

NETWORK TOOLS AND PROTOCOLS

Lab 11: Router’s Buffer Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 11: Router’s Buffer Size

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to switching ... 4

1.2 Router architecture .. 4

1.3 Where does packet loss occur? .. 5

1.4 Buffer size ... 5

2 Lab topology.. 6

2.1 Starting host h1, host h2, host h3 and host h4 .. 8

2.2 Modifying hosts’ buffer size ... 9

2.3 Emulating high-latency WAN ... 12

2.4 Testing connection ... 13

3 Testing throughput with 100⋅MTU switch’s buffer size ... 14

3.1 Setting switch S1’s buffer size to 100⋅MTU ... 14

3.2 TCP Cubic .. 14

3.3 TCP Reno .. 16

3.4 TCP BBR .. 18

4 Testing throughput with one BDP switch’s buffer size ... 20

4.1 Changing switch S1’s buffer size to one BDP ... 20

4.2 TCP Cubic .. 21

4.3 TCP Reno .. 23

4.4 TCP BBR .. 25

5 Emulating high-latency WAN with packet loss ... 27

5.1 TCP Cubic .. 27

5.2 TCP Reno .. 29

5.3 TCP BBR .. 31

References .. 33

Lab 11: Router’s Buffer Size

 Page 3

Overview

This lab reviews the internal architecture of routers and switches. These devices are
essential in high-speed networks, as they must be capable of absorbing transient packet
bursts generated by large flows and thus avoid packet loss. The lab describes the buffer
requirements to absorb such traffic fluctuations, which are then validated by
experimental results.

Objectives

By the end of this lab, students should be able to:

1. Describe the internal architecture of routers and switches.
2. Understand the importance of buffers of routers and switches to prevent packet

loss.
3. Conduct experiments with routers and switches of variable buffer sizes.
4. Calculate the buffer size required by routers and switches to absorb transient

bursts.
5. Use experimental results to draw conclusions and make appropriate decision

related to routers’ and switches’ buffers.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing throughput with 100*MTU switch’s buffer size.
4. Section 4: Testing throughput with one BDP switch’s buffer size.
5. Section 5: Emulating high-latency WAN with packet loss.

1 Introduction

Lab 11: Router’s Buffer Size

 Page 4

1.1 Introduction to switching

Two essential functions performed by routers are routing and forwarding. Routing refers
to the determination of the route taken by packets. Forwarding refers to the switching of
a packet from the input port to the appropriate output port. The term switching is also
used interchangeably with forwarding. Traditional routing approaches such as static and
dynamic routing (e.g., Open Shortest Path First (OSPF)1, BGP2) are used in the
implementation of high-speed networks, e.g., Science DMZs. Routing events, such as
routing table updates, occur at the millisecond, second, or minute timescale, and best
practices used in regular enterprise networks are applicable to high-speed networks as
well. These functions are sometimes collectively referred to as the control plane and are
usually implemented in software and execute on the routing processor (typically a
traditional CPU), see Figure 1. On the other hand, with transmission rates of 10 Gbps and
above, the forwarding operations related to moving packets from input to output
interfaces at very high speed must occur at the nanosecond timescale. Thus, forwarding
operations, collectively referred to as forwarding or data plane, are executed in
specialized hardware and optimized for performance.

Figure 1. A generic router architecture.

Since forwarding functionality is common in both routers and switches, this lab reviews
the architecture and forwarding-related attributes of switches. These attributes are
applicable to routers as well; thus, for this lab, the terms switch and router are used
interchangeably.

1.2 Router architecture

Consider the generic router architecture that is shown in Figure 1. Modern routers may
have a network processor (NP) and a table derived from the routing table in each port,
which is referred to as the forwarding table (FT) or forwarding information base (FIB). The
router in Figure 1 has two input ports, iP1 and iP2, with their respective queues. iP1 has

Lab 11: Router’s Buffer Size

 Page 5

three packets in its queue, which will be forwarded to output ports oP1 (green packets)
and oP2 (blue packet) by the fabric. A switch fabric moves packets from input to output
ports. Switch fabric designs are shared memory, crossbar network, and bus. In shared
memory switches, packets are written into a memory location by an input port and then
read from that memory location by the output port. Crossbar switches implement a
matrix of pathways that can be configured to connect any input port to any output port.
Bus switches use a shared bus to move packets from the input ports to the output ports3.

