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Overview 
 
This lab introduces to Stochastic Fair Queuing (SFQ), which is a queueing discipline aimed 
to ensure fairness between TCP flows. The lab describes the steps to conduct throughput 
tests that shows the benefits of isolating the dynamic of competing TCP flows by applying 
SFQ rules to a router egress’ interface. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Identify and describe the components of end-to-end latency. 
2. Understand the scheduling process in a router. 
3. Explain the impact of using SFQ to isolate the dynamic of competing TCP flows. 
4. Visualize the interaction of competing TCP flows after SFQ is configured on a 

router’s interface. 
 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction. 
2. Section 2: Lab topology. 
3. Section 3: Testing the throughput of two competing TCP flows 
4. Section 4: Configuring SFQ on switch S2. 

 
 
1 Introduction 
 

 
1.1 FIFO queueing discipline 
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First-in, first-out (FIFO) queuing is the most basic queue scheduling discipline. It is also the 
default queueing discipline in Linux and most of the routers1. In FIFO queuing, all packets 
are treated equally by placing them into a single queue, and then delivering them in the 
same order that they were placed into the queue (see Figure 1). 
 

 
Figure 1. FIFO queuing discipline. 

 
FIFO queuing presents advantages for software-based routers due to its low 
computational load on the system when compared with other queueing disciplines. 
Additionally, the behavior of a FIFO queue is very predictable, which means that packets 
are not reordered, and the queue delay is determined by the maximum depth of the 
queue. If the queue depth remains short, FIFO queuing provides simple contention 
resolution for network resources without adding significantly delay to the link. 
 
However, a single FIFO queue does not allow routers to classify packets or set priorities. 
If a router uses a single FIFO queue, it will impact all flows equally, this means that the 
average queuing delay for all flows increases as congestion increases. As a result, FIFO 
queuing can result in increased delay, jitter, and loss for real­time applications. Another 
limitation of FIFO queuing is that bursty TCP flows can consume the entire buffer space 
of a FIFO queue, and that causes all other flows to be denied service until after the burst 
is serviced. This can result in increased delay, jitter, and loss for the other coexistent TCP 
flows 
 
 
1.2 SFQ queueing discipline 
 

Stochastic Fairness Queueing (SFQ) is a classless queueing discipline available for traffic 
control. SFQ does not shape traffic but only schedules the transmission of packets, based 
on classified flows2. The goal of the algorithm is to ensure fairness so that each flow can 
send data in turn thus, preventing any single flow from drowning out the rest. This feature 
may in fact have some effect in mitigating a Denial of Service attempts. SFQ is work-
conserving and therefore always delivers a packet if it has one available. 
 
SFQ classifies flows in a fixed set of queues serviced in strict round-robin order. The 
maximum number of queues is configurable (1024 by default in the Linux 
implementation). In order to assign a queue to an ingress packet, a hash function is 
applied to its 5-tuple determined by the IP source and destination, layer 4 port source 
and destination and layer 4 protocol number. Packets with the same hash are assigned to 
the same queue. Because of the hash, multiple sessions might end up in the same bucket, 
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which would halve each session is chance of sending a packet, thus halving the effective 
speed available. To prevent this situation from becoming noticeable, SFQ changes its 
hashing algorithm quite often so that any two colliding sessions will only do so for a small 
number of seconds. 
 

 
Figure 2. SFQ queuing discipline. 

 
The basic sfq syntax used with tc is as follows: 
 
tc qdisc [add | ...] dev [dev_id] root sfq perturb [seconds] quantum 

 

• tc: Linux traffic control tool. 

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 
packets arriving from the IP protocol output are served. The queue discipline is 
applied to a packet queue to decide when to send each packet.  

• [add | del | replace | change | show]: this is the operation on qdisc. For 
example, to add the token bucket algorithm on a specific interface, the operation 
will be add. To change or remove it, the operation will be change or del, 
respectively. 

• dev [dev_id]: this parameter indicates the interface is to be subject to emulation. 

• sfq: this parameter specifies the Stochastic Fair Queueing algorithm. 

• perturb: It is used to specify the interval in seconds for queue algorithm 
perturbation. If the value is set to 0 indicate that no perturbation occurs. It is 
recommended avoiding low values to prevent packet reordering. Empirical 
evaluations recommend this value set to 10 seconds. 

• quantum: Denotes the number of bytes which a flow can dequeue during a round 
of the round-robin process. It is recommended to set this value not less than the 
Maximum Transmission Unit (MTU). 

 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
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Figure 3. Lab topology.  

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 4. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 17.mn topology file and click on Open. 
 

 
Figure 5. MiniEdit’s Open dialog. 
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Step 3. Before starting the measurements between end hosts, the network must be 
started. Click on the Run button located at the bottom left of MiniEdit’s window to start 
the emulation. 
 

 
Figure 6. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1, host h2, host h3 and host h4  
 

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host 
h1 and allows the execution of commands on that host.  
 

 
Figure 7. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.3. This command tests the connectivity between host 
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
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Figure 8. Connectivity test using ping command. 

