

NETWORK TOOLS AND PROTOCOLS

Lab 11: Router's Buffer Size

Document Version: 06-14-2019

Award 1829698
"CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers"

Contents

Overview			3
Ok	Objectives		
La	Lab settings		
Lab roadmap			3
1 Introduction		oduction	3
	1.1	Introduction to switching	4
	1.2	Router architecture	. 4
	1.3	Where does packet loss occur?	5
	1.4	Buffer size	5
2 Lab to		topology	6
	2.1	Starting host h1, host h2, host h3 and host h4	8
	2.2	Modifying hosts' buffer size	9
	2.3	Emulating high-latency WAN	12
	2.4	Testing connection	13
		ting throughput with 100·MTU switch's buffer size	14
	3.1	Setting switch S1's buffer size to 100·MTU	14
	3.2	TCP Cubic	14
	3.3	TCP Reno	16
	3.4	TCP BBR	18
4	Tes	ting throughput with one BDP switch's buffer size	20
	4.1	Changing switch S1's buffer size to one BDP	20
	4.2	TCP Cubic	21
	4.3	TCP Reno	23
	4.4	TCP BBR	25
5	Em	ulating high-latency WAN with packet loss	27
	5.1	TCP Cubic	27
	5.2	TCP Reno	29
	5.3	TCP BBR	31
Re	References		

Overview

This lab reviews the internal architecture of routers and switches. These devices are essential in high-speed networks, as they must be capable of absorbing transient packet bursts generated by large flows and thus avoid packet loss. The lab describes the buffer requirements to absorb such traffic fluctuations, which are then validated by experimental results.

Objectives

By the end of this lab, students should be able to:

- 1. Describe the internal architecture of routers and switches.
- 2. Understand the importance of buffers of routers and switches to prevent packet loss.
- 3. Conduct experiments with routers and switches of variable buffer sizes.
- 4. Calculate the buffer size required by routers and switches to absorb transient bursts.
- 5. Use experimental results to draw conclusions and make appropriate decision related to routers' and switches' buffers.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

 Device
 Account
 Password

 Client1
 admin
 password

Table 1. Credentials to access Client1 machine.

Lab roadmap

This lab is organized as follows:

- 1. Section 1: Introduction.
- 2. Section 2: Lab topology.
- 3. Section 3: Testing throughput with 100*MTU switch's buffer size.
- 4. Section 4: Testing throughput with one BDP switch's buffer size.
- 5. Section 5: Emulating high-latency WAN with packet loss.

1 Introduction

1.1 Introduction to switching

Two essential functions performed by routers are routing and forwarding. Routing refers to the determination of the route taken by packets. Forwarding refers to the switching of a packet from the input port to the appropriate output port. The term switching is also used interchangeably with forwarding. Traditional routing approaches such as static and dynamic routing (e.g., Open Shortest Path First (OSPF)¹, BGP²) are used in the implementation of high-speed networks, e.g., Science DMZs. Routing events, such as routing table updates, occur at the millisecond, second, or minute timescale, and best practices used in regular enterprise networks are applicable to high-speed networks as well. These functions are sometimes collectively referred to as the control plane and are usually implemented in software and execute on the routing processor (typically a traditional CPU), see Figure 1. On the other hand, with transmission rates of 10 Gbps and above, the forwarding operations related to moving packets from input to output interfaces at very high speed must occur at the nanosecond timescale. Thus, forwarding operations, collectively referred to as forwarding or data plane, are executed in specialized hardware and optimized for performance.

Figure 1. A generic router architecture.

Since forwarding functionality is common in both routers and switches, this lab reviews the architecture and forwarding-related attributes of switches. These attributes are applicable to routers as well; thus, for this lab, the terms switch and router are used interchangeably.

1.2 Router architecture

Consider the generic router architecture that is shown in Figure 1. Modern routers may have a network processor (NP) and a table derived from the routing table in each port, which is referred to as the forwarding table (FT) or forwarding information base (FIB). The router in Figure 1 has two input ports, iP1 and iP2, with their respective queues. iP1 has

three packets in its queue, which will be forwarded to output ports oP1 (green packets) and oP2 (blue packet) by the fabric. A switch fabric moves packets from input to output ports. Switch fabric designs are shared memory, crossbar network, and bus. In shared memory switches, packets are written into a memory location by an input port and then read from that memory location by the output port. Crossbar switches implement a matrix of pathways that can be configured to connect any input port to any output port. Bus switches use a shared bus to move packets from the input ports to the output ports³.

Router queues/buffers absorb traffic fluctuations. Even in the absence of congestion, fluctuations are present, resulting mostly from coincident traffic bursts⁴. Consider an input buffer implemented as a first-in first-out in the router of Figure 1. As iP1 and iP2 both have one packet to be forwarded to oP1 at the front of the buffer, only one of them, say the packet at iP2, will be forwarded to oP1. The consequence of this is that not only the first packet must wait at iP1. Also, the second packet that is queued at iP1 must wait, even though there is no contention for oP2. This phenomenon is known as Head-Of-Line (HOL) blocking⁵. To avoid HOL blocking, many switches use output buffering, a mixture of internal and output buffering, or techniques emulating output buffering such as Virtual Output Queueing (VOQ).

1.3 Where does packet loss occur?

Packet queues may form at both the input ports and the output ports. The location and extent of queueing (either at the input port queues or the output port queues) will depend on the traffic load, the relative speed of the switching fabric, and the line speed⁵. However, in modern switches with large switching rate capability, queues are commonly formed at output or transmission ports. A main contributing factor is the coincident arrivals of traffic bursts from different input ports that must be forwarded to the same output port. If transmission rates of input and output ports are the same, then packets from coincident arrivals must be momentarily buffered.

Note, however, that buffers will only prevent packet losses in case of transient traffic bursts. If those were not transient but permanent, such as approximately constant bit rates from large file transfers, the aggregate rate of input ports will surpass the rate of the output port. Thus, the output buffer would be permanently full, and the router would drop packets.

Packet loss occurs when a router drops the packet. It is the queues within a router, where such packets are dropped and lost.

