

NETWORK TOOLS AND PROTOCOLS

Lab 15: Analyzing the Impact of Hardware
Offloading on TCP Performance

Document Version: 04-11-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to hardware offloading ... 3

1.2 The ethtool command .. 5

2 Lab topology.. 5

2.1 Starting host h1 and host h2 .. 7

3 Emulating a high-latency WAN ... 8

3.1 Adding delay to switch s1 egress interface .. 8

3.2 Testing connection ... 9

3.3 Limiting the rate on switch S2 egress interface ... 9

3.4 Modifying end-hosts’ buffer size ... 10

3.5 Performing a throughput test .. 12

4 Disabling hardware offloading .. 13

4.1 Disabling TSO in the sender ... 13

4.2 Disabling GRO in the receiver .. 13

4.3 Performing a throughput test .. 13

References .. 14

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 3

Overview

The lab aims to explain how to tune the parameters of a Network Interface Controller
(NIC) in order to reduce CPU overhead of TCP flows. These parameters rely on the NIC to
segment the data and then add the TCP, IP and data link layer protocol headers to each
segment. During this lab the user will conduct throughput tests under different network
conditions in order to evaluate the performance.

Objectives

By the end of this lab, students should be able to:

1. Understand network drivers and hardware setting
2. Modify NIC parameters using ethtool.
3. Evaluate the impact of disabling TCP Segmentation Offload (TSO) in the sender

and General Segmentation Offload (GRO) in the receiver.
4. Conduct evaluation tests under different network conditions.
5. Analyze the results after disabling hardware offloading parameters.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Emulating a high-latency WAN.
4. Section 4: Disabling hardware optimization.

1 Introduction

1.1 Introduction to hardware offloading

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 4

Consider Figure 1. It illustrates two scenarios. Figure 1a presents a situation where
hardware offloading is disabled in the sender host. Therefore, the application data is
segmented in the transport layer, in this example in five segments then, these segments
are individually encapsulated by the corresponding layers. Finally, the packets are sent.
Similarly, when hardware offloading is disabled in receiver, the link layer (i.e. Ethernet),
which is implemented in the Network Interface Controller, sends to the upper layers all
the packets as it is received, that is, without grouping the frames in a larger set of data.

On the other hand, Figure 1b shows a scenario where hardware offloading is enabled, in
this case, it is observed that the application data consists in a single data set all the way
down up to the link layer. When the IP datagram reaches the link layer, the NIC performs
data segmentation before they are sent to the destination.

In summary, when hardware offloading is disabled, the Operating System (OS) uses the
CPU to segment TCP packets however, when hardware offloading is enabled, it allows the
NIC to use its own processor to perform the segmentation. This saves on the CPU and
importantly cuts down on the bus communications to/from the NIC. Nevertheless,
offloading does not change what is sent over the network. In other words, offloading to
the NIC can produce performance gains within the sender host, but not across the
network3.

(a)

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 5

(b)

Figure 1. Impact of TCP hardware offloading. (a) Hardware offloading disabled. (b)
Hardware offloading enabled.

1.2 The ethtool command

The ethtool is a utility for configuration of Network Interface Controllers (NICs). This
utility allows querying and changing settings such as speed, port, auto-negotiation, PCI
locations and checksum offload on many network devices, especially ethernet devices.
The syntax of the command is as follows:

ethtool <options> <interface> <parameters> on|off

• ethtool: query or control network driver and hardware settings.

• options: used to specify read or write operation.

• interface: specifies the network interface where ethtool should operate.

• parameters: specifies the parameter that will be enabled or disabled.

In this lab, we will use the ethtool to modify the sender and receiver NIC configuration.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 6

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 15.mn topology file and click on Open.

Figure 4. MiniEdit’s Open dialog.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 7

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 8

Figure 7. Connectivity test using ping command.

Figure 8 indicates that there is connectivity between host h1 and host h2.

3 Emulating a high-latency WAN

In this section, you are going to tune the network devices in order to emulate a Wide
Area Network (WAN). Firstly, you will add 20ms latency to switch S1’s s1-eth1 egress
interface. Secondly you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 egress interface.
Then, you will set the hosts’ TCP buffers to 8·BDP therefore, the bottleneck is not in the
end-hosts. Finally, you will conduct throughput tests between host h1 and h2.