 
 
2.2 Emulating high-latency WAN 

 
This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 9. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 20ms delay to switch S1’s s1-eth1 
interface. 
 
sudo tc qdisc add dev s1-eth1 root netem delay 20ms 

 

 
Figure 10. Adding delay of 20ms to switch S1’s s1-eth1 interface. 
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2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h3 (10.0.0.3), successfully receiving responses back.  
 

 
Figure 11. Output of ping 10.0.0.3 command. 

 

The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test 
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 

 
Figure 12. Output of ping 10.0.0.3 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
 
3 Testing the throughput of two competing TCP flows 
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In this section, you are going to tune the network devices in order to emulate a Wide Area 
Network (WAN). First, you will set the hosts’ TCP buffers to 8 · BDP therefore, the 
bottleneck is not in the end-hosts. Then, you will add 20ms latency to switch S1’s s1-eth1 
interface. Additionally, you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 interface. Finally, you will conduct throughput tests between two competing TCP 
flows which uses different congestion control algorithms (i.e. Cubic, BBR). 
 
 
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size 

 
In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency) 
is 20ms.  
 
BW = 1,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 1,000,000,000 · 0.02 =  20,000,000 bits 
          = 2,500,000 bytes ≈ 2.5 Mbytes  
 
1 Mbyte =  10242 bytes 
 
BDP =  2.5 Mbytes = 2.5 · 10242 bytes =  2,621,440 bytes 
 
The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum 
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to 
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer 
size on the switch to BDP. In addition, to ensure that the bottleneck is not the hosts’ TCP 
buffers, we configure the buffers to 8·BDP (20,971,520).  
 
 
3.2 Modifying hosts’ buffer size 

 
For the following calculation, the bottleneck bandwidth is considered as 1 Gbps, and the 
round-trip time latency as 20ms.  
 

In order to have enough TCP buffer size, we will set the TCP sending and receiving 
buffer to 8 · BDP in all hosts. 

 
BW = 1,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 1,000,000,000 · 0.02 =  20,000,000 bits 
          = 2,500,000 bytes ≈ 2.5 Mbytes  
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The send and receive TCP buffer sizes should be set to 8 · BDP to ensure the bottleneck 
is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP 
instead of 2,500,000 bytes. 

 
1 Mbyte =  10242 bytes 
 
BDP =  2.5 Mbytes = 2.5 · 10242 bytes =  2,621,440 bytes 
 
8 ·  BDP =  8 · 2,621,440 bytes = 20,971,520 bytes  
 
Step 1. At this point, we have calculated the maximum value of the TCP sending and 
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal 
type the command shown below. The values set are: 10,240 (minimum), 87,380 (default), 
and 20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’ 

 

  
Figure 13. Receive window change in sysctl. 

 
The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
applications create a TCP socket. 20,971,520 is the maximum receive buffer that can be 
allocated for a TCP socket. 
 
Step 2. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’ 

 

 
Figure 14. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2, host h3, and host h4. 
 
Step 3. To change the current receiver-window size value(s), use the following command 
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’ 
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Figure 15. Receive window change in sysctl. 

 
Step 4. To change the current send-window size value(s), use the following command on 
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’ 

 

 
Figure 16. Send window change in sysctl. 

 
Step 5. To change the current receiver-window size value(s), use the following command 
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’ 

 

 
Figure 17. Receive window change in sysctl. 

 
Step 6. To change the current send-window size value(s), use the following command on 
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’ 

 

 
Figure 18. Send window change in sysctl. 

 
Step 7. To change the current receiver-window size value(s), use the following command 
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 20971520’ 
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Figure 19. Receive window change in sysctl. 

 
Step 8. To change the current send-window size value(s), use the following command on 
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
20,971,520 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 20971520’ 

 

 
Figure 20. Send window change in sysctl. 

 
 
3.3 Changing congestion control algorithm in host h1 and host h2 

 
In this part, you will set different congestion control algorithms in the host h1 and host 
h2 to cubic and BBR respectively. Consequently, you will have two TCP flows with 
different dynamic sharing the same bottleneck link.  
 

The default congestion avoidance algorithm in the following test is cubic thus, there is no 
need to specify it manually. 

 
Step 1. Verify that the congestion control algorithm is cubic by issuing the following 
command in host h1 terminal: 
 
sysctl net.ipv4.tcp_congestion_control 

 

 
Figure 21. Verifying TCP congestion control algorithm in host h1. 

 
Step 2. In host h2 terminal, type the following command to change the current TCP 
congestion control algorithm to BBR. 
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 22. Changing TCP congestion control algorithm in host h2. 
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3.4 Setting switch S2’s buffer size to BDP 

 
Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 
hit Enter. 
 

• rate: 1gbit  

• burst: 500,000  

• limit: 2,621,440 
 
sudo tc qdisc add dev s2-eth2 root: handle 1: tbf rate 1gbit burst 500000 limit 

2621440 

 

 
Figure 23. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface. 
 