Router queues/buffers absorb traffic fluctuations. Even in the absence of congestion,
fluctuations are present, resulting mostly from coincident traffic bursts4. Consider an
input buffer implemented as a first-in first-out in the router of Figure 1. As iP1 and iP2
both have one packet to be forwarded to oP1 at the front of the buffer, only one of them,
say the packet at iP2, will be forwarded to oP1. The consequence of this is that not only
the first packet must wait at iP1. Also, the second packet that is queued at iP1 must wait,
even though there is no contention for oP2. This phenomenon is known as Head-Of-Line
(HOL) blocking5. To avoid HOL blocking, many switches use output buffering, a mixture of
internal and output buffering, or techniques emulating output buffering such as Virtual
Output Queueing (VOQ).

1.3 Where does packet loss occur?

Packet queues may form at both the input ports and the output ports. The location and
extent of queueing (either at the input port queues or the output port queues) will
depend on the traffic load, the relative speed of the switching fabric, and the line speed5.
However, in modern switches with large switching rate capability, queues are commonly
formed at output or transmission ports. A main contributing factor is the coincident
arrivals of traffic bursts from different input ports that must be forwarded to the same
output port. If transmission rates of input and output ports are the same, then packets
from coincident arrivals must be momentarily buffered.

Note, however, that buffers will only prevent packet losses in case of transient traffic
bursts. If those were not transient but permanent, such as approximately constant bit
rates from large file transfers, the aggregate rate of input ports will surpass the rate of
the output port. Thus, the output buffer would be permanently full, and the router would
drop packets.

Packet loss occurs when a router drops the packet. It is the queues within a router, where
such packets are dropped and lost.

1.4 Buffer size

From the above observation, a key question is how large should buffers be to absorb the
fluctuations generated by TCP flows. The rule of thumb has been that the amount of
buffering (in bits) in a router’s port should equal the average Round-Trip Time (RTT) (in
seconds) multiplied by the capacity C (in bits per seconds) of the port6, 7.

Lab 11: Router’s Buffer Size

 Page 6

Router′s buffer size = C ⋅ RTT [bits] (single / small number of flows)

Note that RTT is the average of individual RTTs. For example, if there are five TCP flows
sharing a router’s link (port), the RTT used in the equation above is the average value of
the five flows, and the capacity C is the router’s port capacity. E.g., for 250 millisecond
connections and a 10 Gbps port, the router’s buffer size equals 2.5 Gbits. The above
quantity is a conservative value that can be used in high-throughput high-latency
networks.

In 2004, Appenzeller et al.8 presented a study that suggests that when there is a large
number of TCP flows passing through a link, say N (e.g., hundreds, thousands or more),
the amount of buffering can be reduced to:

Router′s buffer size =
C ⋅RTT

√𝑁
 [bits] (large number of flows N)

This result is observed when there is no dominant flow and the router aggregates
hundreds, thousands, or more flows. The observed effect is that the fluctuation of the
sum of congestion windows are smoothed, and the buffer size at an output port can be
reduced to the expression given above. Note that N can be very large for campus and
backbone networks, and the reduction in needed buffer size can become considerable.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0

Lab 11: Router’s Buffer Size

 Page 7

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 11.mn topology file and click on Open.

Figure 4. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 11: Router’s Buffer Size

 Page 8

2.1 Starting host h1, host h2, host h3 and host h4

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 7. Connectivity test using ping command.

Step 4. Test connectivity between the end-hosts using the ping command. On host h3,
type the command ping 10.0.0.4. This command tests the connectivity between host
h3 and host h4. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 11: Router’s Buffer Size

 Page 9

Figure 8. Connectivity test using ping command.

2.2 Modifying hosts’ buffer size

The following tests the bandwidth is limited to 10 Gbps, and the RTT (delay or latency) is
20ms.

In order to have enough TCP buffer size, we will set the sending and receiving buffer
to 5 · BDP in all hosts.

BW = 10,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 10,000,000,000 · 0.02 = 200,000,000 bits
 = 25,000,000 bytes ≈ 25 Mbytes

The send and receive buffer sizes should be set to 5 · BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes

BDP = 25 Mbytes = 25 · 10242 bytes = 26,214,400 bytes

5 · BDP = 5 · 26,214,400 bytes = 131,072,000 bytes

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Lab 11: Router’s Buffer Size

 Page 10

Figure 9. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 131,072,000 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 10. Send window change in sysctl.

