

NETWORK TOOLS AND PROTOCOLS

Lab 17: Stochastic Fair Queueing (SFQ)

Document Version: 11-12-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 17: Stochastic Fair Queuing

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 FIFO queueing discipline ... 3

1.2 SFQ queueing discipline .. 4

2 Lab topology.. 5

2.1 Starting host h1, host h2, host h3 and host h4 .. 7

2.2 Emulating high-latency WAN .. 8

2.3 Testing connection ... 9

3 Testing the throughput of two competing TCP flows ... 9

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size 10

3.2 Modifying hosts’ buffer size ... 10

3.3 Changing congestion control algorithm in host h1 and host h2 13

3.4 Setting switch S2’s buffer size to BDP .. 14

3.5 Throughput tests .. 14

4 Configuring SFQ on switch S2 ... 17

4.1 Setting SFQ parameter on switch S2’s egress interface 18

4.2 Throughput tests .. 18

References .. 22

Lab 17: Stochastic Fair Queuing

 Page 3

Overview

This lab introduces to Stochastic Fair Queuing (SFQ), which is a queueing discipline aimed
to ensure fairness between TCP flows. The lab describes the steps to conduct throughput
tests that shows the benefits of isolating the dynamic of competing TCP flows by applying
SFQ rules to a router egress’ interface.

Objectives

By the end of this lab, students should be able to:

1. Identify and describe the components of end-to-end latency.
2. Understand the scheduling process in a router.
3. Explain the impact of using SFQ to isolate the dynamic of competing TCP flows.
4. Visualize the interaction of competing TCP flows after SFQ is configured on a

router’s interface.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing the throughput of two competing TCP flows
4. Section 4: Configuring SFQ on switch S2.

1 Introduction

1.1 FIFO queueing discipline

Lab 17: Stochastic Fair Queuing

 Page 4

First-in, first-out (FIFO) queuing is the most basic queue scheduling discipline. It is also the
default queueing discipline in Linux and most of the routers1. In FIFO queuing, all packets
are treated equally by placing them into a single queue, and then delivering them in the
same order that they were placed into the queue (see Figure 1).

Figure 1. FIFO queuing discipline.

FIFO queuing presents advantages for software-based routers due to its low
computational load on the system when compared with other queueing disciplines.
Additionally, the behavior of a FIFO queue is very predictable, which means that packets
are not reordered, and the queue delay is determined by the maximum depth of the
queue. If the queue depth remains short, FIFO queuing provides simple contention
resolution for network resources without adding significantly delay to the link.

However, a single FIFO queue does not allow routers to classify packets or set priorities.
If a router uses a single FIFO queue, it will impact all flows equally, this means that the
average queuing delay for all flows increases as congestion increases. As a result, FIFO
queuing can result in increased delay, jitter, and loss for real­time applications. Another
limitation of FIFO queuing is that bursty TCP flows can consume the entire buffer space
of a FIFO queue, and that causes all other flows to be denied service until after the burst
is serviced. This can result in increased delay, jitter, and loss for the other coexistent TCP
flows

1.2 SFQ queueing discipline

Stochastic Fairness Queueing (SFQ) is a classless queueing discipline available for traffic
control. SFQ does not shape traffic but only schedules the transmission of packets, based
on classified flows2. The goal of the algorithm is to ensure fairness so that each flow can
send data in turn thus, preventing any single flow from drowning out the rest. This feature
may in fact have some effect in mitigating a Denial of Service attempts. SFQ is work-
conserving and therefore always delivers a packet if it has one available.

SFQ classifies flows in a fixed set of queues serviced in strict round-robin order. The
maximum number of queues is configurable (1024 by default in the Linux
implementation). In order to assign a queue to an ingress packet, a hash function is
applied to its 5-tuple determined by the IP source and destination, layer 4 port source
and destination and layer 4 protocol number. Packets with the same hash are assigned to
the same queue. Because of the hash, multiple sessions might end up in the same bucket,

Lab 17: Stochastic Fair Queuing

 Page 5

which would halve each session is chance of sending a packet, thus halving the effective
speed available. To prevent this situation from becoming noticeable, SFQ changes its
hashing algorithm quite often so that any two colliding sessions will only do so for a small
number of seconds.

Figure 2. SFQ queuing discipline.

The basic sfq syntax used with tc is as follows:

tc qdisc [add | ...] dev [dev_id] root sfq perturb [seconds] quantum

• tc: Linux traffic control tool.

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

• [add | del | replace | change | show]: this is the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be add. To change or remove it, the operation will be change or del,
respectively.

• dev [dev_id]: this parameter indicates the interface is to be subject to emulation.

• sfq: this parameter specifies the Stochastic Fair Queueing algorithm.

