

NETWORK TOOLS AND PROTOCOLS

Lab 16: Random Early Detection (RED)

Document Version: 10-10-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 16: Random Early Detection

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Random Early Detection mechanism ... 4

2 Lab topology.. 6

2.1 Starting host h1, host h2, and host h3 ... 7

2.1 Emulating high-latency WAN ... 8

2.4 Testing connection ... 9

3 Testing throughput on a network using Drop Tail AQM algorithm 10

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size 10

3.2 Setting switch S2’s buffer size to 10 ⋅ BDP ... 12

3.3 Throughput and latency tests .. 13

4 Configuring RED on switch S2 ... 18

4.1 Setting RED parameter on switch S2’s egress interface 19

4.2 Throughput and latency tests .. 19

4.3 Changing the bandwidth to 100Mbps ... 24

4.4 Throughput and latency tests .. 25

References .. 30

Lab 16: Random Early Detection

 Page 3

Overview

This lab explains the Random Early Detection (RED) Active Queue Management (AQM)
algorithm. This algorithm is aimed to mitigate high end-to-end latency by controlling the
average queue length in routers’ buffers. Throughput, latency and queue length
measurements are conducted in this lab to verify the impact of the dropping policy
provided RED.

Objectives

By the end of this lab, students should be able to:

1. Identify and describe the components of end-to-end latency.
2. Understand the buffering process in a router.
3. Explain the impact of RED handling the queuing policy in a router egress port.
4. Visualize queue occupancy in a router.
5. Analyze how RED manages the queue length in order to allow end-hosts to achieve

high throughput and low latency.
6. Modify the network condition in order to evaluate the performance on RED’s

dropping policy.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing throughput on a network using Drop Tail AQM algorithm.
4. Section 4: Configuring RED on switch S2.

1 Introduction

Lab 16: Random Early Detection

 Page 4

End-to-end-congestion control is widely used in the current Internet to prevent
congestion collapse. However, because data traffic is inherently bursty, routers are
provisioned with large buffers to absorb this burstiness and maintain high link utilization.
The downside of these large buffers is that if traditional drop-tail buffer management is
used, there will be high queuing delays at congested routers. Thus, drop-tail buffer
management forces network operators to choose between high utilization (requiring
large buffers), or low delay (requiring small buffers).

Random Early Detection (RED) was proposed by Floyd and Van Jacobson1 to address
network congestion in a responsive rather than reactive manner. The main goal of RED is
to provide congestion avoidance by controlling the average queue size. Other goals are
the avoidance of global synchronization and introduce fairness to reduce the bias against
bursty traffic. TCP global synchronization happens to a TCP flow during periods of
congestion when each sender reduces and then increase their transmission rate at the
same time due to packet loss.

1.1 Random Early Detection mechanism

Figure 1(a) illustrates scenario where a router’s buffer is managed by Random Early
Detection. RED uses a low-pass filter with an exponential moving average to calculate the
average queue size. Then, the average queue size is compared to two thresholds, a
minimum threshold and a maximum threshold. Consequently, the packet drop probability
is determined by the function shown in the Figure 1(b). When the average queue size is
less than the minimum threshold, no packets are dropped. When the average queue size
is greater than the maximum threshold, every arriving packet is marked therefore, they
are dropped. When the average queue size is between the minimum and the maximum
threshold, each arriving packet is marked with drop probability. Thus, RED has two
separate algorithms. First, the algorithm for computing the average queue size that
determines the degree of burstiness allowed in the queue. Secondly, the algorithm for
calculating the packet marking probability, which determines how frequently the gateway
marks or drop packets, given the current level of congestion. The goal is for the gateway
to mark packets at evenly spaced intervals, in order to avoid biases global synchronization
by marking packets to control the average queue size.

(a)

Lab 16: Random Early Detection

 Page 5

(b)

Figure 1. Behavior of Random Early Detection AQM. (a) Buffer managed by RED AQM. (b) RED
dropping function.