1.4 Buffer size

From the above observation, a key question is how large should buffers be to absorb the fluctuations generated by TCP flows. The rule of thumb has been that the amount of buffering (in bits) in a router's port should equal the average Round-Trip Time (RTT) (in seconds) multiplied by the capacity C (in bits per seconds) of the port^{6, 7}.

Router's buffer size = $C \cdot RTT$ [bits] (single / small number of flows)

Note that RTT is the average of individual RTTs. For example, if there are five TCP flows sharing a router's link (port), the RTT used in the equation above is the average value of the five flows, and the capacity C is the router's port capacity. E.g., for 250 millisecond connections and a 10 Gbps port, the router's buffer size equals 2.5 Gbits. The above quantity is a conservative value that can be used in high-throughput high-latency networks.

In 2004, Appenzeller et al.⁸ presented a study that suggests that when there is a large number of TCP flows passing through a link, say N (e.g., hundreds, thousands or more), the amount of buffering can be reduced to:

Router's buffer size =
$$\frac{C \cdot RTT}{\sqrt{N}}$$
 [bits] (large number of flows N)

This result is observed when there is no dominant flow and the router aggregates hundreds, thousands, or more flows. The observed effect is that the fluctuation of the sum of congestion windows are smoothed, and the buffer size at an output port can be reduced to the expression given above. Note that N can be very large for campus and backbone networks, and the reduction in needed buffer size can become considerable.

2 Lab topology

Let's get started with creating a simple Mininet topology using Miniedit. The topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine's Desktop. Start MiniEdit by clicking on MiniEdit's shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit's menu bar, click on *File* then *Open* to load the lab's topology. Locate the *Lab 11.mn* topology file and click on *Open*.

Figure 4. Miniedit's Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network must be started. Click on the *Run* button located at the bottom left of MiniEdit's window to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, host h3 and host h4

Step 1. Hold the right-click on host h1 and select *Terminal*. This opens the terminal of host h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its *Terminal*.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1, type the command ping 10.0.0.2. This command tests the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful connectivity test.

```
"Host: h1" - x x

root@admin-pc:~# ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.33 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.056 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.048 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.042 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.043 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.044 ms

^c

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 91ms

rtt min/avg/max/mdev = 0.042/0.260/1.327/0.477 ms

root@admin-pc:~#
```

Figure 7. Connectivity test using ping command.

Step 4. Test connectivity between the end-hosts using the ping command. On host h3, type the command ping 10.0.0.4. This command tests the connectivity between host h3 and host h4. To stop the test, press Ctrl+c. The figure below shows a successful connectivity test.

```
"Host: h3" - x x

root@admin-pc:~# ping 10.0.0.4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.075 ms

64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=0.089 ms

64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=0.071 ms

64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=0.069 ms

64 bytes from 10.0.0.4: icmp_seq=5 ttl=64 time=0.064 ms

64 bytes from 10.0.0.4: icmp_seq=5 ttl=64 time=0.061 ms

70

--- 10.0.0.4 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 110ms

rtt min/avg/max/mdev = 0.061/0.071/0.089/0.012 ms

root@admin-pc:~#
```

Figure 8. Connectivity test using ping command.

2.2 Modifying hosts' buffer size

The following tests the bandwidth is limited to 10 Gbps, and the RTT (delay or latency) is 20ms.

In order to have enough TCP buffer size, we will set the sending and receiving buffer to $5 \cdot BDP$ in all hosts.

```
BW = 10,000,000,000 \text{ bits/second}
```

RTT = 0.02 seconds

```
BDP = 10,000,000,000 \cdot 0.02 = 200,000,000 bits = 25,000,000 bytes \approx 25 Mbytes
```

The send and receive buffer sizes should be set to $5 \cdot BDP$. We will use the 25 Mbytes value for the BDP instead of 25,000,000 bytes.

```
1 \text{ Mbyte} = 1024^2 \text{ bytes}
```

```
BDP = 25 \text{ Mbytes} = 25 \cdot 1024^2 \text{ bytes} = 26,214,400 \text{ bytes}
```

$$5 \cdot BDP = 5 \cdot 26,214,400 \text{ bytes} = 131,072,000 \text{ bytes}$$

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving buffer size. In order to change the receiving buffer size, on host h1's terminal type the command shown below. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
```

```
"Host: h1"
root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
net.ipv4.tcp_rmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 9. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size that is used by each TCP socket. 87,380 is the default buffer which is allocated when applications create a TCP socket. 131,072,000 is the maximum receive buffer that can be allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on host h1's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'

"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
net.ipv4.tcp_rmem = 10240 87380 131072000
root@admin-pc:~#
Figure 10. Send window change in sysctl.
```

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following command on host h2's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'

"Host: h2"

root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
net.ipv4.tcp_rmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 11. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on host h2's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'

"Host: h2"

root@admin-pc:~# sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'
net.ipv4.tcp_wmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 12. Send window change in sysctl.

Step 5. To change the current receiver-window size value(s), use the following command on host h3's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
```

```
"Host: h3"
root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
net.ipv4.tcp_rmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 13. Receive window change in sysctl.

Step 6. To change the current send-window size value(s), use the following command on host h3's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'
```

```
"Host: h3"
root@admin-pc:~# sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'
net.ipv4.tcp_wmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 14. Send window change in sysctl.

Step 7. To change the current receiver-window size value(s), use the following command on host h4's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
```

```
"Host: h4"

root@admin-pc:~# sysctl -w net.ipv4.tcp_rmem='10240 87380 131072000'
net.ipv4.tcp_rmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 15. Receive window change in sysctl.

Step 8. To change the current send-window size value(s), use the following command on host h4's terminal. The values set are: 10,240 (minimum), 87,380 (default), and 131,072,000 (maximum).

```
sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'
```

```
"Host: h4"
root@admin-pc:~# sysctl -w net.ipv4.tcp_wmem='10240 87380 131072000'
net.ipv4.tcp_wmem = 10240 87380 131072000
root@admin-pc:~#
```

Figure 16. Send window change in sysctl.

2.3 Emulating high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between switches, setting 10ms delay on switch S1 and 10ms delay on switch S2, resulting in 20ms of Round-Trip Time (*RTT*).

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the Linux terminal icon.

Figure 17. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a command-line interface (CLI). A CLI is a program that takes commands from the keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type password and hit *Enter*. This command introduces 10ms delay to switch S1's s1-eth1 interface.

Figure 18. Adding delay of 10ms to switch S1's s1-eth1 interface.

Step 3. Similarly, repeat again the previous step to set a 10ms delay to switch S2's interface. When prompted for a password, type password and hit *Enter*. This command introduces 10ms delay on switch S2's s2-eth1 interface.

