
 
 
 

NETWORK TOOLS AND PROTOCOLS 
 

Lab 18: Controlled Delay (CoDel) Active Queue 
Management 

 
Document Version:  11-18-2019 

 
 

 
 

 
 
 
 
 
 

Award 1829698 
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput 

Networks for Big Science Data Transfers” 
 
 
 
 
 
 
 
  

 
 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 2  

Contents  
  
Overview ............................................................................................................................. 3 

Objectives............................................................................................................................ 3 

Lab settings ......................................................................................................................... 3 

Lab roadmap ....................................................................................................................... 3 

1 Introduction ................................................................................................................ 4 

1.1 CoDel active queue management .................................................................... 4 

1.2 Fair queueing CoDel active queue management ............................................. 6 

2 Lab topology................................................................................................................ 8 

2.1 Starting host h1, host h2, host h3 and host h4 ................................................ 9 

2.2 Emulating high-latency WAN .......................................................................... 10 

2.3 Testing connection ......................................................................................... 11 

3 Testing the throughput of two competing TCP flows ............................................... 12 

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size .......................... 12 

3.2 Modifying hosts’ buffer size ........................................................................... 13 

3.3 Changing congestion control algorithm in host h1 and host h2 .................... 16 

3.4 Setting switch S2’s buffer size to BDP ............................................................ 16 

3.5 Throughput tests ............................................................................................ 17 

4 Configuring CoDel on switch S2 ................................................................................ 24 

4.1 Setting CoDel parameter on switch S2’s egress interface.............................. 24 

4.2 Throughput tests ............................................................................................ 25 

5 Configuring Fq_CoDel on switch S2 .......................................................................... 31 

5.1 Setting Fq_CoDel parameters on switch S2’s egress interface ...................... 31 

5.2 Throughput test .............................................................................................. 32 

6 Changing the bandwidth to 100Mbps ...................................................................... 39 

6.1 Throughput and latency tests ......................................................................... 39 

References ........................................................................................................................ 46 

 
 
 
  



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 3  

Overview 
 
This lab explains how Controlled Delay (CoDel) Active Queue Management (AQM) 
algorithm is used to manage outgoing TCP traffic in order to achieve low end-to-end 
latency and ensure fairness. Additionally, it is presented FQ_CoDel (Fair Queueing with 
Controlled Delay) AQM, a combination of fair queuing and CoDel algorithms which is 
aimed to mitigate bufferbloat and ensure fairness. Along this lab, throughput, latency and 
queue occupancy measurements are conducted in an emulated high-latency network 
showing the features of both algorithms. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Identify and describe the components of end-to-end latency. 
2. Understand the features of AQM algorithms. 
3. Explain how CoDel algorithm contains the queue length in order to avoid 

bufferbloat. 
4. Observe how FQ_CoDel ensures low end-to-end latency and fairness. 
5. Visualize the benefits of isolating the dynamic of competing TCP flows. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction. 
2. Section 2: Lab topology. 
3. Section 3: Testing the throughput of two competing TCP flows 
4. Section 4: Configuring CoDel on switch S2. 
5. Section 5: Configuring FQ_CoDel on switch S2. 
6. Section 6: Changing the bandwidth to 100Mbps. 

 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 4  

1 Introduction 
 
The persistently problem of bufferbloat has been discussed since the early 80’s. 
Bufferbloat is caused by oversizing router’s queues that hold traffic that cannot be 
immediately forwarded consequently, unnecessary latency is experienced. The 
deployment of Active Queue Management (AQM) algorithms started being notorious in 
1998. The aim of those algorithms is to solve the increasing problem of bufferbloat. 
Despite this awareness, the problem has only gotten worse as growth in memory density 
per Moore's Law fueled an exponential increase in buffer pool size. Efforts to deploy AQM 
algorithms have been frustrated by difficult configuration and negative impact on 
network utilization. This bufferbloat problem has become more and more important 
throughout the Internet but particularly at the consumer edge. Queue management has 
become more critical due to increased consumer use of the Internet, mixing large video 
transactions with time-critical VoIP and gaming1. 
 
Network buffers are designed to absorb the packet bursts that occur naturally in 
statistically multiplexed networks. Buffers helpfully absorb the queues created by 
reasonable packet network behavior such as short-term mismatches in traffic arrival and 
departure. Unfortunately, other less useful network behaviors can cause queues to fill, 
and their effects are not nearly as benign. Discussion of these issues and the reason why 
the solution is not simply creating smaller buffers. To understand queue management, it 
is critical to understand the difference between the necessary, useful "good" queue and 
the counterproductive "bad" queue. An effective AQM algorithm remediates bufferbloat 
at a bottleneck without affecting the hops where buffers are not bloated.  However, the 
development and deployment of AQM algorithms are frequently subject to 
misconceptions about the cause of packet queues in network buffers. 
 