3.1 Adding delay to switch s1 egress interface

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 8. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 9

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 20ms delay to switch S1’s s1-eth2
interface.

sudo tc qdisc add dev s1-eth2 root netem delay 20ms

Figure 9. Adding delay of 20ms to switch S1’s s1-eth2 interface.

3.2 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 10. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.087, 25.387, 41.244, and 9.155 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3.3 Limiting the rate on switch S2 egress interface

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command depicted below. When prompted for a password, type
password and hit Enter.

• rate: 1gbit

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 10

• burst: 500,000

• limit: 2,621,440

sudo tc qdisc add dev s2-eth2 root tbf rate 1gbit burst 500000 limit 2621440

Figure 11. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface.

3.4 Modifying end-hosts’ buffer size

To perform the following calculation, the bottleneck bandwidth is considered as 1 Gbps,
and the Round-trip time delay 20ms.

In order to have enough TCP buffer size, we will set the TCP sending and receiving
buffer to 8 · BDP in all hosts.

BW = 1,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 1,000,000,000 · 0.02 = 20,000,000 bits
 = 2,500,000 bytes ≈ 2.5 Mbytes

The send and receive TCP buffer sizes should be set to 8 · BDP to ensure the bottleneck
is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP
instead of 2,500,000 bytes.

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 · 10242 bytes = 2,621,440 bytes

8 · BDP = 8 · 2,621,440 bytes = 20,971,520 bytes

Step 1. At this point, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal
type the command shown below. The values set are: 10,240 (minimum), 87,380 (default),
and 20,971,520 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 11

Figure 12. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 20,971,520 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’

Figure 13. Send window change in sysctl.

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’

Figure 14. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’

Figure 15. Send window change in sysctl.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 12

3.5 Performing a throughput test

Step 1. The user can now verify the previous configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, in host h2’s terminal run the
command shown below:

iperf3 -s

Figure 16. Host h2 running iPerf3 as server.

Step 2. Now to launch iPerf3 in client mode again by running the following command in
host h1’s terminal.

iperf3 -c 10.0.0.2

Figure 17. Performing a throughput test to verify the configuration.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 953 Mbps (sender) and 940 Mbps (receiver).

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 13

4 Disabling hardware offloading

In this section, the user will disable the Generic Segmentation Offload (TSO) in the sender,
and the Generic Receive Offload (GRO) in the receiver. Then, the user will conduct a
throughput test in order to evaluate the impact on the performance.

4.1 Disabling TSO in the sender

Step 1. In host h1 terminal type the following command to disable TSO feature in the
sender.

ethtool -K h1-eth0 tso off

Figure 18. Disabling gso in the sender.

4.2 Disabling GRO in the receiver

Step 1. In host h2 terminal type the following command to disable GRO feature in the
receiver.

ethtool -K h2-eth0 gro off

Figure 19. Disabling gro in the receiver.

4.3 Performing a throughput test

Step 1. To launch iPerf3 in server mode, in host h2’s terminal run the command shown
below:

iperf3 -s

Figure 20. Host h2 running iPerf3 as server.

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

 Page 14

Step 2. Now to launch iPerf3 in client mode again by running the following command in
host h1’s terminal.

iperf3 -c 10.0.0.2

Figure 21. iPerf3 throughput test after disabling hardware offloading features.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 467 Mbps (sender) and 456 Mbps (receiver). Results show a decrease in ~60% in the
performance in comparison to the previous test.

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 15. Stop the emulation and then exit out of MiniEdit.

References

1. Journey to the center of the linux kernel: traffic Control, shaping and QoS.
[Online]. Available: http://wiki.linuxwall.info/doku.php/en:ressources:dossiers:n
etworking:traffic_control.

2. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

3. Segmentation and Checksum Offloading: Turning Off with ethtool. [Online].
Available: https://sandilands.info/sgordon/segmentation-offloading-with

 -wireshark-and-ethtool

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