 
3.5 Throughput tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 24. Starting iPerf3 server on host h3. 

 
Step 2. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 25. Starting iPerf3 server on host h4. 
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The following steps are aimed to replicate the case when two TCP flows are competing 
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be 
executed almost simultaneously. Hence, you will type the commands presented in Step 4 
and Step 7 without executing them next, in Step 8 you will press Enter in host h1 and host 
h2 to execute them. 

 
Step 3. In host h1, create a directory called h1_no_SFQ and navigate into it using the 
following command: 
 
mkdir h1_no_SFQ && h1_no_SFQ     

 

 
Figure 26. Creating and navigating into directory h1_no_SFQ. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 60 -J > out.json 

 

 
Figure 27. Running iPerf3 client on host h1. 

 

Step 5. In host h2, create a directory called h2_no_SFQ and navigate into it using the 
following command: 
 
mkdir h2_no_SFQ && h2_no_SFQ     

 

 
Figure 28. Creating and navigating into directory h2_no_SFQ. 

 
Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.4 -t 60 -J > out.json 
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Figure 29. Running iPerf3 client on host h2. 

 

Step 7. Press Enter to execute the commands shown in step 4 and step 6, first in host h1 
terminal then, in host h3 terminal. 
 
Step 8. After the iPerf3 test finishes on host h1, enter the following command. 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 30. Generate plotting files and entering the results directory. 

 

Step 9. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 31. Opening the throughput.pdf file. 

 

 
Figure 32. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is approximately 100 Mbps. It is observed that the Cubic flow 
collapses significantly since the link is not fairly shared with the other TCP flow. 
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Step 10. Close the throughput.pdf window then, in host h2, proceed similarly by typing 
the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 33. Generate plotting files and entering the results directory. 

 

Step 11. In host h2 terminal, open the throughput file using the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 34. Opening the throughput.pdf file. 

 

 
Figure 35. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 850 Mbps. It is observed that the BBR flow takes over 
almost the full link which upholds that the link is not fairly shared with the other TCP flow. 
 
Step 12. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host 
h4 press Ctrl+c. 
 
 
4 Configuring SFQ on switch S2 
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In this section, you are going to configure Stochastic Fair Queueing (SFQ) in switch S2’s 
s2-eth2 interface. Then, you will conduct throughput and latency measurements between 
host h1 and host h3. 
 
 
4.1 Setting SFQ parameter on switch S2’s egress interface 

 
Step 1. Apply sfq rule on switch S2’s s2-eth2 interface. In the client’s terminal, type the 
command below. When prompted for a password, type password and hit Enter. 
 

• perturb: 10 
 
sudo tc qdisc add dev s2-eth2 parent 1: handle 2: sfq perturb 10 

 

 
Figure 36. Setting SFQ parameters on switch S2’s s2-eth2 interface. 

 
 
4.2 Throughput tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 37. Starting iPerf3 server on host h3. 

 
Step 2. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 38. Starting iPerf3 server on host h4. 
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The following steps are aimed to replicate the case when two TCP flows are competing 
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be 
executed almost simultaneously. Hence, you will type the commands presented in Step 4 
and Step 7 without executing them next, in Step 8 you will press Enter in host h1 and host 
h2 to execute them. 

 
Step 3. In host h1, create a directory called h1_SFQ and navigate into it using the following 
command: 
 
cd ../.. && mkdir h1_SFQ && h1_SFQ     

 

 
Figure 39. Creating and navigating into directory h1_SFQ. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 60 -J > out.json 

 

 
Figure 40. Running iPerf3 client on host h1. 

 

Step 5. In host h2, create a directory called h2_SFQ and navigate into it using the following 
command: 
 
cd ../.. && mkdir h2_SFQ && h2_SFQ     

 

 
Figure 41. Creating and navigating into directory h2_SFQ. 

 
Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.4 -t 60 -J > out.json 
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Figure 42. Running iPerf3 client on host h2. 

 
Step 7. Press Enter to execute the commands shown in step 4 and step 6, first in host h1 
terminal then, in host h3 terminal. 
 
Step 8. After the iPerf3 test finishes on host h1, enter the following command. 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 43. Generate plotting files and entering the results directory. 

 

Step 9. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 44. Opening the throughput.pdf file. 

 

 
Figure 45. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is approximately 500 Mbps. It is observed that the Cubic flow uses 
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the half part of the link. Notice also that there are spikes every 10 seconds which is 
consistent with the rehashing time specified by perturb parameter. 
 

Step 10. In host h2, proceed similarly by typing the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 46. Generate plotting files and entering the results directory. 

 

Step 11. In host h2 terminal, open the throughput file using the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 47 Opening the throughput.pdf file. 

 

 
Figure 48. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is approximately 500 Mbps. It is observed that the BBR can fairly 
coexist with a Cubic flow since the dynamic of both flows do not interact as a result of 
SFQ is configured in switch S2’s s2-eth2 interface.  
 
Step 12. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host 
h4 press Ctrl+c. 
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This concludes Lab 17. Stop the emulation and then exit out of MiniEdit. 
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