 
1.1 CoDel active queue management 

 

In order to mitigate the bufferbloat problem, it is presented Controlled Delay2 (CoDel), an 
innovative Active Queue Management (AQM) that adapts to changing links rates and it is 
suitable for deployment and experimentation in Linux-based routers. The goal of CoDel3 
is to contain the queuing latency while maximizing the throughput. CoDel does not 
require any parameters tuning and it has been designed to work across a wide range of 
conditions with different links and round-trip times. Figure 1 illustrate a scenario where 
CoDel AQM is used to manage the queue. Firstly, a timestamp is added to every incoming 
packet. Then, by measuring the departure time of every packet in the queue, it is 
determined for how long a packet was waiting in the queue. Consequently, CoDel 
algorithm determines whether the enqueued packets are going to be dropped or not.  
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 5  

 
Figure 1. Buffer managed by CoDel AQM. 

 
The algorithm depicted in Listing 1 show in more detail how CoDel works4: as mentioned 
before, timestamp is added to each packet at the ingress side of the queue in order to 
measure the packet departure time at the egress side when packets are dequeued. The 
departure time is then compared to a target delay TARGET (5ms by default), if it is below 

the target the packet is forwarded, otherwise the algorithm starts a timer and forwards 
the packet.  When packets are dequeued, CoDel checks the departure time, and if it gets 
below the target, the timer is stopped. However, if the timer reaches the value of interval 
INTERVAL (100ms by default), CoDel enters the dropping state which is left when the 
departure time gets below the target delay. During this state, whenever the interval timer 
expires a packet is dropped, the timer is reset, and the next timer duration is reconfigured. 
Thus, the longer the departure time stays above the target delay, the higher the packet 
dropping frequency. Finally, as soon as the measured departure time of an outgoing 
packet gets below the target, the dropping state is left, and interval is restored to its 
default value. 
 
Paket p 

StatefulObject s 

 

if(p.qdelay < TARGET) 

 s.dropping = false 

count = 0 

if(s.dropping == false) 

 s.dropping = true 

 s.drop_next_packet = now + INTERVAL 

if(s.dropping && s.drop_next_packet >= now) 

 drop() 

 count++ 

 s.drop_next_packet = now + INTERVAL / sqrt(now) 

 

Listing 1. Simplified CoDel pseudocode. 
 
In summary, CoDel algorithm considers three scenarios: 
 

• If the queueing delay is below TARGET, a packet is never dropped. 

• If TARGET is exceeded by more than INTERVAL time units, the first packet will be 
dropped. 

• From now, the interval between dropping packets is getting smaller, until TARGET 
delay is reached. 

 
The complete algorithm considers other factors like the duration since the las dropping 
phase. The Linux implementation used in this lab is based on the full algorithm. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 6  

 
The basic codel syntax used with tc is as follows: 
 
tc qdisc [add | ...] dev [dev_id] root codel limit [PACKETS] target [SECONDS] 

interval [SECONDS] ecn|noecn ce_threshold 

 

• tc: Linux traffic control tool. 

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 
packets arriving from the IP protocol output are served. The queue discipline is 
applied to a packet queue to decide when to send each packet.  

• [add | del | replace | change | show]: this is the operation on qdisc. For 
example, to add the token bucket algorithm on a specific interface, the operation 
will be add. To change or remove it, the operation will be change or del, 
respectively. 

• dev [dev_id]: this parameter indicates the interface is to be subject to emulation. 

• codel: this parameter enables the Controlled Delay (CoDel) algorithm. 

• limit: this parameter specifies hard limit on the real queue size in packets. When 
this limit is reached, incoming packets are dropped. If the value is lowered, packets 
are dropped so that the new limit is met. The default value is 1000 packets. 

• target: denotes the acceptable minimum standing/persistent queue delay. This 
minimum delay is identified by tracking the local minimum queue delay that 
packets experience. The default and recommended value is 5ms. 

• interval: this parameter is intended to ensure that the measured minimum 
delay does not become too stale. The minimum delay must be experienced in the 
last epoch of length interval.  It should be set on the order of the worst-case 

RTT through the bottleneck to give endpoints sufficient time to react. The default 
value is 100ms. 