```
sudo tc qdisc add dev s2-eth1 root handle 1: netem delay 10ms

*-

File Actions Edit View Help

admin@admin-pc:~

sudo tc qdisc add dev s2-eth1 root handle 1: netem delay 10ms

admin@admin-pc:~$

admin@admin-pc:~$
```

Figure 19. Adding delay of 10ms to switch S2's s2-eth1 interface.

2.4 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type $\boxed{ping 10.0.0.2}$. To stop the test, press $\boxed{Ctr1+c}$. The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses back.

```
"Host: h1"

root@admin-pc:~# ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=20.1 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=20.1 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=20.1 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=20.1 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=20.1 ms

^C

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 7ms

rtt min/avg/max/mdev = 20.096/20.110/20.135/0.101 ms

root@admin-pc:~#
```

Figure 20. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss) and that the minimum, average, maximum, and standard deviation of the Round-Trip Time (RTT) were 20.096, 20.110, 20.135, and 0.101 milliseconds, respectively. The output above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h3, type ping 10.0.0.4. The ping output in this test should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop the test, press Ctrl+q.

```
"Host: h3"

root@admin-pc:~# ping 10.0.0.4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=20.5 ms

64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=20.1 ms

64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=20.1 ms

64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=20.1 ms

67 c

--- 10.0.0.4 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 7ms

rtt min/avg/max/mdev = 20.094/20.212/20.529/0.252 ms

root@admin-pc:~#
```

Figure 21. Output of ping 10.0.0.4 command.

The result above indicates that all four packets were received successfully (0% packet loss) and that the minimum, average, maximum, and standard deviation of the Round-Trip Time (RTT) were 20.094, 20.212, 20.529, and 0.252 milliseconds, respectively. The output above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing throughput with 100·MTU switch's buffer size

In this section, you are going to change the switch S1's buffer size to 100·MTU and emulate a 10 Gbps Wide Area Network (*WAN*) using the Token Bucket Filter (tbf). Then, you will test the throughput between host h1 and host h2 while there is another TCP flow between host h3 and host h4. On each test, you will modify the congestion control algorithm in host h1, namely, *cubic*, *reno* and *bbr*. The congestion control algorithm will still be *cubic* in host h3 for all tests. In this section, the MTU is 1600 bytes, thus the tbf limit value will be set to 100·MTU = 160,000 bytes.

3.1 Setting switch S1's buffer size to 100·MTU

Step 1. Apply tof rate limiting rule on switch S1's *s1-eth1* interface. In the client's terminal, type the command below. When prompted for a password, type password and hit *Enter*.

- rate: 10gbit
- burst: 5,000,000
- limit: 160,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000 limit 160000

Figure 22. Limiting rate to 10 Gbps and setting the buffer size to 100⋅MTU on switch S1's interface.

3.2 TCP Cubic

The default congestion avoidance algorithm in the following test is *cubic* thus, there is no need to specify it manually.

Step 1. Launch iPerf3 in server mode on host h2's terminal.

Figure 23. Starting iPerf3 server on host h2.

Step 2. Launch iPerf3 in server mode on host h4's terminal.

"Host: h4" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201

Figure 24. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 3. Type the following iPerf3 command in host h1's terminal without executing it.

Figure 25. Typing iPerf3 client command on host h1.

Step 4. Type the following iPerf3 command in host h3's terminal without executing it.

Figure 26. Typing iPerf3 client command on host h3.

Step 5. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
                                                                          - 2 ×
 191
      73.00-74.00 sec 14.2 MBytes
                                      119 Mbits/sec
                                                            308 KBytes
 191
      74.00-75.00 sec
                        14.9 MBytes
                                      125 Mbits/sec
                                                       0
                                                            345 KBytes
 191
      75.00-76.00 sec 14.4 MBytes
                                      121 Mbits/sec
                                                       85
                                                            188 KBytes
 191
      76.00-77.00 sec 7.83 MBytes
                                     65.7 Mbits/sec
                                                            160 KBytes
                                                       8
 191
      77.00-78.00 sec 8.64 MBytes
                                     72.5 Mbits/sec
                                                       0
                                                            195 KBytes
                                     75.1 Mbits/sec
 191
      78.00-79.00 sec
                        8.95 MBytes
                                                       8
                                                            165 KBytes
                                     74.5 Mbits/sec
 19]
      79.00-80.00 sec
                        8.89 MBytes
                                                       0
                                                            199 KBytes
      80.00-81.00 sec
 19]
                                     65.2 Mbits/sec
                        7.77 MBytes
                                                       8
                                                            173 KBytes
 191
      81.00-82.00 sec 8.51 MBytes
                                                            209 KBytes
                                     71.4 Mbits/sec
                                                       0
 191
      82.00-83.00 sec
                                     97.5 Mbits/sec
                                                            245 KBytes
                        11.6 MBytes
                                                       0
 19]
      83.00-84.00 sec
                        11.9 MBytes
                                     99.6 Mbits/sec
                                                       0
                                                            281 KBytes
 19]
      84.00-85.00 sec
                        13.8 MBytes
                                      116 Mbits/sec
                                                       0
                                                            318 KBytes
 19]
      85.00-86.00 sec
                        16.2 MBytes
                                      136 Mbits/sec
                                                       0
                                                            355 KBytes
 191
      86.00-87.00 sec
                        18.0 MBytes
                                      151 Mbits/sec
                                                      16
                                                            273 KBytes
 19]
      87.00-88.00 sec
                        11.0 MBytes
                                     92.3 Mbits/sec
                                                             226 KBytes
                                                      11
 191
      88.00-89.00 sec 8.95 MBytes
                                     75.1 Mbits/sec
                                                       9
                                                             187 KBytes
                                                             160 KBytes
 19]
      89.00-90.00 sec 8.76 MBytes
                                     73.5 Mbits/sec
                                                       8
 ID] Interval
                        Transfer
                                     Bitrate
                                                     Retr
 191
       0.00-90.00 sec
                         927 MBytes
                                     86.4 Mbits/sec
                                                     994
                                                                     sender
 19]
       0.00-90.04 sec
                         925 MBytes
                                     86.1 Mbits/sec
                                                                      receiver
iperf Done.
root@admin-pc:~#
```

Figure 27. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 86.4 Mbps (sender) and 86.1 Mbps (receiver), and the number of retransmissions is 994. Host h3's results are similar to the above, however we are just focused on host h1's results.