The basic red syntax used with tc is as follows:

tc qdisc [add | ...] dev [dev_id] root red limit [BYTES] max [BYTES] min

[BYTES] burst [BYTES] avpkt [BYTES] bandwidth [BPS] [probability

[RATE]|adaptative] ecn

• tc: Linux traffic control tool.

• qdisc: A queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

• [add | del | replace | change | show]: This is the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be add. To change or remove it, the operation will be change or del,
respectively.

• dev [dev_id]: This parameter indicates the interface is to be subject to
emulation.

• red: This parameter specifies the Random Early Detection algorithm.

• limit [BYTES]: Hard limit on the real (not average) queue size in bytes. Further
packets are dropped. Should be set higher than max+burst.

• max [BYTES]: This parameter specifies the maximum average queue size. After
this value, the dropping probability is 100%. It is recommended to set this value
to limit/4.

• min [BYTES]: This parameter specifies the minimum average queue size. Below
this value, no packet is dropped. Above this threshold, the dropping probability is
established by probability or it increases linearly if the parameter adaptative
is set.

• avpkt: Used with burst to determine the time constant for average queue size
calculations. It is suggested 1000 as good value.

Lab 16: Random Early Detection

 Page 6

• burst [BYTES]: Used for determining how fast the average queue size is
influenced by the real queue size. Larger values make the calculation slower,
allowing longer bursts of traffic before the marking or dropping phase starts.
Empirical evaluations suggest the following guideline to set this value:
(2·min+max)/(3·avpkt).

• bandwidth [BPS]: This value is optional and used to calculate the average queue
size after any idle time. It should be set to the bandwidth of the interface. This
parameter does not limit the rate. The default value is 10Mbps.

• ecn: This parameter enables RED to notify remote hosts that their rate exceeds
the amount of bandwidth available. Non-ECN capable hosts can only be notified
by dropping a packet.

• probability: This value specifies the dropping probability after the average
queue length surpass the min threshold. It is specified as a floating point from 0.0
to 1.0. Suggested values are 0.01 or 0.02 (1% or 2% respectively).

• adaptative: This parameter sets a dynamic value to the dropping probability.
This value varies from 1% to 50%.

In this lab, we will use the red AQM algorithm to contain the queue size at the egress
port of a router.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 16: Random Early Detection

 Page 7

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 16.mn topology file and click on Open.

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, and host h3

Lab 16: Random Early Detection

 Page 8

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.3. This command tests the connectivity between host
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 7. Connectivity test using ping command.

2.1 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 16: Random Early Detection

 Page 9

Figure 8. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 20ms delay to switch S1’s s1-eth1

interface.

sudo tc qdisc add dev s1-eth1 root netem delay 20ms

Figure 9. Adding delay of 20ms to switch S1’s s1-eth1 interface.

2.4 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

Figure 10. Output of ping 10.0.0.3 command.

Lab 16: Random Early Detection

 Page 10

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Figure 11. Output of ping 10.0.0.3 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing throughput on a network using Drop Tail AQM algorithm

In this section, you are going to change the switch S2’s buffer size to 10 ⋅ BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf) as well as hosts’
h1 and h3 TCP sending and receiving windows. The AQM algorithm is Drop Tail, which
works dropping newly arriving packets when the queue is full therefore, the parameter
that is configured is the queue size which is given by the limit value set with the tbf rule.
Then, you will test the throughput between host h1 and host h3. In this section, 10 ⋅ BDP
is 25 Mbytes, thus the tbf limit value will be set to 10 ⋅ BDP = 26,214,400 bytes.

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 1,000,000,000 · 0.02 = 20,000,000 bits

Lab 16: Random Early Detection

 Page 11

 = 2,500,000 bytes ≈ 2.5 Mbytes

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 · 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to 10·BDP. In addition, to ensure that the bottleneck is not the hosts’
TCP buffers, we configure the buffers to 20·BDP (52,428,800).

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled (2·10·BDP) as Linux only allocates
half of the assigned value.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 12. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 13. Send window change in sysctl.