• ecn|noecn: it is used to mark packets instead of dropping them. If ecn has been 
enabled, noecn can be used to turn it off and vice-a-versa. By default, ecn is 
turned off. 

• ce_threshold: sets a threshold above which all packets are marked with ECN 
Congestion Experienced. This is useful for DCTCP-style congestion control 
algorithms that require marking at very shallow queueing thresholds. 

 
 
1.2 Fair queueing CoDel active queue management 
 

FQ_CoDel (Fair Queuing Controlled Delay) is a queuing discipline that combines Fair 
Queuing with the CoDel AQM scheme. FQ_CoDel uses a stochastic model to classify 
incoming packets into different flows. It is aimed to provide a fair share of the bandwidth 
to all the flows using the queue.  
 
Figure 2 shows that FQ_CoDel consists of two logical parts: 1) the scheduler, which selects 
which queue to dequeue a packet from, and 2) The CoDel AQM which works on each of 
the queues. Since FQ_CoDel mixes packets from multiple flows, it reduces the impact of 
bursty traffic. It also provides isolation for applications namely DNS, web and 
videoconferencing traffic. Additionally, it improves network utilization by keeping the 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 7  

queue lengths short and it can be implemented in a memory and CPU efficient fashion 
across a wide range of hardware. 
 

 
Figure 2. Buffer managed by FQ_CoDel AQM. 

 
The basic fq_codel syntax used with tc is as follows: 
 
tc qdisc [add | ...] dev [dev_id] root fq_codel limit [PACKETS] target 

[SECONDS] flows [NUMBER] interval [SECONDS] quantum [BYTES] ecn|noecn 

ce_threshold 

 

• tc: Linux traffic control tool. 

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 
packets arriving from the IP protocol output are served. The queue discipline is 
applied to a packet queue to decide when to send each packet.  

• [add | del | replace | change | show]: this is the operation on qdisc. For 
example, to add the token bucket algorithm on a specific interface, the operation 
will be add. To change or remove it, the operation will be change or del, 
respectively. 

• dev [dev_id]: this parameter indicates the interface is to be subject to emulation. 

• fq_codel: this parameter enables the Fair Queueing Controlled Delay (FQ_CoDel) 
algorithm. 

• limit: this parameter specifies hard limit on the real queue size in packets. When 
this limit is reached, incoming packets are dropped. If the value is lowered, packets 
are dropped so that the new limit is met. The default value is 1000 packets. 

• target: denotes the acceptable minimum standing/persistent queue delay. This 
minimum delay is identified by tracking the local minimum queue delay that 
packets experience. The default and recommended value is 5ms. 

• flows: this parameter specifies the number of flows into which the incoming 
packets are classified. Due to the stochastic nature of hashing, multiple flows may 
end up being hashed into the same slot. Newer flows have priority over older ones. 
This parameter can be set only at load time since memory has to be allocated for 
the hash table.  Default value is 1024. 

• interval: this parameter is intended to ensure that the measured minimum 
delay does not become too stale. The minimum delay must be experienced in the 
last epoch of length interval.  It should be set on the order of the worst-case 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 8  

RTT through the bottleneck to give endpoints sufficient time to react. The default 
value is 100ms. 

• quantum: denotes the number of bytes used as deficit in the fair queuing 
algorithm. The default value is 1514 bytes which corresponds to the Ethernet MTU 
plus the hardware header length of 14 bytes. 

• ecn|noecn: it is used to mark packets instead of dropping them. If ecn has been 
enabled, noecn can be used to turn it off and vice-a-versa. By default, ecn is 
turned off. 

• ce_threshold: sets a threshold above which all packets are marked with ECN 
Congestion Experienced. This is useful for DCTCP-style congestion control 
algorithms that require marking at very shallow queueing thresholds. 

 
In this lab, we will use codel and fq_codel AQM algorithms to control the queue size at 

the egress port of a router. 

 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 3. Lab topology.  

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 4. MiniEdit shortcut. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 9  

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 18.mn topology file and click on Open. 
 

 
Figure 5. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between end hosts, the network must be 
started. Click on the Run button located at the bottom left of MiniEdit’s window to start 
the emulation. 
 

 
Figure 6. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1, host h2, host h3 and host h4  
 

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host 
h1 and allows the execution of commands on that host.  
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 10  

 
Figure 7. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.3. This command tests the connectivity between host 
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 8. Connectivity test using ping command. 