• perturb: It is used to specify the interval in seconds for queue algorithm
perturbation. If the value is set to 0 indicate that no perturbation occurs. It is
recommended avoiding low values to prevent packet reordering. Empirical
evaluations recommend this value set to 10 seconds.

• quantum: Denotes the number of bytes which a flow can dequeue during a round
of the round-robin process. It is recommended to set this value not less than the
Maximum Transmission Unit (MTU).

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 17: Stochastic Fair Queuing

 Page 6

Figure 3. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 17.mn topology file and click on Open.

Figure 5. MiniEdit’s Open dialog.

Lab 17: Stochastic Fair Queuing

 Page 7

Step 3. Before starting the measurements between end hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, host h3 and host h4

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 7. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.3. This command tests the connectivity between host
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 17: Stochastic Fair Queuing

 Page 8

Figure 8. Connectivity test using ping command.

2.2 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 20ms delay to switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root netem delay 20ms

Figure 10. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Lab 17: Stochastic Fair Queuing

 Page 9

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

Figure 11. Output of ping 10.0.0.3 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Figure 12. Output of ping 10.0.0.3 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing the throughput of two competing TCP flows

Lab 17: Stochastic Fair Queuing

 Page 10

In this section, you are going to tune the network devices in order to emulate a Wide Area
Network (WAN). First, you will set the hosts’ TCP buffers to 8 · BDP therefore, the
bottleneck is not in the end-hosts. Then, you will add 20ms latency to switch S1’s s1-eth1
interface. Additionally, you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 interface. Finally, you will conduct throughput tests between two competing TCP
flows which uses different congestion control algorithms (i.e. Cubic, BBR).

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 1,000,000,000 · 0.02 = 20,000,000 bits
 = 2,500,000 bytes ≈ 2.5 Mbytes

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 · 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to BDP. In addition, to ensure that the bottleneck is not the hosts’ TCP
buffers, we configure the buffers to 8·BDP (20,971,520).

3.2 Modifying hosts’ buffer size

For the following calculation, the bottleneck bandwidth is considered as 1 Gbps, and the
round-trip time latency as 20ms.

In order to have enough TCP buffer size, we will set the TCP sending and receiving
buffer to 8 · BDP in all hosts.

BW = 1,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 1,000,000,000 · 0.02 = 20,000,000 bits
 = 2,500,000 bytes ≈ 2.5 Mbytes

Lab 17: Stochastic Fair Queuing

 Page 11

The send and receive TCP buffer sizes should be set to 8 · BDP to ensure the bottleneck
is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP
instead of 2,500,000 bytes.

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 · 10242 bytes = 2,621,440 bytes

8 · BDP = 8 · 2,621,440 bytes = 20,971,520 bytes

Step 1. At this point, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal
type the command shown below. The values set are: 10,240 (minimum), 87,380 (default),
and 20,971,520 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’

Figure 13. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 20,971,520 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’

Figure 14. Send window change in sysctl.

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’

Lab 17: Stochastic Fair Queuing

 Page 12

Figure 15. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’

Figure 16. Send window change in sysctl.

Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’

Figure 17. Receive window change in sysctl.

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’

Figure 18. Send window change in sysctl.

Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’

Lab 17: Stochastic Fair Queuing

 Page 13

Figure 19. Receive window change in sysctl.

Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’

Figure 20. Send window change in sysctl.

3.3 Changing congestion control algorithm in host h1 and host h2

In this part, you will set different congestion control algorithms in the host h1 and host
h2 to cubic and BBR respectively. Consequently, you will have two TCP flows with
different dynamic sharing the same bottleneck link.

The default congestion avoidance algorithm in the following test is cubic thus, there is no
need to specify it manually.

Step 1. Verify that the congestion control algorithm is cubic by issuing the following
command in host h1 terminal:

sysctl net.ipv4.tcp_congestion_control

Figure 21. Verifying TCP congestion control algorithm in host h1.

Step 2. In host h2 terminal, type the following command to change the current TCP
congestion control algorithm to BBR.

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 22. Changing TCP congestion control algorithm in host h2.

Lab 17: Stochastic Fair Queuing

 Page 14

3.4 Setting switch S2’s buffer size to BDP

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 1gbit

• burst: 500,000

• limit: 2,621,440

sudo tc qdisc add dev s2-eth2 root: handle 1: tbf rate 1gbit burst 500000 limit

2621440

Figure 23. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface.

3.5 Throughput tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 24. Starting iPerf3 server on host h3.

Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 25. Starting iPerf3 server on host h4.

Lab 17: Stochastic Fair Queuing

 Page 15

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 7 without executing them next, in Step 8 you will press Enter in host h1 and host
h2 to execute them.

