

NETWORK TOOLS AND PROTOCOLS

Lab 12: TCP Rate Control with Pacing

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 12: TCP Pacing

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP pacing ... 4

1.1 TCP pacing essentials ... 4

1.2 Use case: TCP pacing on a 100 Gbps network ... 5

1.3 Fair queueing details .. 6

2 Lab topology.. 7

2.1 Starting host h1 and host h2 .. 8

2.2 Emulating 10 Gbps high-latency WAN ... 9

2.3 Testing connection ... 10

3 Enabling TCP pacing with tc and fq ... 13

4 Enabling TCP pacing from application .. 15

5 Concurrent transmission without pacing ... 17

6 Concurrent transmission with pacing ... 19

7 Parallel streams and without pacing .. 21

8 Parallel streams and with pacing .. 23

References .. 25

Lab 12: TCP Pacing

 Page 3

Overview

This lab introduces TCP pacing, which is a technique that evenly spaces out packets and
minimizes traffic burstiness and packet losses. The focus in this lab is on Fair Queueing
(FQ)-based pacing in high-latency Wide Area Networks (WANs). The lab describes the
steps to conduct throughput tests that encompass TCP pacing and to compare the
performance of TCP pacing against regular (non-paced) TCP.

Objectives

By the end of this lab, students should be able to:

1. Define TCP pacing.
2. Understand FQ-based pacing.
3. Enable TCP pacing in Linux.
4. Compare the performance of paced TCP vs. non-paced TCP.
5. Understand pacing effect on parallel streams.
6. Emulate a WAN and calculate the coefficient of variation of flows.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP pacing.
2. Section 2: Lab topology.
3. Section 3: Enabling TCP pacing with tc and fq.
4. Section 4: Enabling TCP pacing from application.
5. Section 5: Concurrent transmission without pacing.
6. Section 6: Concurrent transmission with pacing.
7. Section 7: Parallel streams and without pacing.
8. Section 8: Parallel streams and with pacing.

Lab 12: TCP Pacing

 Page 4

1 Introduction to TCP pacing

1.1 TCP pacing essentials

Data transmission can be bursty, resulting in packets being buffered at routers and
switches and dropped at times. End devices can contribute to the problem by sending a
large number of packets in a short period of time. If those packets were transmitted at a
steady pace, the formation of queues could be reduced, avoiding packet losses.

TCP pacing is a technique by which a transmitter evenly spaces or paces packets at a pre-
configured rate. It has been applied for years in enterprise networks1, with mixed results.
However, its recent application to data transfers in high-throughput high-latency
networks and science demilitarized zones (Science DMZs) suggests that its use has several
advantages2. TCP pacing has also been applied to datacenter environments3.

The existing TCP congestion control algorithms, except for BBR4, indicate how much data
is allowed for transmission. Those algorithms do not provide a time period over which
that data should be transmitted and how the data should be spread to mitigate potential
bursts. The rate, however, can be enforced by a packet scheduler such as a fair queue
(FQ)5. The packet scheduler organizes the flow of packets of each TCP connection through
the network stack to meet policy objectives. Some Linux distributions such as CentOS6
implement FQ scheduling in conjunction with TCP pacing4, 7.

FQ is intended for locally generated traffic (e.g., a sender device, such as data transfer
node (DTN) in Science DMZs). Figure 1 illustrates the operation of FQ pacing. Application
1 generates green packets, and application 2 generates blue packets. Each application
opens a TCP connection. FQ paces each connection according to the desired rate, evenly
spacing out packets within an application based on the desired rate. The periods T1 and
T2 represent the time-space used for connections 1 and 2 respectively.

Figure 1. TCP pacing. Packets of applications 1 and 2 are evenly spaced by T1 and T2 time units.

TCP pacing reduces the typical TCP sawtooth behavior8 and is effective when there are
rate mismatches along the path between the sender and the receiver. This is the case, for
example, when the ingress port of a router has a capacity of 100 Gbps, and the egress
port has a capacity of 10 Gbps. Because of the TCP congestion control mechanism, the
sawtooth behavior always emerges. As TCP continues to increase the size of the
congestion window, eventually the bottleneck link becomes full while the rest of the links

Lab 12: TCP Pacing

 Page 5

become underutilized. These mismatches produce a continuous circle of additive
increases and multiplicative decreases8.