 
 
2.2 Emulating high-latency WAN 

 
This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 11  

 
Figure 9. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 20ms delay to Switch S1’s s1-eth1 

interface. 
 
sudo tc qdisc add dev s1-eth1 root netem delay 20ms 

 

 
Figure 10. Adding delay of 20ms to switch S1’s s1-eth1 interface. 

 
 
2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h3 (10.0.0.3), successfully receiving responses back.  
 

 
Figure 11. Output of ping 10.0.0.3 command. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 12  

The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test 
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 

 
Figure 12. Output of ping 10.0.0.3 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
 
3 Testing the throughput of two competing TCP flows 
 
In this section, you are going to tune the network devices in order to emulate a Wide Area 
Network (WAN). First, you will set the hosts’ TCP buffers to 20 ·BDP therefore, the 
bottleneck is not in the end-hosts. Then, you will add 20ms latency to switch S1’s s1-eth1 
interface. Additionally, you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 interface however, the buffer will be intentionally oversized to 20·BDP therefore, 
you should expect bufferbloat. Finally, you will conduct throughput tests between two 
competing TCP flows which uses different congestion control algorithms (i.e. Cubic, BBR). 
 
 
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size 

 
In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency) 
is 20ms.  
 
BW = 1,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 1,000,000,000 · 0.02 =  20,000,000 bits 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 13  

          = 2,500,000 bytes ≈ 2.5 Mbytes  
 
1 Mbyte =  10242 bytes 
 
BDP =  2.5 Mbytes = 2.5 · 10242 bytes =  2,621,440 bytes 
 
The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum 
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to 
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer 
size on the switch to BDP. In addition, to ensure that the bottleneck is not the hosts’ TCP 
buffers, we configure the buffers to 20·BDP (52,428,800).  
 
 
3.2 Modifying hosts’ buffer size 

 
For the following calculation, the bottleneck bandwidth is considered as 1 Gbps, and the 
round-trip time latency as 20ms.  
 

In order to have enough TCP buffer size, we will set the TCP sending and receiving 
buffer to 20 · BDP in all hosts. 

 
BW = 1,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 1,000,000,000 · 0.02 =  20,000,000 bits 
          = 2,500,000 bytes ≈ 2.5 Mbytes  
 

The send and receive TCP buffer sizes should be set to 20 · BDP to ensure the bottleneck 
is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP 
instead of 2,500,000 bytes. 

 
1 Mbyte =  10242 bytes 
 
BDP =  2.5 Mbytes = 2.5 · 10242 bytes =  2,621,440 bytes 
 
20 ·  BDP =  20 · 2,621,440 bytes = 52,428,800 bytes  
 
Step 1. At this point, we have calculated the maximum value of the TCP sending and 
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal 
type the command shown below. The values set are: 10,240 (minimum), 87,380 (default), 
and 52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 14  

 
Figure 13. Receive window change in sysctl. 

 
The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be 
allocated for a TCP socket. 
 
Step 2. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 14. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2, host h3, and host h4. 
 
Step 3. To change the current receiver-window size value(s), use the following command 
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 15. Receive window change in sysctl. 

 
Step 4. To change the current send-window size value(s), use the following command on 
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 16. Send window change in sysctl. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 15  

 
Step 5. To change the current receiver-window size value(s), use the following command 
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 17. Receive window change in sysctl. 

 
Step 6. To change the current send-window size value(s), use the following command on 
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 18. Send window change in sysctl. 

 
Step 7. To change the current receiver-window size value(s), use the following command 
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

  

 
Figure 19. Receive window change in sysctl. 

 
Step 8. To change the current send-window size value(s), use the following command on 
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 20. Send window change in sysctl. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 16  

 
 
3.3 Changing congestion control algorithm in host h1 and host h2 

 
In this part, you will set different congestion control algorithms in the host h1 and host 
h2 to cubic and BBR respectively. Consequently, you will have two TCP flows with 
different dynamic sharing the same bottleneck link.  
 

The default congestion avoidance algorithm in the following test is cubic thus, there is no 
need to specify it manually. 

 
Step 1. Verify that the congestion control algorithm is cubic by issuing the following 
command in host h1 terminal: 
 
sysctl net.ipv4.tcp_congestion_control 

 

 
Figure 21. Verifying TCP congestion control algorithm in host h1. 

 
Step 2. In host h2 terminal, type the following command to change the current TCP 
congestion control algorithm to BBR. 
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 
 

 
Figure 22. Changing TCP congestion control algorithm in host h2. 