Step 6. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

3.3 TCP Reno

Step 1. In host h1's terminal, change the TCP congestion control algorithm to Reno by typing the following command:

```
sysctl -w net.ipv4.tcp_congestion_control=reno

"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_congestion_control=reno
net.ipv4.tcp_congestion_control = reno
root@admin-pc:~#
```

Figure 28. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

```
iperf3 -s
```

```
"Host: h2" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 29. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

Figure 30. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

```
iperf3 -c 10.0.0.2 -t 90

"Host: h1" - x x

root@admin-pc:~# iperf3 -c 10.0.0.2 -t 90
```

Figure 31. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

Figure 32. Typing iPerf3 client command on host h3.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
                                                           232 KBytes
 191
      73.00-74.00 sec 8.75 MBytes 73.4 Mbits/sec
 191
      74.00-75.00 sec 7.50 MBytes 62.9 Mbits/sec
                                                      9
                                                           177 KBytes
 191
      75.00-76.00 sec 10.0 MBytes 83.9 Mbits/sec
                                                      0
                                                           245 KBytes
                                                           164 KBytes
 19]
      76.00-77.00 sec 11.2 MBytes 94.4 Mbits/sec
                                                      8
 19]
      77.00-78.00 sec 10.0 MBytes 83.9 Mbits/sec
                                                      9
                                                           116 KBytes
 19]
      78.00-79.00 sec
                       7.50 MBytes
                                    62.9 Mbits/sec
                                                      0
                                                           185 KBytes
      79.00-80.00
                                                      9
 19]
                  sec 8.75 MBytes
                                    73.4 Mbits/sec
                                                           132 KBytes
 19]
      80.00-81.00
                       7.50 MBytes
                                    62.9 Mbits/sec
                                                      0
                                                           201 KBytes
                  sec
 19]
      81.00-82.00
                   sec
                        11.2 MBytes
                                    94.4 Mbits/sec
                                                      0
                                                           269 KBytes
 19]
      82.00-83.00
                   sec
                        10.0 MBytes
                                    83.9 Mbits/sec
                                                      9
                                                           189 KBytes
 19]
      83.00-84.00
                  sec
                        10.0 MBytes
                                    83.9 Mbits/sec
                                                      0
                                                           257 KBytes
      84.00-85.00
                       11.2 MBytes
                                    94.4 Mbits/sec
                                                           178 KBytes
 19]
                  sec
                                                     11
      85.00-86.00
 19]
                       10.0 MBytes
                                    83.9 Mbits/sec
                                                     36
                                                           122 KBytes
                  sec
 191
      86.00-87.00
                  sec
                       7.50 MBytes
                                    62.9 Mbits/sec
                                                     0
                                                           191 KBytes
 19]
      87.00-88.00 sec
                       7.50 MBytes
                                    62.9 Mbits/sec
                                                     27
                                                           143 KBytes
 191
      88.00-89.00 sec 8.75 MBytes
                                    73.4 Mbits/sec
                                                           211 KBytes
 19] 89.00-90.00 sec 10.0 MBytes
                                    83.9 Mbits/sec
                                                     20
                                                           146 KBytes
 ID] Interval
                        Transfer
                                    Bitrate
                                                    Retr
 19]
       0.00-90.00 sec
                        844 MBytes
                                    78.7 Mbits/sec
                                                    1129
                                                                     sender
 19]
       0.00-90.04 sec
                        840 MBytes
                                    78.3 Mbits/sec
                                                                    receiver
iperf Done.
root@admin-pc:~#
```

Figure 33. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 78.7 Mbps (sender) and 78.3 Mbps (receiver), and the number of retransmissions is 1129. Host h3's results are similar to the figure above, however we are just focused on host h1's results.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

3.4 TCP BBR

Step 1. In host h1's terminal, change the TCP congestion control algorithm to BBR by typing the following command:

```
sysctl -w net.ipv4.tcp_congestion_control=bbr

"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_congestion_control=bbr
net.ipv4.tcp_congestion_control = bbr
root@admin-pc:~#
```

Figure 34. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

```
iperf3 -s
```

```
"Host: h2" - x x
root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 35. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

```
"Host: h4" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 36. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

```
"Host: h1" - x x

root@admin-pc:~# iperf3 -c 10.0.0.2 -t 90

Figure 37. Typing iPerf3 client command on host h1.
```

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

Figure 39. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 3.48 Gbps (sender) and 3.47 Gbps (receiver), and the number of retransmissions is 75818. Note that the congestion control algorithm used in host h1 is *bbr* and in host h3 is *cubic*.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

4 Testing throughput with one BDP switch's buffer size

In this section, you are going to change the switch S1 buffer size to one BDP (26,214,400) using the Token Bucket Filter (tbf). Then, you will test the throughput between host h1 and host h2 while there is another TCP flow between host h3 and host h4. On each test, you will modify the congestion control algorithm in host h1 namely, *cubic*, *reno* and *bbr*. The congestion control algorithm will still *cubic* in host 3 for all tests. In this section, the tbf limit value will be set to one BDP = 26,214,400 bytes.

4.1 Changing switch S1's buffer size to one BDP

Step 1. Apply tof rate limiting rule on switch S1's *s1-eth1* interface. In the client's terminal, type the command below. When prompted for a password, type password and hit *Enter*.

• rate: 10gbit

- burst: 5,000,000
- limit: 26,214,400

sudo tc qdisc change dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000 limit 26214400

Figure 40. Changing the buffer size to one BDP on switch S1's s1-eth1 interface.