1.2 Use case: TCP pacing on a 100 Gbps network

With the increase of big data transfers across networks, network professionals have
recently explored the impact of pacing on large flows8. Figure 2(a) shows the results of
data transfers over the Energy Science Network (ESnet). ESnet is a high-performance
network that carries science traffic for the U.S. Department of Energy. As of 2018, this
network is transporting more than 200 petabytes per month. The path capacity and
round-trip time (RTT) between end devices, referred to as DTNs, are 100 Gbps and 92
milliseconds respectively. Transfers use TCP Cubic congestion control algorithm9 without
pacing and a maximum segment size (MSS) of 1,500 bytes. Four concurrent TCP
connections are generated from a single source DTN to a single destination DTN. These
four connections exhibit the typical sawtooth behavior10, which in part is attributed to
the inability of switches to absorb traffic bursts. Figure 2(b) shows the behavior of TCP
Cubic with FQ pacing. The pacing rate for the four TCP connections is approximately 20
Gbps (curves are overlapped at nearly 20 Gbps). The throughput is slightly lower than 20
Gbps per connection. However, notice how the sawtooth behavior is reduced and stable
rates are obtained.

In general, TCP FQ pacing is also effective when there are rate mismatches along the path
between the sender and the receiver. This is the case, for example, when the ingress port
of a router has a capacity of 100 Gbps and the egress port has a capacity of 10 Gbps. As
TCP increases the congestion window during the additive increase phase, eventually the
bottleneck link becomes full while the rest of the links become underutilized. The
mismatches produce a continuous circle of additive increases and multiplicative
decreases, thus generating the sawtooth behavior.

Figure 2. Impact of TCP pacing on throughput. (a) Data transfers of four parallel TCP connections
across a 100 Gbps, 92 milliseconds RTT path. (b) The same data transfer as in (a) but using TCP
pacing. (c) Data transfers between two DTNs connected by a path with a bottleneck link of 1 Gbps.
The curves show the performance when the DTNs use different Linux operating systems (violet:

CentOS 6; green: CentOS 7, and blue: CentOS7 with pacing). The results are reproduced from8.

Figure 2(c) shows the data transfer between two DTNs over ESnet. One DTN is in Amarillo,
Texas, and the other DTN is in New York City. Although the WAN connecting the two sites
has 100 Gbps capacity, one of the DTNs is attached to the network via a 1 Gbps network

Lab 12: TCP Pacing

 Page 6

interface card. Thus, the entirety of the path includes multiple 100 Gbps links and one
bottleneck link of 1 Gbps. The figure shows three curves: the throughput when both DTNs
are based on Linux CentOS6 Version 6 (violet), the throughput when DTNs are based on
Linux CentOS Version 7 (green), and the throughput when DTNs are based on Linux
CentOS Version 7 and packets are paced at 800 Mbps (blue). Note that pacing also leads
to much more stable behaviors, almost removing the TCP sawtooth behavior.

1.3 Fair queueing details

In Linux-based systems, network traffic can be controlled by Queueing Disciplines (qdisc)
used in conjunction with the Traffic Control (tc) tool. In this lab we focus on the most
commonly used queueing discipline: FQ. In this queueing discipline, aggregate queues are
used to associate token buckets in order to limit the transmission rate.

FQ performs flow separation to achieve pacing; it is designed to follow the requirements
set by the TCP stack5. Generally, a flow is considered all packets pertaining to a particular
socket. FQ uses the red-black tree data structure to index and track the state of single
flows as shown in Figure 3(a)11. A red-black tree is a binary search tree which ensures that
no path in the tree is more than twice long as any other. This property ensures that tree
operations have a logarithmic complexity. FQ achieves fairness through the Deficit Round
Robin (DRR) algorithm12, illustrated in Figure 3(b). The DRR is an algorithm that allows
each flow passing through a network device to have a nearly perfect fairness and requires
only a constant number of operations per packet. FQ uses the leaky bucket queue where
transmitting timestamps (indexed on the read-black tree) are derived from the pacing
rate specified by the user and the packet size. FQ is a non-work conserving scheduler,
therefore, it can have idle scheduled resources even if there are jobs ready to be
scheduled.

Figure 3. (a) FQ-pacing. (b) Deficit Round-Robin (DRR) algorithm.

Lab 12: TCP Pacing

 Page 7

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 12.mn topology file and click on Open.