 
 
3.4 Setting switch S2’s buffer size to BDP 

 
Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 
hit Enter. 
 

• rate: 1gbit  

• burst: 500,000  

• limit: 26,214,400 
 
sudo tc qdisc add dev s2-eth2 root: handle 1: tbf rate 1gbit burst 500000 limit 

26214400 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 17  

 
Figure 23. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface. 
 

 
3.5 Throughput tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 24. Starting iPerf3 server on host h3. 

 
Step 2. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 25. Starting iPerf3 server on host h4. 

 

The following steps are aimed to replicate the case when two TCP flows are competing 
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be 
executed almost simultaneously. Hence, you will type the commands presented in Step 4 
and Step 6 without executing them next, in Step 7 you will press Enter in host h1 and host 
h2 to execute them. 

 
Step 3. In host h1, create a directory called h1_Drop_Tail and navigate into it using the 
following command: 
 
mkdir h1_Drop_Tail && cd h1_Drop_Tail     

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 18  

 
Figure 26. Creating and navigating into directory h1_no_SFQ. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 60 -J > out.json 

 

 
Figure 27. Running iPerf3 client on host h1. 

 

Step 5. In host h2, create a directory h1_Drop_Tail and navigate into it using the following 
command: 
 
mkdir h2_Drop_Tail && h2_Drop_Tail     

 

 
Figure 28. Creating and navigating into directory h2_no_SFQ. 

 
Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.4 -t 60 -J > out.json 

 

 
Figure 29. Running iPerf3 client on host h2. 

 
Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s2-eth2 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 19  

 
Figure 30. Plotting the queue occupancy on switch S2’s s2-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s2-eth2 interface on switch S2, the queue 
occupancy is constantly 0. 
 

 
Figure 31. Queue occupancy on switch S2’s s2-eth2 interface. 

 
Step 8. Press Enter to execute the commands, first in host h1 terminal then, in host h2 
terminal. 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 20  

 
Figure 32. Queue occupancy on switch S2’s s2-eth2 interface. 

 
The graph above shows that the queue occupancy peaked at 2.5  · 107, which is the 
maximum buffer size we configure on the switch. 
 
Step 9. In the queue plotting window, press the s key on your keyboard to stop plotting 
the queue. 
 
Step 10. After the iPerf3 test finishes on host h1, enter the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 33. Generate plotting files and entering the results directory. 

 

Step 11. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 34. Opening the throughput.pdf file. 

 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 21  

 
Figure 35. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 250 Mbps. It is observed that the Cubic flow collapses 
significantly since the link is not fairly shared with the other TCP flow. 
 
Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 36. Opening the RTT.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 22  

 
Figure 37. Measured round-trip time. 

 
The graph above shows that the RTT was approximately 200,000 microseconds (200ms). 
The output shows that there is bufferbloat as the average latency is at least ten times 
greater than the configured delay (20ms). 
 
Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the 
following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 38. Generate plotting files and entering the results directory. 

 

Step 14. In host h2 terminal, open the throughput file using the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 39. Opening the throughput.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 23  

 
Figure 40. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 700 Mbps. It is observed that the BBR flow uses the major 
part of the available bandwidth which shows that the link is not fairly shared with the 
other TCP flow. 
 
Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 41. Opening the RTT.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 24  

 
Figure 42. Measured round-trip time. 

 
The graph above shows that the RTT was approximately 200,000 microseconds (200ms) 
as well. The output shows that there is bufferbloat as the average latency is at least ten 
times greater than the configured delay (20ms). 
 
Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host 
h4 press Ctrl+c. 
 
 
4 Configuring CoDel on switch S2 
 
In the previous section you have observed bufferbloat, due to oversizing switch S2’s s2-
eth2 interface. In this section, you are going to configure CoDel AQM in switch S2’s s2-
eth2 interface. Then, you will conduct throughput and latency measurements between 
the hosts. 
 
 
4.1 Setting CoDel parameter on switch S2’s egress interface 

 
Step 1. Apply codel rule on switch S2’s s2-eth2 interface. In the client’s terminal, type 
the command below. When prompted for a password, type password and hit Enter. 
 

• limit: 17476 

• target: 5ms 

• interval: 100ms 
 
sudo tc qdisc add dev s2-eth2 parent 1: handle 2: codel limit 17476 target 5ms 

interval 100ms 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 25  

 
Figure 43. Setting CoDel parameters on switch S2’s s2-eth2 interface. 