4.2 TCP Cubic

Step 1. In host h1's terminal, change the TCP congestion control algorithm to Cubic by typing the following command:

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

```
"Host: h2" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

```
iperf3 -s
```

```
"Host: h4" - x x
root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 43. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

Figure 44. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

Figure 45. Typing iPerf3 client command on host h3.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
                                                                            - 0 X
                         545 MBytes 4.57 Gbits/sec
550 MBytes 4.61 Gbits/sec
      73.00-74.00 sec
                                                            23.4 MBytes
 19]
                                                        0
 191
      74.00-75.00
                    sec
                                                        0
                                                            23.4 MBytes
                                                            23.4 MBytes
 191
      75.00-76.00
                          540 MBytes 4.53 Gbits/sec
                   sec
                                                        0
 19]
      76.00-77.00 sec
                          549 MBytes 4.60 Gbits/sec
                                                            23.4 MBytes
      77.00-78.00 sec
 19]
                          542 MBytes 4.55 Gbits/sec
                                                            23.4 MBytes
                                                        0
 19]
      78.00-79.00
                          545 MBytes 4.57 Gbits/sec
                                                        0
                                                            23.4 MBytes
                   sec
  19]
      79.00-80.00
                   sec
                          545 MBytes 4.57 Gbits/sec
                                                            23.4 MBytes
                          550 MBytes 4.61 Gbits/sec
      80.00-81.00 sec
 191
                                                        0
                                                            23.4 MBytes
 19]
      81.00-82.00 sec
                          546 MBytes 4.58 Gbits/sec
                                                            23.4 MBytes
 19]
      82.00-83.00 sec
                          542 MBytes 4.55 Gbits/sec
                                                        0
                                                            23.4 MBytes
                          548 MBytes 4.59 Gbits/sec
                                                            23.4 MBytes
 19]
      83.00-84.00 sec
                                                        0
 19]
      84.00-85.00
                          548 MBytes
                                     4.59 Gbits/sec
                                                            23.4 MBytes
                   sec
                                                        0
 19]
      85.00-86.00
                          544 MBytes 4.56 Gbits/sec
                   sec
                                                        0
                                                            23.4 MBytes
 19]
      86.00-87.00
                          549 MBytes 4.60 Gbits/sec
                                                            23.4 MBytes
                                                        0
                   sec
 19]
      87.00-88.00 sec
                          540 MBytes 4.53 Gbits/sec
                                                        0
                                                            23.4 MBytes
      88.00-89.00 sec
 19]
                          545 MBytes 4.57 Gbits/sec
                                                        0
                                                            23.4 MBytes
 19]
      89.00-90.00 sec
                          548 MBytes 4.59 Gbits/sec
                                                            23.4 MBytes
 ID] Interval
                                      Bitrate
                                                      Retr
                         Transfer
 191
       0.00-90.00 sec 47.9 GBytes
                                     4.57 Gbits/sec
                                                                       sender
 19]
       0.00-90.04 sec 47.9 GBytes
                                      4.57 Gbits/sec
                                                                       receiver
perf Done.
root@admin-pc:~#
```

Figure 46. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 4.57 Gbps (sender) and 4.57 Gbps (receiver), and the number of retransmissions is 0. Note that the congestion avoidances algorithm used in host h1 and host h2 is *cubic*. Similar results are found in host h3 terminal.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

4.3 TCP Reno

root@admin-pc:~#

Step 1. In host h1's terminal, change the TCP congestion control algorithm to Reno by typing the following command:

```
sysctl -w net.ipv4.tcp_congestion_control=reno

"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_congestion_control=reno
net.ipv4.tcp congestion control = reno
```

Figure 47. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

Figure 48. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

```
iperf3 -s

"Host: h4"

root@admin-pc:~# iperf3 -s

Server listening on 5201

Figure 49. Starting iPerf3 server on host h4.
```

The following two steps should be executed almost simultaneously, thus you will type the commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

```
iperf3 -c 10.0.0.2 -t 90

// "Host: h1" - x x

root@admin-pc:~# iperf3 -c 10.0.0.2 -t 90
```

Figure 50. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

```
"Host: h3" - x x

root@admin-pc:~# iperf3 -c 10.0.0.4 -t 90
```

Figure 51. Typing iPerf3 client command on host h3.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
                                                                         - 0 x
      73.00-74.00 sec
                         306 MBytes 2.57 Gbits/sec
                                                      0
                                                          11.7 MBytes
      74.00-75.00 sec
                         316 MBytes 2.65 Gbits/sec
                                                      0
                                                          11.7 MBytes
 19]
      75.00-76.00 sec
                         381 MBytes 3.20 Gbits/sec
                                                      0
                                                          11.7 MBytes
 191
      76.00-77.00 sec
                         371 MBytes 3.11 Gbits/sec
                                                      0
                                                          11.7 MBytes
      77.00-78.00 sec
 19]
                         359 MBytes 3.01 Gbits/sec
                                                      0
                                                          11.7 MBytes
      78.00-79.00
                  sec
                         351 MBytes
                                    2.94 Gbits/sec
                                                      0
                                                          11.7 MBytes
  19]
      79.00-80.00
                   sec
                         340 MBytes
                                    2.85 Gbits/sec
                                                      0
                                                          11.7 MBytes
      80.00-81.00 sec
                         228 MBytes
                                    1.91 Gbits/sec 1081
                                                          5.88 MBytes
 19]
      81.00-82.00 sec
                         211 MBytes 1.77 Gbits/sec
                                                      0
                                                          5.93 MBytes
      82.00-83.00 sec
                         268 MBytes 2.24 Gbits/sec
 19]
                                                      0
                                                          5.99 MBytes
 19]
      83.00-84.00 sec
                         259 MBytes 2.17 Gbits/sec
                                                      0
                                                         6.05 MBytes
 19]
      84.00-85.00 sec
                         259 MBytes 2.17 Gbits/sec
                                                      0
                                                          6.11 MBytes
      85.00-86.00 sec
                         260 MBytes 2.18 Gbits/sec
                                                      0
                                                          6.17 MBytes
      86.00-87.00 sec
                         255 MBytes 2.14 Gbits/sec
                                                      0
                                                          6.22 MBytes
      87.00-88.00 sec
                         259 MBytes 2.17 Gbits/sec
                                                      0
                                                          6.28 MBytes
      88.00-89.00 sec
                         256 MBytes 2.15 Gbits/sec
                                                      0
                                                          6.34 MBytes
                                                      0
      89.00-90.00 sec
                         258 MBytes
                                                          6.39 MBytes
                                    2.16 Gbits/sec
 ID] Interval
                                    Bitrate
                                                    Retr
                        Transfer
 191
       0.00-90.00 sec 28.7 GBytes
                                    2.74 Gbits/sec
                                                    1982
                                                                    sender
 191
       0.00-90.05 sec 28.7 GBytes 2.74 Gbits/sec
                                                                   receiver
iperf Done.
root@admin-pc:~#
```