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Figure 11. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 12. Send window change in sysctl.

Lab 11: Router’s Buffer Size

 Page 11

Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Figure 13. Receive window change in sysctl.

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 14. Send window change in sysctl.

Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Figure 15. Receive window change in sysctl.

Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 16. Send window change in sysctl.

Lab 11: Router’s Buffer Size

 Page 12

2.3 Emulating high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switches, setting 10ms delay on switch S1 and 10ms delay on switch S2, resulting in 20ms
of Round-Trip Time (RTT).

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 17. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 10ms delay to switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 10ms

Figure 18. Adding delay of 10ms to switch S1’s s1-eth1 interface.

Step 3. Similarly, repeat again the previous step to set a 10ms delay to switch S2’s
interface. When prompted for a password, type password and hit Enter. This command
introduces 10ms delay on switch S2’s s2-eth1 interface.

sudo tc qdisc add dev s2-eth1 root handle 1: netem delay 10ms

Figure 19. Adding delay of 10ms to switch S2’s s2-eth1 interface.

Lab 11: Router’s Buffer Size

 Page 13

2.4 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 20. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.096, 20.110, 20.135, and 0.101 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h3, type ping 10.0.0.4. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Figure 21. Output of ping 10.0.0.4 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.094, 20.212, 20.529, and 0.252 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Lab 11: Router’s Buffer Size

 Page 14

3 Testing throughput with 100⋅MTU switch’s buffer size

In this section, you are going to change the switch S1’s buffer size to 100 ⋅MTU and
emulate a 10 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then,
you will test the throughput between host h1 and host h2 while there is another TCP flow
between host h3 and host h4. On each test, you will modify the congestion control
algorithm in host h1, namely, cubic, reno and bbr. The congestion control algorithm will
still be cubic in host h3 for all tests. In this section, the MTU is 1600 bytes, thus the tbf
limit value will be set to 100 ⋅ MTU = 160,000 bytes.

3.1 Setting switch S1’s buffer size to 100⋅MTU

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and

hit Enter.

• rate: 10gbit

• burst: 5,000,000

• limit: 160,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 160000

Figure 22. Limiting rate to 10 Gbps and setting the buffer size to 100⋅MTU on switch S1’s interface.

3.2 TCP Cubic

The default congestion avoidance algorithm in the following test is cubic thus, there is
no need to specify it manually.

Step 1. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 23. Starting iPerf3 server on host h2.

Lab 11: Router’s Buffer Size

 Page 15

Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 24. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 3. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

C
Figure 25. Typing iPerf3 client command on host h1.

Step 4. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 26. Typing iPerf3 client command on host h3.

Step 5. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 16

Figure 27. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 86.4 Mbps (sender) and 86.1 Mbps (receiver), and the number of
retransmissions is 994. Host h3’s results are similar to the above, however we are just
focused on host h1’s results.

Step 6. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

3.3 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 28. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 17

Figure 29. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 30. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 31. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 32. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 18

Figure 33. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 78.7 Mbps (sender) and 78.3 Mbps (receiver), and the number of
retransmissions is 1129. Host h3’s results are similar to the figure above, however we are
just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The

user can see the throughput results in the server side too.

3.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 34. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 19

Figure 35. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 36. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 37. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 38. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 20

Figure 39. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 3.48 Gbps (sender) and 3.47 Gbps (receiver), and the number of
retransmissions is 75818. Note that the congestion control algorithm used in host h1 is
bbr and in host h3 is cubic.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4 Testing throughput with one BDP switch’s buffer size

In this section, you are going to change the switch S1 buffer size to one BDP (26,214,400)
using the Token Bucket Filter (tbf). Then, you will test the throughput between host h1
and host h2 while there is another TCP flow between host h3 and host h4. On each test,
you will modify the congestion control algorithm in host h1 namely, cubic, reno and bbr.
The congestion control algorithm will still cubic in host 3 for all tests. In this section, the
tbf limit value will be set to one BDP = 26,214,400 bytes.

4.1 Changing switch S1’s buffer size to one BDP

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 10gbit

Lab 11: Router’s Buffer Size

 Page 21

• burst: 5,000,000

• limit: 26,214,400

sudo tc qdisc change dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst

5000000 limit 26214400

Figure 40. Changing the buffer size to one BDP on switch S1’s s1-eth1 interface.