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth2

10.0.0.1

h3

h3-eth0

s1-eth5

10.0.0.3

h5

h5-eth010.0.0.5

h7

10.0.0.7 h7-eth0

s1-eth4

s1-eth2

h2

s2-eth1

h2-eth0
10.0.0.2

h4

h4-eth0
10.0.0.4

h6

h6-eth0 10.0.0.6

h8

10.0.0.8h8-eth0

s2-eth4

s2-eth3

s2-eth5

Lab 12: TCP Pacing

 Page 8

Figure 6. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Lab 12: TCP Pacing

 Page 9

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 9. Connectivity test using ping command.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth
between hosts 1 and 2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 12: TCP Pacing

 Page 10

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms

Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface.

2.3 Testing connection

Lab 12: TCP Pacing

 Page 11

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation:

BW = 10,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 10,000,000,000 · 0.02 = 200,000,000 bits
 = 25,000,000 bytes ≈ 25 Mbytes

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes

BDP = 25 Mbytes = 25 · 10242 bytes = 26,214,400 bytes

TCP buffer size = 2 · BDP = 2 · 26,214,400 bytes = 52,428,800 bytes

Now, we have calculated the maximum value of the TCP sending and receiving buffer size.
In order to apply the new values, on host h1’s terminal type the command showed down
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Lab 12: TCP Pacing

 Page 12

Figure 14. Receive window change in sysctl.

Step 3. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 15. Send window change in sysctl.

Next, the same commands must be configured on host h2.

Step 4. To change the current receive-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 16. Receive window change in sysctl.

Step 5. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 17. Send window change in sysctl.

Step 6. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal:

iperf3 -s

Lab 12: TCP Pacing

 Page 13

Figure 18. Host h2 running iPerf3 as server.

Step 7. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in host h1’s terminal:

iperf3 -c 10.0.0.2

Figure 19. iPerf3 throughput test.

Note the measured throughput is approximately 10 Gbps, which is close to the value
assigned in our tbf rule (10 Gbps).

Step 8. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Enabling TCP pacing with tc and fq

The user enables fair queuing using a command line utility called tc. The basic tc syntax
used with fq is as follows:

sudo tc qdisc [add|del|replace|change|show] dev dev_id root fq opts

sudo: enables the execution of the command with higher security privileges.

Lab 12: TCP Pacing

 Page 14

tc: invokes Linux’s traffic control.
qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which

packets arriving from the IP protocol output are served. The queue discipline is applied to
a packet queue to decide when to send each packet.
[add | del | replace | change | show]: this is the operation on qdisc. For example,
to add delay on a specific interface, the operation will be add. To change or remove delay
on the specific interface, the operation will be change or del.
dev_id: this parameter indicates the interface to be subject to emulation.
fq: this parameter enables fair queuing qdisc.
opts: this parameter indicates the amount of delay, packet loss, duplication, corruption,
and others.

Step 1. In host h1, type the following command:

sudo tc qdisc add dev h1-eth0 root fq maxrate 5gbit

This command can be summarized as follows:

sudo: enable the execution of the command with higher security privileges.
tc: invoke Linux’s traffic control.
qdisc: modify the queuing discipline of the network scheduler.
add: create a new rule.
dev h1-eth0: specify the interface on which the rule will be applied.
fq: use the fair queueing qdics.
maxrate 5gbit: Maximum sending rate of a flow (default is unlimited). Enables

pacing on a maximum rate of 5 Gbps.

Figure 20. Enabling fair queuing pacing with a maximum rate of 5 Gbps to the interface h1-eth0
on host h1.

Step 2. The user can now verify pacing configuration by using the iperf3 tool to measure
throughput. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Figure 21. Host h2 running iPerf3 as server.

Lab 12: TCP Pacing

 Page 15

Step 3. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 -O 5 in host h1’s terminal. The -O option is used to specify the number of

seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -O 5

Figure 22. iPerf3 throughput test.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 4.78 Gbps (sender) and 4.78 Gbps (receiver), which is close to the assigned pacing value
(5 Gbps).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Enabling TCP pacing from application

An application can specify a maximum pacing rate using the SO_MAX_PACING_RATE
setsockopt call. This packet scheduler adds delay between packets to respect rate
limitation set on each socket. Application specific setting via SO_MAX_PACING_RATE is
ignored only if it is larger than the maxrate value assigned with fq (if any).

In iPerf3, the option --fq-rate sets a rate to be used with fair-queueing based socket-
level pacing, in bits per second.

Step 1. Remove previous qdiscs on host h1’s h1-eth0 interface.