Figure 52. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 2.74 Gbps (sender) and 2.74 Gbps (receiver), and the number of retransmissions is 1982. Note that the congestion avoidances algorithm used in host h1

is *reno* and in host h2 is *cubic*. Host h3's results are similar to the figure above, however we are just focused on host h1's results.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

4.4 TCP BBR

Step 1. In host h1's terminal, change the TCP congestion control algorithm to BBR by typing the following command:

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

```
"Host: h2" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 54. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

```
"Host: h4" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 55. Starting iPerf3server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

```
iperf3 -c 10.0.0.2 -t 90
```

```
"Host: h1" - ▷ ×

root@admin-pc:~# iperf3 -c 10.0.0.2 -t 90
```

Figure 56. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

```
iperf3 -c 10.0.0.2 -t 90

// "Host: h3" - x x

root@admin-pc:~# iperf3 -c 10.0.0.4 -t 90
```

Figure 57. Typing iPerf3 client command on host h3.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
                                                                          - 0 x
      73.00-74.00
 19]
                   sec
                         525 MBytes
                                     4.40 Gbits/sec
                                                            23.0 MBytes
 19]
      74.00-75.00
                         548 MBytes
                                     4.59 Gbits/sec
                                                            24.2 MBytes
                   sec
 19]
      75.00-76.00
                   sec
                         394 MBytes
                                     3.30 Gbits/sec
                                                           20.5 MBytes
 191
      76.00-77.00
                   sec
                         481 MBytes
                                     4.04 Gbits/sec
                                                           21.0 MBytes
 19]
      77.00-78.00
                   sec
                         490 MBytes
                                     4.11 Gbits/sec
                                                       0
                                                           22.4 MBytes
 19]
      78.00-79.00
                   sec
                         534 MBytes
                                     4.48 Gbits/sec
                                                       0
                                                           23.6 MBytes
 19]
      79.00-80.00
                         539 MBytes
                                                       0
                   sec
                                     4.52 Gbits/sec
                                                            23.1 MBytes
 19]
      80.00-81.00 sec
                         548 MBytes
                                     4.59 Gbits/sec 450
                                                            23.4 MBytes
 19]
                                                            25.6 MBytes
      81.00-82.00 sec
                         581 MBytes
                                     4.88 Gbits/sec
                                                      0
 19]
      82.00-83.00 sec
                         588 MBytes
                                                            25.4 MBytes
                                     4.93 Gbits/sec
                                                       0
 19]
      83.00-84.00 sec
                         580 MBytes
                                     4.86 Gbits/sec
                                                       0
                                                           25.1 MBytes
                         592 MBytes
 19]
      84.00-85.00 sec
                                     4.97 Gbits/sec
                                                       0
                                                           25.4 MBytes
                         425 MBytes
                                                            21.0 MBytes
      85.00-86.00 sec
 19]
                                                       0
                                     3.57 Gbits/sec
                         502 MBytes
 191
      86.00-87.00
                   sec
                                     4.22 Gbits/sec
                                                       0
                                                            21.9 MBytes
 19]
      87.00-88.00
                   sec
                         476 MBytes
                                     3.99 Gbits/sec
                                                       0
                                                            21.1 MBytes
 19]
      88.00-89.00
                   sec
                         469 MBytes
                                     3.93 Gbits/sec
                                                       0
                                                            20.8 MBytes
                                                       0
                                                            22.5 MBytes
 19]
      89.00-90.00
                   sec
                         501 MBytes
                                     4.20 Gbits/sec
 ID]
     Interval
                        Transfer
                                     Bitrate
                                                     Retr
 19]
       0.00-90.00
                   sec
                        59.1 GBytes
                                     5.64 Gbits/sec
                                                     16110
                                                                        sender
                                     5.63 Gbits/sec
 19]
       0.00-90.05
                   sec
                        59.0 GBytes
                                                                      receiver
iperf Done.
root@admin-pc:~#
```

Figure 58. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 5.64 Gbps (sender) and 5.63 Gbps (receiver), and the number of retransmissions is 16,110. Note that the congestion avoidances algorithm used in host h1 is *bbr* and in host h3 is *cubic*. Host h3's results are similar to the figure above, however we are just focused on host h1's results.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

5 Emulating high-latency WAN with packet loss

This section emulates a high-latency WAN with packet loss. We already have set a 20ms RTT on the switches. Now, you will add 0.01% packet loss on the switch S1. Note that the switch S1's buffer size is set to one BDP.

Step 1. In the terminal, type the command below. When prompted for a password, type password and hit *Enter*. This command introduces 0.01% packet loss on switch S1's s1-eth1 interface.

sudo tc qdisc change dev s1-eth1 root handle 1: netem delay 10ms loss 0.01%

admin@admin-pc:~

File Actions Edit View Help

admin@admin-pc:~

sudo tc qdisc change dev s1-eth1 root handle 1: netem delay 10ms loss 0.01%

[sudo] password for admin:
admin@admin-pc:~\$

Figure 59. Adding delay of 0.01% to switch S1's s1-eth1 interface.

5.1 TCP Cubic

Step 1. In host h1's terminal, change the TCP congestion control algorithm to Cubic by typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_congestion_control=cubic
net.ipv4.tcp_congestion_control = cubic
root@admin-pc:~#

Figure 60. Changing TCP congestion control algorithm to cubic in host h1.

Note that host h3's congestion control algorithm is Cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

Figure 61. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

iperf3 -s

```
"Host: h4" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 62. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