4.2 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 41. Changing TCP congestion control algorithm to cubic in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 22

Figure 43. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 44. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 45. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Figure 46. Running iPerf3 client on host h1.

Lab 11: Router’s Buffer Size

 Page 23

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 4.57 Gbps (sender) and 4.57 Gbps (receiver), and the number of
retransmissions is 0. Note that the congestion avoidances algorithm used in host h1 and
host h2 is cubic. Similar results are found in host h3 terminal.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4.3 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 47. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 48. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 49. Starting iPerf3 server on host h4.

Lab 11: Router’s Buffer Size

 Page 24

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 50. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 51. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Figure 52. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 2.74 Gbps (sender) and 2.74 Gbps (receiver), and the number of
retransmissions is 1982. Note that the congestion avoidances algorithm used in host h1

Lab 11: Router’s Buffer Size

 Page 25

is reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however
we are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 53. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 54. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 55. Starting iPerf3server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

Lab 11: Router’s Buffer Size

 Page 26

iperf3 -c 10.0.0.2 -t 90

Figure 56. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 57. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Figure 58. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 5.64 Gbps (sender) and 5.63 Gbps (receiver), and the number of
retransmissions is 16,110. Note that the congestion avoidances algorithm used in host h1
is bbr and in host h3 is cubic. Host h3’s results are similar to the figure above, however
we are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

Lab 11: Router’s Buffer Size

 Page 27

5 Emulating high-latency WAN with packet loss

This section emulates a high-latency WAN with packet loss. We already have set a 20ms
RTT on the switches. Now, you will add 0.01% packet loss on the switch S1. Note that the
switch S1’s buffer size is set to one BDP.

Step 1. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 0.01% packet loss on switch S1’s s1-
eth1 interface.

sudo tc qdisc change dev s1-eth1 root handle 1: netem delay 10ms loss 0.01%

Figure 59. Adding delay of 0.01% to switch S1’s s1-eth1 interface.

5.1 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 60. Changing TCP congestion control algorithm to cubic in host h1.

Note that host h3’s congestion control algorithm is Cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 61. Starting iPerf3 server on host h2.

Lab 11: Router’s Buffer Size

 Page 28

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 62. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 63. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 64. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 29

Figure 65. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 1.02 Gbps (sender) and 1.02 Gbps (receiver), and the number of
retransmissions is 3088. Note that the congestion control algorithm used in host h1 and
host h2 is cubic. Host h3’s results are similar to the figure above, however we are just
focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

5.2 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 66. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 30

Figure 67. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 68. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 69. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 70. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 31

Figure 71. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 726 Mbps (sender) and 718 Mbps (receiver), and the number of
retransmissions is 19,496. Note that the congestion control algorithm used in host h1 is
reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however we
are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

5.3 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 72. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

Lab 11: Router’s Buffer Size

 Page 32

iperf3 -s

Figure 73. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 74. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 75. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 76. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 33

Figure 77. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 8.72 Gbps (sender) and 8.71 Gbps (receiver), and the number of
retransmissions is 25,740. Note that the congestion avoidances algorithm used in host h1
is bbr and in host h3 is cubic.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

This concludes Lab 11. Stop the emulation and then exit out of MiniEdit.

References

1. J. Moy, “Open shortest path first (OSPF) Version 2,” Internet Request for
Comments, RFC Editor, RFC 2328, Apr. 1998. [Online]. Available:
https://www.ietf.org/rfc/rfc2328.txt.

2. Y. Rekhter, T. Li, S. Hares, “Border gateway protocol 4,” Internet Request for
Comments, RFC Editor, RFC 4271, Jan. 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271.

3. J. Crichigno, E. Bou-Harb, N. Ghani, “A comprehensive tutorial on Science DMZ,”
IEEE Communications Surveys and Tutorials, 2019.

4. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

5. J. Kurose, K. Ross, “Computer networking: a top-down approach,” 7th Edition,
Pearson, 2017.

Lab 11: Router’s Buffer Size

 Page 34

6. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

7. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

8. G. Appenzeller, I. Keslassy, N. McKeown, “Sizing router buffers,” in Proceedings of
the 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 281-292, Oct. 2004.