 
 
4.2 Throughput tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 44. Starting iPerf3 server on host h3. 

 
Step 2. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  
 

 
Figure 45. Starting iPerf3 server on host h4. 

 

The following steps are aimed to replicate the case when two TCP flows are competing 
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be 
executed almost simultaneously. Hence, you will type the commands presented in Step 4 
and Step 6 without executing them next, in Step 7 you will press Enter in host h1 and host 
h2 to execute them. 

 
Step 3. In host h1, exit from the previous folders then, create a directory called h1_CoDel 
and navigate into it using the following command: 
 
cd ../.. && mkdir h1_CoDel && cd h1_CoDel     

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 26  

 
Figure 46. Creating and navigating into directory h1_CoDel. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 60 -J > out.json 

 

 
Figure 47. Running iPerf3 client on host h1. 

 

Step 5. In host h2, exit from the previous folders then, create a directory called h2_CoDel 
and navigate into it using the following command: 
 
cd ../.. && mkdir h2_CoDel && cd h2_CoDel    

 

 
Figure 48. Creating and navigating into directory h2_CoDel. 

 
Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.4 -t 60 -J > out.json 

 

 
Figure 49 Running iPerf3 client on host h2. 

 
Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s2-eth2 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 27  

 
Figure 50. Plotting the queue occupancy on switch S2’s s2-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s2-eth2 interface on switch S2, the queue 
occupancy is constantly 0. 
 

 
Figure 51. Queue occupancy on switch S2’s s2-eth2 interface. 

 
 
Step 8. Press Enter to execute the commands, first in host h1 terminal then, in host h2 
terminal. 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 28  

 
Figure 52. Queue occupancy on switch S2’s s2-eth2 interface. 

 
The graph above shows that the queue occupancy peaked around 900,000 bytes, which 
is below the maximum buffer size we configure on the switch 26,214,400 bytes (10 ·BDP). 
 
Step 9. In the queue plotting window, press the s key on your keyboard to stop plotting 
the queue. 
 
Step 10. After the iPerf3 test finishes on host h1, enter the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 53. Generate plotting files and entering the results directory. 

 

Step 11. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 54. Opening the throughput.pdf file. 

 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 29  

 
Figure 55. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 400 Mbps. It is observed that the Cubic flow collapses 
significantly since the link is not fairly shared with the other TCP flow. 
 
Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 56. Opening the RTT.pdf file. 

 

 
Figure 57. Measured round-trip time. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 30  

 
The graph above shows that the RTT was approximately 25,000 microseconds (25ms). The 
output shows that there was not bufferbloat as the average latency is not exceeding the 
configured delay (20ms). 
 
Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the 
following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 58. Generate plotting files and entering the results directory. 

 

Step 14. In host h2 terminal, open the throughput file using the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 59. Opening the throughput.pdf file. 

 

 
Figure 60. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 400 Mbps. It is observed that the BBR flow takes the major 
part of the available bandwidth which shows that the link is not fairly shared with the 
other TCP flow. 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 31  

Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 61. Opening the RTT.pdf file. 

 

 
Figure 62. Measured round-trip time. 

 
The graph above shows that the RTT was approximately 25,000 microseconds (25ms). The 
output shows that there was not bufferbloat as the average latency is not exceeding the 
configured delay (20ms). 
 
Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host 
h4 press Ctrl+c. 
 
 
5 Configuring Fq_CoDel on switch S2 
 
In the previous section, you have observed that despite getting low queue occupancy and, 
consequently mitigating bufferbloat, the link share was not fair between the two TCP 
flows. In this section, you are going to configure Fq_CoDel in switch S2’s s2-eth2 interface 
to mitigate bufferbloat and at the same time to ensure fairness. Then, you will conduct 
throughput and latency measurements between the hosts. 
 
 
5.1 Setting Fq_CoDel parameters on switch S2’s egress interface 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 32  

Step 1. Delete the previous tc rule by issuing the command shown below. 
 
sudo tc qdisc del dev s2-eth2 parent 1: handle 2: 

 

 
Figure 63. Deleting previous tc rule on switch S2’s s2-eth2 interface. 

 
Step 2. Apply fq_codel rule on switch S2’s s2-eth2 interface. In the client’s terminal, type 
the command below. When prompted for a password, type password and hit Enter. 

 

• limit: 17476 

• target: 5ms 

• interval: 100ms 

• flows: 2 
 
sudo tc qdisc add dev s2-eth2 parent 1: handle 2: fq_codel limit 17476 target 

5ms interval 100ms flows 2 

 

 
Figure 64. Setting Fq_CoDel parameters on switch S2’s s2-eth2 interface. 