Figure 63. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

inter to execute the commands first in best his terminal then in be

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
      73.00-74.00 sec 43.8 MBytes
                                       367 Mbits/sec
                                                             957 KBytes
 19]
      74.00-75.00 sec 46.2 MBytes
                                      388 Mbits/sec
                                                             994 KBytes
 19]
      75.00-76.00 sec 47.5 MBytes
                                      398 Mbits/sec
                                                        0
                                                            1.01 MBytes
                                      409 Mbits/sec
 191
      76.00-77.00 sec 48.8 MBytes
                                                            1.04 MBytes
                                                        0
                        52.5 MBytes
                                                            1.08 MBytes
 19]
      77.00-78.00 sec
                                      440 Mbits/sec
                                                        0
  19]
      78.00-79.00
                   sec
                        51.2 MBytes
                                      430 Mbits/sec
                                                        0
                                                            1.11 MBytes
  19]
      79.00-80.00
                        56.2 MBytes
                                      472 Mbits/sec
                                                        0
                                                            1.15 MBytes
                   sec
      80.00-81.00
  19]
                   sec
                        57.5 MBytes
                                      482 Mbits/sec
                                                        0
                                                            1.18 MBytes
 191
      81.00-82.00
                   sec
                        58.8 MBytes
                                      493 Mbits/sec
                                                        0
                                                            1.22 MBytes
                        63.8 MBytes
                                                            1.38 MBytes
 19]
      82.00-83.00 sec
                                      535 Mbits/sec
                                                        0
 19]
      83.00-84.00 sec
                        71.2 MBytes
                                      598 Mbits/sec
                                                        0
                                                            1.56 MBytes
 19]
      84.00-85.00 sec
                        80.0 MBytes
                                      671 Mbits/sec
                                                            1.78 MBytes
 19]
      85.00-86.00 sec 93.8 MBytes
                                      786 Mbits/sec
                                                        0
                                                            2.04 MBytes
 19]
      86.00-87.00 sec
                         108 MBytes
                                      902 Mbits/sec
                                                        0
                                                            2.35 MBytes
                                                            2.70 MBytes
 191
                                     1.03 Gbits/sec
                                                        0
      87.00-88.00 sec
                         122 MBytes
 19]
      88.00-89.00 sec
                         142 MBytes
                                      1.20 Gbits/sec
                                                        0
                                                            3.10 MBytes
      89.00-90.00 sec
                          164 MBytes
                                                        0
                                                            3.55 MBytes
 19]
                                      1.37 Gbits/sec
                                     Bitrate
 ID] Interval
                        Transfer
                                                      Retr
       0.00-90.00 sec 10.7 GBytes 1.02 Gbits/sec
                                                      3088
 191
                                                                       sender
 19]
       0.00-90.04 sec 10.7 GBytes | 1.02 Gbits/sec
                                                                      receiver
iperf Done.
root@admin-pc:~#
```

Figure 65. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 1.02 Gbps (sender) and 1.02 Gbps (receiver), and the number of retransmissions is 3088. Note that the congestion control algorithm used in host h1 and host h2 is *cubic*. Host h3's results are similar to the figure above, however we are just focused on host h1's results.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

5.2 TCP Reno

Step 1. In host h1's terminal, change the TCP congestion control algorithm to Reno by typing the following command:

```
sysctl -w net.ipv4.tcp_congestion_control=reno

"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_congestion_control=reno
net.ipv4.tcp_congestion_control = reno
root@admin-pc:~#

Figure 66. Changing TCP congestion control algorithm to reno in host h1.
```

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

```
iperf3 -s
```

```
"Host: h2" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 67. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

```
"Host: h4" - x x

root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 68. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

Figure 69. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

Figure 70. Typing iPerf3 client command on host h3.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
 19]
      73.00-74.00 sec 63.8 MBytes
                                       535 Mbits/sec
                                                            1.34 MBytes
 19]
      74.00-75.00 sec
                        66.2 MBytes
                                       556 Mbits/sec
                                                        0
                                                            1.40 MBytes
 19]
      75.00-76.00 sec 70.0 MBytes
                                       587 Mbits/sec
                                                        0
                                                            1.47 MBytes
 19]
      76.00-77.00 sec 72.5 MBytes
                                       608 Mbits/sec
                                                        0
                                                            1.54 MBytes
      77.00-78.00 sec 77.5 MBytes
 191
                                       650 Mbits/sec
                                                        0
                                                            1.61 MBytes
 19]
      78.00-79.00 sec 80.0 MBytes
                                       671 Mbits/sec
                                                        0
                                                            1.67 MBytes
 19]
      79.00-80.00 sec 82.5 MBytes
                                       692 Mbits/sec
                                                        0
                                                            1.74 MBytes
 19]
      80.00-81.00 sec 78.8 MBytes
                                       661 Mbits/sec
                                                       45
                                                             929 KBytes
      81.00-82.00 sec 45.0 MBytes
 19]
                                       377 Mbits/sec
                                                        0
                                                             997 KBytes
      82.00-83.00 sec 48.8 MBytes
                                       409 Mbits/sec
                                                        0
 19]
                                                            1.04 MBytes
 191
      83.00-84.00 sec
                        52.5 MBytes
                                       440 Mbits/sec
                                                        0
                                                            1.11 MBytes
      84.00-85.00 sec
 191
                        55.0 MBytes
                                       461 Mbits/sec
                                                        0
                                                            1.17 MBytes
 19]
      85.00-86.00 sec
                        57.5 MBytes
                                       482 Mbits/sec
                                                        0
                                                            1.24 MBytes
                        62.5 MBytes
 19]
      86.00-87.00
                   sec
                                       524 Mbits/sec
                                                        0
                                                            1.31 MBytes
      87.00-88.00
                        65.0 MBytes
                                       545 Mbits/sec
                                                            1.38 MBytes
 19]
                   sec
                                                        0
      88.00-89.00
                        68.8 MBytes
                                       577 Mbits/sec
                                                        0
                                                            1.44 MBytes
                   sec
 19]
      89.00-90.00
                   sec
                        71.2 MBytes
                                       598 Mbits/sec
                                                        0
                                                            1.51 MBytes
 ID] Interval
                                      Bitrate
                         Transfer
                                                      Retr
       0.00-90.00 sec
                        7.60 GBytes
                                       726 Mbits/sec
                                                      19496
 191
                                                                        sender
                                                                      receiver
 19]
       0.00-90.04
                   sec
                        7.53 GBytes
                                       718 Mbits/sec
iperf Done.
root@admin-pc:~#
```