Step 3. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and

Lab 16: Random Early Detection

 Page 12

52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 14. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 15. Send window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

3.2 Setting switch S2’s buffer size to 10 ⋅ BDP

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 1gbit

• burst: 500,000

• limit: 26,214,400

sudo tc qdisc add dev s2-eth2 root handle 1: tbf rate 1gbit burst 500000 limit

26214400

Lab 16: Random Early Detection

 Page 13

Figure 16. Limiting rate to 1 Gbps and setting the buffer size to 10 ⋅ BDP on switch S2’s interface.

3.3 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 17. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type password and hit Enter.

sudo plot_q.sh s2-eth2

Figure 18. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Lab 16: Random Early Detection

 Page 14

Figure 19. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. In host h1, create a directory called Drop_Tail and navigate into it using the
following command:

mkdir Drop_Tail && cd Drop_Tail

Figure 20. Creating and navigating into directory Drop_Tail.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 21. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Lab 16: Random Early Detection

 Page 15

Figure 22. Typing ping command on host h2.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 23. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 · 107, which is the
maximum buffer size we configure on the switch.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot_iperf.sh out.json && cd results

Figure 24. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Lab 16: Random Early Detection

 Page 16

Figure 25. Opening the throughput.pdf file.

Figure 26. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is approximately 900 Mbps. We can see now that the maximum
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 10 · BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

Figure 27. Opening the RTT.pdf file.

Lab 16: Random Early Detection

 Page 17

Figure 28. Measured round-trip time.

The graph above shows that the RTT was approximately 200,000 microseconds (200ms)
The output shows that there is bufferbloat as the average latency is at least ten times
greater than the configured delay (20ms).

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the ping output.

Figure 29. ping test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.083, 192.823, 228.407, and 26.954 milliseconds, respectively. The

Lab 16: Random Early Detection

 Page 18

output also verifies that there is bufferbloat as the average latency (192.823) is
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

Figure 30. Opening the cwnd.pdf file.

Figure 31. Congestion window evolution.

The graph above shows the evolution of the congestion window which peaked at 2.5
Mbytes. In the next section you will configure Random Early Detection on switch S2 and
observe how the algorithm controls the queue length.

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

4 Configuring RED on switch S2

In this section, you are going to configure Random Early Detection in switch S2. Then, you
will conduct throughput and latency measurements between host h1 and host h3. Note
that the buffer size is set to 10·BDP.

Lab 16: Random Early Detection

 Page 19

4.1 Setting RED parameter on switch S2’s egress interface

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• limit: 26,214,400

• max: 8,738,133

• min: 2,184,533

• burst: 2185

• avpkt: 1000

• bandwidth: 1gbit

• adaptative

sudo tc qdisc add dev s2-eth2 parent 1: handle 2: red limit 26214400 max

8738133 min 2184533 burst 2185 avpkt 1000 bandwidth 1gbit adaptative

Figure 32. Setting RED parameters on switch S2’s s2-eth2 interface.

4.2 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 33. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type password and hit Enter.

sudo plot_q.sh s2-eth2

Lab 16: Random Early Detection

 Page 20

Figure 34. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Figure 35. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from Drop_Tail/results directory, then create a directory RED and navigate
into it using the following command.

cd ../../ && mkdir RED && cd RED

Figure 36. Creating and navigating into directory RED.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 37. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Lab 16: Random Early Detection

 Page 21

Figure 38. Typing ping command on host h2.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 39. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 3.5⋅106 bytes, which is
closer to a buffer of BDP size.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot_iperf.sh out.json && cd results

Figure 40. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Lab 16: Random Early Detection

 Page 22

Figure 41. Opening the throughput.pdf file.

Figure 42. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also
achieved (1 Gbps) when we set RED at the egress port of switch S2.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT.pdf) file
using the command below.

xdg-open RTT.pdf

Figure 43. Opening the RTT.pdf file.