 
 
5.2 Throughput test 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 65. Starting iPerf3 server on host h3. 

 
Step 2. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 33  

  
 

 
Figure 66. Starting iPerf3 server on host h4. 

 

The following steps are aimed to replicate the case when two TCP flows are competing 
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be 
executed almost simultaneously. Hence, you will type the commands presented in Step 4 
and Step 6 without executing them next, in Step 7 you will press Enter in host h1 and host 
h2 to execute them. 

 
Step 3. In host h1, exit from the previous folders then, create a directory called h1_CoDel 
and navigate into it using the following command: 
 
cd ../.. && mkdir h1_fq_CoDel && cd h1_ fq_CoDel     

 

 
Figure 67. Creating and navigating into directory h1_ fq_CoDel. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 60 -J > out.json 

 

 
Figure 68. Running iPerf3 client on host h1. 

 

Step 5. In host h2, exit from the previous folders then, create a directory called h2_CoDel 
and navigate into it using the following command: 
 
cd ../.. && mkdir h2_fq_CoDel && cd h2_fq_CoDel      

 

 
Figure 69. Creating and navigating into directory h2_fq_CoDel. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 34  

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.4 -t 60 -J > out.json 

 

 
Figure 70. Running iPerf3 client on host h2. 

 
Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s2-eth2 

 

 
Figure 71. Plotting the queue occupancy on switch S2’s s2-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s2-eth2 interface on switch S2, the queue 
occupancy is constantly 0. 
 

 
Figure 72. Queue occupancy on switch S2’s s2-eth2 interface. 

 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 35  

Step 8. Press Enter to execute the commands, first in host h1 terminal then, in host h2 
terminal. 
 

 
Figure 73. Queue occupancy on switch S2’s s2-eth2 interface. 

 
The graph above shows that the queue occupancy peaked around 1,200,000 bytes, which 
is below the maximum buffer size we configure on the switch 26,441,00 bytes (10 ·BDP). 
 
Step 9. In the queue plotting window, press the s key on your keyboard to stop plotting 
the queue. 
 
Step 10. After the iPerf3 test finishes on host h1, enter the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 74. Generate plotting files and entering the results directory. 

 

Step 11. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 75. Opening the throughput.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 36  

 

 
Figure 76. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 450 Mbps. It is observed that the Cubic flow uses the half 
part of the available bandwidth. 
 
Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 77. Opening the RTT.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 37  

 
Figure 78. Measured round-trip time. 

 
The graph above shows that the RTT was approximately 25,000 microseconds (25ms). The 
output shows that there was not bufferbloat as the average latency is not considerably 
exceeding the configured delay (20ms). 
 
Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the 
following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 79. Generate plotting files and entering the results directory. 

 

Step 14. In host h2 terminal, open the throughput file using the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 80. Opening the throughput.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 38  

 
Figure 81. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 450 Mbps. It is observed that the BBR flow uses the half 
part of the available bandwidth thus, it is fairly sharing the link with the other flow. 
 
Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 82. Opening the RTT.pdf file. 

 

 
Figure 83. Measured round-trip time. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 39  

 
The graph above shows that the RTT was around 25,000 microseconds (25ms). The output 
shows that there was not bufferbloat as the average latency is not considerably exceeding 
the configured delay (20ms). 
 
Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host 
h4 press Ctrl+c. 
 
 
6 Changing the bandwidth to 100Mbps 
 
This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps while 
Fq_Codel is configured to work considering the previous network condition. The results 
will show Fq_CoDel does not requires a reconfiguration if the network conditions changes 
(i.e, latency, bandwidth, loss rate). In this section, you will change the bandwidth to 100 
Mbps then, you will observe the throughput, queue occupancy and, Round-Trip Time. 
 
Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 
hit Enter. 
 

• rate: 100mbit  

• burst: 50,000  

• limit: 26,214,400 
 
sudo tc qdisc change dev s2-eth2 root: handle 1: tbf rate 100mbit burst 50000 

limit 26214400 

 

 
Figure 84. Limiting rate to 100 Mbps and keeping the buffer size to 100⋅BDP on switch S2’s 
interface. 

 

Notice that the link rate is changed to 100 Mbps however, the buffer size is maintained 
at 26,214,400 bytes which for this case corresponds to 100⋅BDP 

 
 
6.1 Throughput and latency tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 40  

 
Figure 85. Starting iPerf3 server on host h3. 

