excess column features.

Press the q key on your keyboard to exit and return to the Terminal.

Step 4. Display the contents of lab11_malicious.sh shell script using the nl command.

nl ../Lab-Scripts/lab11_malicious.sh

The script is explained as follows. Each number represents the respective line number:

1. Using the cat utility, the contents of the conn.log file will be passed into the zeek-
cut utility to remove the log file header and only include the specified columns.
The output of the zeek-cut utility will be saved to a new file named packet.csv.
The feature columns we will be using to train our example machine learning
classifier are:

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 14

• ts: time the packet was received.

• id.orig_h: source IP address.

• id.resp_h: destination IP address.

• id.orig_p: source port.

• id.resp_h: destination port.

• proto: transport protocol.

• duration: connection or session length.

2. Using the cat utility, the contents of the packet.csv file will be passed into the tr
utility. The tr utility will replace the packet.csv file’s tab-delimited structure with
a comma-delimited structure, and the output will be saved to a new file named
packet2.csv.

3. Using the sed utility, all instances of a period . will be removed. This will allow for
the IP addresses to be input as a numeric data type rather than a string, and the
output will be saved to a new file named packet3.csv.

4. Using the sed utility, all instances of a dash - will be replaced by ?. Currently,
when a column is empty, Zeek writes a dash -. However, Weka reads question
marks ? as an empty column. The output will be saved to a new file named
packet4.csv.

5. Using the awk utility, every row will have an additional ,1 appended to the end of
the row. This will represent the class label; we used 1 to denote the malicious
traffic. The output will be saved to a new file named malicious.csv.

6. The file contents of malicious.csv will be displayed. This command is introduced in
the Step 1 of this subsection.

Step 5. Execute the lab11_malicious.sh shell script. If prompted for a password, type
password and hit Enter.

./../Lab-Scripts/lab11_malicious.sh

After executing all commands in the script, the malicious.csv file contents will be
displayed on the Terminal as shown in the figure below.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 15

We can see from the above image that the malicious.csv file is now properly formatted to
fit in the @DATA section of an ARFF file. Each row contains an equal number of comma-
delimited columns with only numeric characters.

Press the q key on your keyboard to exit and return to the Terminal.

Now that we have our malicious dataset created, we can begin formatting our benign
dataset.

Step 6. Execute the lab_clean.sh shell script to clear the directory. If required, type
password as the password.

./../Lab-Scripts/lab_clean.sh

3.2 Preprocessing of the benign dataset

Step 1. Process the smallFlows.pcap file using the zeek -r command.

zeek –C -r ../Sample-PCAP/smallFlows.pcap

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 16

Step 2. Display the contents lab11_benign.sh shell script using the nl command.

nl ../Lab-Scripts/lab11_benign.sh

With the exception of Line 5, the script is exactly the same as the one explained in Step
3 of the previous section.

Line 5 has been modified to append ,0 to the end of each row. This value represents the
benign class label. The output will be saved to a new file named benign.csv.

Step 3. Execute the lab11_benign.sh shell script.

./../Lab-Scripts/lab1_benign.sh

After executing all commands in the script, the benign.csv file contents will be displayed
on the Terminal as shown in the figure below.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 17

We can see from the above image that the benign.csv file is now properly formatted to
fit in the @DATA section of an ARFF file. Each row contains an equal number of comma-
delimited columns with only numeric characters.

Press the q key on your keyboard to exit and return to the Terminal.

Now that we have our both of our datasets created, we are ready to combine them into
the training and test input datasets.

3.3 Creation of the test and training datasets

Step 1. Combine the malicious.csv and benign.csv files into the dataset.csv file.

cat malicious.csv benign.csv > dataset.csv

The dataset.csv file will now contain the benign.csv rows appended to the end of the
malicious.csv rows. We now need to randomize the file contents and apply further
formatting by executing the lab11_create_sets.sh shell script.

 Step 2. Display the contents of lab11_create_sets.sh shell script using the nl command.

nl ../Lab-Scripts/lab11_create_sets.sh

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 18

The script is explained as follows. Each number represents the respective line number:

1. Using the shuf utility, the contents of the dataset.csv file will be shuffled, and the

output will be saved to a new file named randomized.csv.
2. Using the head utility, the top 300 rows from the randomized.csv file were saved

to a new file named test.csv.
3. Using the sed utility, rows 1-300 are removed from the randomized.csv file and

the output is saved to the new trainset.arff file.
4. Using the sed utility, the last column of the test.csv file is removed. We are

removing the label of each instance of the test dataset so that we can have the
classifier attempt to predict these labels. The output is saved to the new
testset.arff file.

5. Using the wc utility, the number of rows within the testset.arff file are displayed.
We can compare this value against the value found in Line 8 to make sure no
packet data was lost.

6. Using the wc utility, the number of rows within the trainset.arff file are displayed.
We can compare this value against the value found in Line 7 to make sure no
packet data was lost.

Step 3. Execute the lab11_create_sets.sh shell script.

./../Lab-Scripts/lab11_create_sets.sh

The figure above shows the line count of the testset.arff and trainset.arff files. The
testset.arff file contains 300 rows while the trainset.arff file contains 1400 rows. The
trainset.arff file size may be variable due to the number of packets generated during the
original TCP SYN scans; however, the testset.arff file should always be equal to 300 rows
due to the executed script.

Now that we have generated our testing and training .arff files, the final step for
preprocessing the Zeek datasets is to add the .arff file headers to each file.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 19

3.4 Adding the .arff file headers

Step 1. Using the nano text editor, open the trainset.arff file for editing.

nano trainset.arff

Step 2. Prepend the following headers to the trainset.arff file. To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

@RELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC

@ATTRIBUTE destip NUMERIC

@ATTRIBUTE sourceport NUMERIC

@ATTRIBUTE destport NUMERIC

@ATTRIBUTE protocol {tcp, udp, icmp}

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE class {1,0}

@DATA

The input training dataset is now a properly formatted .arff file and can be input into a
machine learning algorithm to train a classifier.

Press Ctrl+o and Enter to save the file, then Ctrl+x to exit out the nano editor.

Step 3. Using the nano text editor, open the testset.arff file for editing.

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 20

nano testset.arff

Step 4. Prepend the following headers to the testset.arff file. To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

The headers are the same as those added to the trainset.arff file, so they can be copied
and pasted directly into the testset.arff file.

@RELATION networktraffic

@ATTRIBUTE time NUMERIC

@ATTRIBUTE sourceip NUMERIC

@ATTRIBUTE destip NUMERIC

@ATTRIBUTE sourceport NUMERIC

@ATTRIBUTE destport NUMERIC

@ATTRIBUTE protocol {tcp, udp, icmp}

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE class {1,0}

@DATA

The input test dataset is now a properly formatted .arff file and can be input into a
machine learning classifier to test the classifier’s accuracy.

Press Ctrl+o and Enter to save the file, then Ctrl+x to exit out the nano editor.

3.5 Closing the current instance of Zeek

Lab 11: Preprocessing of Zeek Output Logs for Machine Learning

 Page 21

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

References

1. Alpaydin, E., “Introduction to machine learning,” MIT press (2009).
2. Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning

workbench.
3. “Attribute-relation file format”, The university of waikato, [Online], Available:

https://www.cs.waikato.ac.nz/~ml/weka/arff.html