Lab 16: Random Early Detection

 Page 23

Figure 44. Measured Round-Trip Time.

The graph above shows that the RTT was contained between 30ms and 40ms which is not
significantly greater that the configured delay (20ms) thus, there is not bufferbloat. Since
the AQM algorithm configured on the switch is applying a dropping policy to prevent
unnecessary delays.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the ping output.

Figure 45. ping test result.

Lab 16: Random Early Detection

 Page 24

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 26.833, 34.048, 38.824, and 3.311 milliseconds, respectively. The output
also verifies that there is not bufferbloat as the average latency (34.048) is not
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

Figure 46. Opening the cwnd.pdf file.

Figure 47. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 5 Mbytes.
In the next section you will maintain the current parameters of Random Early Detection on switch
S2 however, you will change the link rate in order to verify if the algorithm performs well if the
network condition changes.

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

4.3 Changing the bandwidth to 100Mbps

This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps while
RED is tuned to work with the previous network condition. The results will show that RED
requires a reconfiguration if the network conditions changes (i.e, latency, bandwidth, loss
rate). First, you will change the bandwidth to 100 Mbps then, you will observe the queue

Lab 16: Random Early Detection

 Page 25

occupancy, RTT and congestion window in order to evaluate the performance of RED
when the network condition changes.

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 100mbit

• burst: 50,000

• limit: 26,214,400

sudo tc qdisc change dev s2-eth2 root handle 1: tbf rate 100mbit burst 50000

limit 26214400

Figure 48. Limiting rate to 100 Mbps and keeping the buffer size to 10⋅BDP on switch S2’s interface.

4.4 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 49. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type password and hit Enter.

sudo plot_q.sh s2-eth2

Figure 50. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

Lab 16: Random Early Detection

 Page 26

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Figure 51. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from RED/results directory using the following command:

cd ..

Figure 52. Creating and navigating into directory 1BDP.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 53. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Lab 16: Random Early Detection

 Page 27

Figure 54. Typing ping command on host h2.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 55. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked over 2.5⋅106, which is around
average queue length for a 1 Gbps link. However, in this case we set a 100 Mbps link when
RED is configured to operate for 1 Gbps link therefore, the point of operation changed.
Consequently, bufferbloat is experienced thus, it is necessary to reconfigure RED
parameters in order to mitigate the excessive queue length.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot_iperf.sh out.json && cd results

Figure 56. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

Lab 16: Random Early Detection

 Page 28

xdg-open throughput.pdf

Figure 57. Opening the throughput.pdf file.

Figure 58. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 100 Mbps.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

Figure 59. Opening the RTT.pdf file.

Lab 16: Random Early Detection

 Page 29

Figure 60. Measured Round-Trip Time.

The graph above shows that the RTT increased from approximately ten times the default
latency (20ms). The output above shows that there is a bufferbloat problem as the
average latency is significantly greater. Since RED is configured to operate on a 1 Gbps
link, for this test the point of operation changed therefore, unnecessary delay is observed.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the ping output.

Figure 61. ping test result.

Lab 16: Random Early Detection

 Page 30

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 148.914, 186.175, 468.728 and 33.481 milliseconds, respectively. The
output also verifies that there is a bufferbloat problem as the average latency (186.175)
is significantly greater than the configured delay (20ms).

Step 12. Close the RTT.pdf window then open the congestion window (cwnd.pdf) file using
the command below.

xdg-open cwnd.pdf

Figure 62. Opening the cwnd.pdf file.

Figure 63. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 2.5 Mbytes.

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

This concludes Lab 16. Stop the emulation and then exit out of MiniEdit.

References

1. S. Floyd, V. Jacobson, “Random early detection gateways for congestion
avoidance”. IEEE/ACM Transactions on networking, 1993.

Lab 16: Random Early Detection

 Page 31

2. S. Floyd, R. Gummadi, S. Shenker. “Adaptive RED: An algorithm for increasing the
robustness of RED’s active queue management.” 2001.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

5. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

6. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

7. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