 
Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s2-eth2 

 

 
Figure 86. Plotting the queue occupancy on switch S2’s s2-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s2-eth2 interface on switch S2, the queue 
occupancy is constantly 0. 
 

 
Figure 87. Queue occupancy on switch S2’s s2-eth2 interface. 

 

The following steps are aimed to replicate the case when two TCP flows are competing 
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be 
executed almost simultaneously. Hence, you will type the commands presented in Step 4 
and Step 6 without executing them next, in Step 7 you will press Enter in host h1 and host 
h2 to execute them. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 41  

Step 3. In host h1, exit from the previous folders then, create a directory called 
h1_100_Mbps and navigate into it using the following command: 
 
cd ../.. && mkdir h1_100_Mbps && cd h1_100_Mbps     

 

 
Figure 88. Creating and navigating into directory h1_100_Mbps. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 60 -J > out.json 

 

 
Figure 89. Running iPerf3 client on host h1. 

 

Step 5. In host h2, exit from the previous folders then, create a directory called 
h2_100_Mbps and navigate into it using the following command: 
 
cd ../.. && mkdir h2_100_Mbps && cd h21_100_Mbps      

 

 
Figure 90. Creating and navigating into directory h2_100_Mbps. 

 
Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.4 -t 60 -J > out.json 

 

 
Figure 91. Running iPerf3 client on host h2. 

 
Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s2-eth2 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 42  

 
Figure 92. Plotting the queue occupancy on switch S2’s s2-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s2-eth2 interface on switch S2, the queue 
occupancy is constantly 0. 
 

 
Figure 93. Queue occupancy on switch S2’s s2-eth2 interface. 

 
Step 8. Press Enter to execute the commands, first in host h1 terminal then, in host h2 
terminal. 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 43  

 
Figure 94. Queue occupancy on switch S2’s s2-eth2 interface. 

 
The graph above shows that the queue occupancy peaked at 1 · 106, which is below the 
maximum buffer size we configure on the switch 26,214,400 bytes. 
 
Step 9. In the queue plotting window, press the s key on your keyboard to stop plotting 
the queue. 
 
Step 10. After the iPerf3 test finishes on host h1, enter the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 95. Generate plotting files and entering the results directory. 

 

Step 11. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 96. Opening the throughput.pdf file. 

 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 44  

 
Figure 97. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 50 Mbps. It is observed that the Cubic flow uses the half 
part of the available bandwidth. 
 
Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 
 

 
Figure 98. Opening the RTT.pdf file. 

 

 
Figure 99. Measured round-trip time. 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 45  

 
The graph above shows that the RTT was around 25,000 microseconds (25ms). The output 
shows that there was not bufferbloat as the average latency is not considerably exceeding 
the configured delay (20ms). 
 
Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the 
following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 100. Generate plotting files and entering the results directory. 

 

Step 14. In host h2 terminal, open the throughput file using the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 101. Opening the throughput.pdf file. 

 

 
Figure 102. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 60 seconds. The average 
achieved throughput is around 50 Mbps as well. It is observed that the BBR flow uses the 
half part of the available bandwidth thus, it is fairly sharing the link with the other flow. 
One of the most remarkable features of Fq_CoDel is that it works well even if the network 
condition changes. 
 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 46  

Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 103. Opening the RTT.pdf file. 

 

 
Figure 104. Measured round-trip time. 

 
The graph above shows that the RTT was around 25,000 microseconds (25ms). The output 
shows that there was not bufferbloat as the average latency is not considerably exceeding 
the configured delay (20ms). 
 
Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host 
h4 press Ctrl+c. 
 
This concludes Lab 18. Stop the emulation and then exit out of MiniEdit. 
 
 
References 
 

1. K. Nicolas, E. Lochin, O. Mehani. “Revisiting old friends: is CoDel really achieving 
what RED cannot?,” (2014). 

2. K. Nichols, V. Jacobson, “Controlling queue delay”. ACM Queue, (2012). 
3. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications 

of the ACM, (2012). 
4. K. Nichols, V. Jacobson, A. McGregor, and A. Iyengar, “Controlled delay active 

queue management,” Internet engineering task force, Request for comments 
8289, 2018 



    
Lab 18: Controlled Delay (CoDel) Active Queue Management 

 
  Page 47  

5. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition, 
Pearson, 2017. 

6. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer 
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994. 

7. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,” 
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online]. 
Available: https://www.ietf.org/rfc/rfc3439.txt. 

8. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications 
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.  

9. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based 
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb. 
2017. 