Lab 12: TCP Pacing

 Page 16

sudo tc qdisc del dev h1-eth0 root

Figure 23. Removing qdiscs on host h1’s h1-eth0 interface.

Step 2. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Figure 24. Host h2 running iPerf3 as server.

Step 3. Now launch iPerf3 in client mode by running the command iperf3 -c 10.0.0.2
-O 5 --fq-rate 5gbit in host h1’s terminal. The -O option is used to specify the number
of seconds to omit in the resulting report (5 seconds), and the --fq-rate is used to
enable pacing through the SO_MAX_PACING_RATE setsockopt call.

iperf3 -c 10.0.0.2 -O 5 --fq-rate 5gbit

Figure 25. iPerf3 throughput test with pacing enabled by iPerf3 application.

Lab 12: TCP Pacing

 Page 17

5 Concurrent transmission without pacing

In the previous section, we applied pacing on a single host (host h1) and we measured the
average throughput. In this section we run a test where four clients (host h1, host h3,
host h5, and host h7) are transmitting simultaneously to four servers (host h2, host h4,
host h6, and host h8), while sharing the same bottleneck link (link connecting switch S1
to switch S2).

Since it is difficult to start the four clients at the same time, Client1’s machine provides a
script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 26. Opening Mininet’s terminal.

Figure 27. Mininet’s terminal.

Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_no_pacing

Lab 12: TCP Pacing

 Page 18

Figure 28. Running the tests simultaneously for 20 seconds without applying pacing.

Figure 29. Throughput of host h1, host h3, host h5 and host h7.

The above graph shows that the throughput of host h1, host h3, host h5 and host h7. It is
clear from the figure that there are variations in the flows. Moreover, the bottleneck
bandwidth was not evenly shared among the hosts, which decreases the fairness index
from 100%.

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 12: TCP Pacing

 Page 19

Figure 30. Calculated fairness index.

The above figure shows a fairness index of .83588. This value indicates that the bottleneck
bandwidth was approximately 83% evenly shared among host h1, host h3, host h5, and
host h7.

6 Concurrent transmission with pacing

In the previous section, we ran a test where four clients (host h1, host h3, host h5, and
host h7) are transmitting simultaneously to four servers (host h2, host h4, host h6, and
host h8), while sharing the same bottleneck link (link connecting switch S1 to switch S2)
without applying pacing. In this section we repeat the same test, but with pacing enabled
on host h1, host h3, host h5 and host h7.

Since it is difficult to start the four clients at the same time, Client1’s machine provides a
script that automates this process.

Step 1. Using same Mininet’s terminal, issue the following command on Mininet’s
terminal as shown in the figure below.

source concurrent_pacing

Lab 12: TCP Pacing

 Page 20

Figure 31. Running the tests simultaneously for 20 seconds while applying pacing.

Figure 32. Throughput of host h1, host h3, host h5 and host h7 after applying pacing.

The above graph shows that the throughput of host h1, host h3, host h5 and host h7 with
pacing enabled. It is clear from the figure that there are less variations in the flows
compared to the non-paced flows. Moreover, the bottleneck bandwidth is now better
shared among the hosts.

Step 2. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 12: TCP Pacing

 Page 21

Figure 33. Calculated fairness index.

The above figure shows a fairness index of .99999. The fairness index here is better than
the previous test .83588. Therefore, pacing generally improves fairness among
transmitting hosts.

7 Parallel streams and without pacing

In the previous tests, four clients (host h1, host h3, host h5, and host h7) were
transmitting simultaneously to four servers (host h2, host h4, host h6, and host h8), while
sharing the same bottleneck link (link connecting switch S1 to switch S2). In this section
only one client (host h1) is transmitting to one server (host h2) while using five parallel
streams.

Step 1. In MiniEdit, hold the right-click on host h1 and select Terminal. This opens the
terminal of host h1 and allows the execution of commands on that host.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Lab 12: TCP Pacing

 Page 22

Figure 34. Host h2 running iPerf3 as server.

Step 4. Create and enter to a new directory parallel_streams:

mkdir parallel_streams && cd parallel_streams

Figure 35. Creating and entering a new directory parallel_streams.

Step 5. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -P 5 -J > parallel_streams.json

Figure 36. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds, and redirecting
the output to parallel_streams.json.