Figure 71. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 726 Mbps (sender) and 718 Mbps (receiver), and the number of retransmissions is 19,496. Note that the congestion control algorithm used in host h1 is *reno* and in host h2 is *cubic*. Host h3's results are similar to the figure above, however we are just focused on host h1's results.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

5.3 TCP BBR

Step 1. In host h1's terminal, change the TCP congestion control algorithm to BBR by typing the following command:

```
"Host: h1"

root@admin-pc:~# sysctl -w net.ipv4.tcp_congestion_control=bbr
net.ipv4.tcp_congestion_control = bbr
root@admin-pc:~#
Figure 72. Changing TCP congestion control algorithm to bbr in host h1.
```

Note that host h3's congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2's terminal.

iperf3 -s

```
"Host: h2" - x x
root@admin-pc:~# iperf3 -s

Server listening on 5201
```

Figure 73. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4's terminal.

Figure 74. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1's terminal without executing it.

Figure 75. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3's terminal without executing it.

Figure 76. Typing iPerf3 client command on host h3.

Step 6. Press *Enter* to execute the commands, first in host h1 terminal then, in host h3 terminal.

```
"Host: h1"
                                                                         - 2 X
 19]
      73.00-74.00 sec 1.06 GBytes 9.12 Gbits/sec
                                                           48.1 MBytes
                                                     135
 19]
      74.00-75.00 sec
                        1.03 GBytes
                                                      90
                                                           49.0 MBytes
                                     8.86 Gbits/sec
 19]
      75.00-76.00 sec
                                                      90
                                                           50.2 MBytes
                        1.06 GBytes
                                     9.10 Gbits/sec
                                                           50.2 MBytes
 19]
      76.00-77.00 sec
                        1.06 GBytes
                                     9.09 Gbits/sec
                                                     270
      77.00-78.00 sec
                                                           50.7 MBytes
 19]
                        1.05 GBytes
                                     9.04 Gbits/sec
                                                     180
 19]
      78.00-79.00 sec
                        1.05 GBytes
                                     9.02 Gbits/sec
                                                      90
                                                           25.4 MBytes
                                                           47.8 MBytes
 19]
      79.00-80.00 sec 1.06 GBytes
                                     9.13 Gbits/sec
                                                      45
 19]
      80.00-81.00 sec 1.05 GBytes
                                     9.05 Gbits/sec
                                                           50.4 MBytes
                                                      90
 19]
      81.00-82.00 sec 1.04 GBytes
                                                      45
                                                           50.2 MBytes
                                     8.98 Gbits/sec
 19]
                                     9.00 Gbits/sec
                                                      0
                                                           50.0 MBytes
      82.00-83.00 sec 1.05 GBytes
 19]
      83.00-84.00 sec
                       1.04 GBytes
                                     8.96 Gbits/sec
                                                     135
                                                           47.6 MBytes
 19]
      84.00-85.00 sec 1.05 GBytes
                                     8.98 Gbits/sec
                                                      0
                                                           44.9 MBytes
 191
      85.00-86.00 sec
                        1.06 GBytes
                                     9.07 Gbits/sec
                                                     135
                                                           45.0 MBytes
      86.00-87.00 sec
                                                      45
                                                           50.9 MBytes
 19]
                        1.07 GBytes
                                     9.18 Gbits/sec
      87.00-88.00
                        1.07 GBytes
                                     9.20 Gbits/sec
                                                      90
                                                           52.3 MBytes
 19]
                   sec
                                                      45
 19]
      88.00-89.00
                                                           50.9 MBytes
                   sec
                        1.06 GBytes
                                     9.10 Gbits/sec
 19]
      89.00-90.00
                   sec
                        1.06 GBytes
                                     9.13 Gbits/sec
                                                      90
                                                           51.3 MBytes
 ID] Interval
                        Transfer
                                     Bitrate
                                                     Retr
 19]
       0.00-90.00 sec 91.3 GBytes
                                     8.72 Gbits/sec
                                                     25740
                                                                       sender
       0.00-90.04 sec 91.3 GBytes
                                     8.71 Gbits/sec
                                                                     receiver
iperf Done.
root@admin-pc:~#
```

Figure 77. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average achieved throughput is 8.72 Gbps (sender) and 8.71 Gbps (receiver), and the number of retransmissions is 25,740. Note that the congestion avoidances algorithm used in host h1 is *bbr* and in host h3 is *cubic*.

Step 7. In order to stop the server, press Ctrl+c in host h2's and host h4's terminals. The user can see the throughput results in the server side too.

This concludes Lab 11. Stop the emulation and then exit out of MiniEdit.

References

- 1. J. Moy, "Open shortest path first (OSPF) Version 2," Internet Request for Comments, RFC Editor, RFC 2328, Apr. 1998. [Online]. Available: https://www.ietf.org/rfc/rfc2328.txt.
- 2. Y. Rekhter, T. Li, S. Hares, "Border gateway protocol 4," Internet Request for Comments, RFC Editor, RFC 4271, Jan. 2006. [Online]. Available: https://tools.ietf.org/html/rfc4271.
- 3. J. Crichigno, E. Bou-Harb, N. Ghani, "A comprehensive tutorial on Science DMZ," IEEE Communications Surveys and Tutorials, 2019.
- 4. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, "BBR: congestion-based congestion control," Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb. 2017.
- 5. J. Kurose, K. Ross, "Computer networking: a top-down approach," 7th Edition, Pearson, 2017.

- 6. C. Villamizar, C. Song, "High performance TCP in ansnet," ACM Computer Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.
- 7. R. Bush, D. Meyer, "Some internet architectural guidelines and philosophy," Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online]. Available: https://www.ietf.org/rfc/rfc3439.txt.
- 8. G. Appenzeller, I. Keslassy, N. McKeown, "Sizing router buffers," in Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 281-292, Oct. 2004.