Step 3. In host h1, create a directory called h1_no_SFQ and navigate into it using the
following command:

mkdir h1_no_SFQ && h1_no_SFQ

Figure 26. Creating and navigating into directory h1_no_SFQ.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

Figure 27. Running iPerf3 client on host h1.

Step 5. In host h2, create a directory called h2_no_SFQ and navigate into it using the
following command:

mkdir h2_no_SFQ && h2_no_SFQ

Figure 28. Creating and navigating into directory h2_no_SFQ.

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

Lab 17: Stochastic Fair Queuing

 Page 16

Figure 29. Running iPerf3 client on host h2.

Step 7. Press Enter to execute the commands shown in step 4 and step 6, first in host h1
terminal then, in host h3 terminal.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot_iperf.sh out.json && cd results

Figure 30. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Figure 31. Opening the throughput.pdf file.

Figure 32. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is approximately 100 Mbps. It is observed that the Cubic flow
collapses significantly since the link is not fairly shared with the other TCP flow.

Lab 17: Stochastic Fair Queuing

 Page 17

Step 10. Close the throughput.pdf window then, in host h2, proceed similarly by typing
the following command:

plot_iperf.sh out.json && cd results

Figure 33. Generate plotting files and entering the results directory.

Step 11. In host h2 terminal, open the throughput file using the following command:

xdg-open throughput.pdf

Figure 34. Opening the throughput.pdf file.

Figure 35. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 850 Mbps. It is observed that the BBR flow takes over
almost the full link which upholds that the link is not fairly shared with the other TCP flow.

Step 12. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press Ctrl+c.

4 Configuring SFQ on switch S2

Lab 17: Stochastic Fair Queuing

 Page 18

In this section, you are going to configure Stochastic Fair Queueing (SFQ) in switch S2’s
s2-eth2 interface. Then, you will conduct throughput and latency measurements between
host h1 and host h3.

4.1 Setting SFQ parameter on switch S2’s egress interface

Step 1. Apply sfq rule on switch S2’s s2-eth2 interface. In the client’s terminal, type the
command below. When prompted for a password, type password and hit Enter.

• perturb: 10

sudo tc qdisc add dev s2-eth2 parent 1: handle 2: sfq perturb 10

Figure 36. Setting SFQ parameters on switch S2’s s2-eth2 interface.

4.2 Throughput tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 37. Starting iPerf3 server on host h3.

Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 38. Starting iPerf3 server on host h4.

Lab 17: Stochastic Fair Queuing

 Page 19

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 7 without executing them next, in Step 8 you will press Enter in host h1 and host
h2 to execute them.

Step 3. In host h1, create a directory called h1_SFQ and navigate into it using the following
command:

cd ../.. && mkdir h1_SFQ && h1_SFQ

Figure 39. Creating and navigating into directory h1_SFQ.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

Figure 40. Running iPerf3 client on host h1.

Step 5. In host h2, create a directory called h2_SFQ and navigate into it using the following
command:

cd ../.. && mkdir h2_SFQ && h2_SFQ

Figure 41. Creating and navigating into directory h2_SFQ.

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

Lab 17: Stochastic Fair Queuing

 Page 20

Figure 42. Running iPerf3 client on host h2.

Step 7. Press Enter to execute the commands shown in step 4 and step 6, first in host h1
terminal then, in host h3 terminal.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot_iperf.sh out.json && cd results

Figure 43. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Figure 44. Opening the throughput.pdf file.

Figure 45. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is approximately 500 Mbps. It is observed that the Cubic flow uses

Lab 17: Stochastic Fair Queuing

 Page 21

the half part of the link. Notice also that there are spikes every 10 seconds which is
consistent with the rehashing time specified by perturb parameter.

Step 10. In host h2, proceed similarly by typing the following command:

plot_iperf.sh out.json && cd results

Figure 46. Generate plotting files and entering the results directory.

Step 11. In host h2 terminal, open the throughput file using the following command:

xdg-open throughput.pdf

Figure 47 Opening the throughput.pdf file.

Figure 48. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is approximately 500 Mbps. It is observed that the BBR can fairly
coexist with a Cubic flow since the dynamic of both flows do not interact as a result of
SFQ is configured in switch S2’s s2-eth2 interface.

Step 12. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press Ctrl+c.

Lab 17: Stochastic Fair Queuing

 Page 22

This concludes Lab 17. Stop the emulation and then exit out of MiniEdit.

References

1. C. Semeria, “Supporting differentiated service classes: queue scheduling
disciplines,” Juniper networks, pp. 11-14, 2001.

2. P. McKenney. “Stochastic fairness queueing,” In Proceedings. IEEE INFOCOM90:
Ninth Annual Joint Conference of the IEEE Computer and Communications
Societies, pp. 733-740, IEEE, 1990.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

5. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

6. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

7. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