Step 6. Once the test is finished, in order to generate the output plots for iPerf3’s JSON
file run the following command:

plot_iperf.sh parallel_streams.json

Figure 37. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf).
These files are stored in a directory results created in the same directory where the script
was executed.

Step 7. Navigate to the results folder using the cd command.

cd results/

Figure 38. Entering the results directory using the cd command.

Lab 12: TCP Pacing

 Page 23

Step 8. Open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 39. Opening the throughput.pdf file using xdg-open.

Figure 40. Throughput of 5 parallel streams initiated by host h1 without pacing.

Step 9. Close throughput.pdf file and stop the server by pressing Ctrl+c in host h2’s
terminal. The user can see the throughput results in the server side too.

Step 10. Exit the parallel_streams/results directory by using the following command on
host h1’s terminal:

cd ../..

Figure 41. Exiting the reno/results directory.

8 Parallel streams and with pacing

Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Lab 12: TCP Pacing

 Page 24

Figure 42. Host h2 running iPerf3 as server.

Step 2. Create and enter to a new directory parallel_streams_pacing:

mkdir parallel_streams_pacing && cd parallel_streams_pacing

Figure 43. Creating and entering a new directory parallel_streams_pacing.

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a
file. The -P is used to specify the number of parallel streams, and the --fq-rate is used
to enable pacing through the SO_MAX_PACING_RATE setsockopt call. In this test, pacing
is applied to a maximum rate of 1.9 Gbps per stream, and 5 * 1.9 Gbps (9.5 Gbps) total
for all streams. Note that assigning a pacing rate slightly less than the maximum
bandwidth (10 Gbps in our case) reduces packet lost and the variations of flows.

iperf3 -c 10.0.0.2 -t 30 -P 5 -J --fq-rate 1.9gbit > parallel_streams_pace.json

Figure 44. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds with pacing
enabled, and redirecting the output to parallel_streams_pace.json.

Step 4. Once the test is finished, type the command, to generate the output plots for
iPerf3’s JSON file run the following command:

plot_iperf.sh parallel_streams_pace.json

Figure 45. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf).
These files are stored in a directory results created in the same directory where the script
was executed.

Lab 12: TCP Pacing

 Page 25

Step 5. Navigate to the results folder using the cd command.

cd results/

Figure 46. Entering the results directory using the cd command.

Step 6. Open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 47. Opening the throughput.pdf file using xdg-open.

Figure 48. Throughput of 5 parallel streams initiated by host h1 with pacing applied to a maximum
rate of 1.9 Gbps per stream.

The graph above shows how the advantages of applying pacing when using parallel
streams. Compared to figure 40, the flows have less variations and the fairness among
these flows is improved.

This concludes Lab 12. Stop the emulation and then exit out of MiniEdit.

References

1. A. Aggarwal, S. Savage, T. Anderson, "Understanding the performance of TCP
pacing," in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), Mar. 2000.

Lab 12: TCP Pacing

 Page 26

2. B. Tierney, N. Hanford, D. Ghosal, “Optimizing data transfer nodes using packet
pacing: a journey of discovery,” in Workshop on Innovating the Network for Data-
Intensive Science, Nov. 2015.

3. M. Ghobadi, Y. Ganjali, “TCP pacing in data center networks,” in IEEE Annual
Symposium on High-Performance Interconnects (HOTI), Aug. 2013.

4. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

5. Fair Queue traffic policing. [Online]. Available: http://man7.org/linux/man-
pages/man8/tc-fq.8.html

6. The centos project. [Online]. Available: https://www.centos.org
7. J. Corbet, “TSO sizing and the FQ scheduler,” LWN.net Online Magazine, Aug. 2013.

[Online]. Available: https://lwn.net/Articles/564978
8. B. Tierney, “Improving performance of 40G/100G data transfer nodes,” in 2016

Technology Exchange Workshop, Sep. 2016. [Online]. Available:
https://meetings.internet2.edu/2016-technologyexchange/detail/10004333/

9. I. Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM Special
Interest Group on Operating Systems Operating System Review, vol. 42, issue 5,
pp. 64-74, Jul. 2008.

10. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’98
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 303-314, Sep. 1998.

11. A. Saeed, N. Dukkipati, V. Valancius, C. Contavalli, A. Vahdat, “Carousel: scalable
traffic shaping at end hosts,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 404-417, Aug. 2017.

12. M. Shreedhar, G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE/ACM Transactions on Networking, vol. 4, issue 3, pp. 375-385, Jun. 1996.

