

NETWORK TOOLS AND PROTOCOLS

Lab 19: Proportional Integral Controller-Enhanced
(PIE)

Document Version: 11-23-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

2 Lab topology.. 5

2.1 Starting host h1, host h2, and host h3 ... 7

2.1 Emulating high-latency WAN ... 8

2.4 Testing connection ... 9

3 Testing throughput on a network using Drop Tail AQM algorithm 10

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size 10

3.2 Setting switch S2’s buffer size to 10 ⋅ BDP ... 12

3.3 Throughput and latency tests .. 12

4 Configuring PIE on switch S2 ... 17

4.1 Setting PIE parameter on switch S2’s egress interface 17

4.2 Throughput and latency tests .. 18

4.3 Changing the bandwidth to 100Mbps ... 23

4.4 Throughput and latency tests .. 24

References .. 29

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 3

Overview

This lab introduces to Proportional Integral Controller-Enhanced (PIE) Active Queue
Management (AQM) algorithm. This algorithm is aimed to mitigate high end-to-end
latency by controlling the average queue length. PIE manages the queue length by using
a Proportional Integral (PI) controller which is known for removing steady state errors.
Throughput, latency and queue length measurements are conducted in this lab to verify
the impact of the dropping policy provided PIE.

Objectives

By the end of this lab, students should be able to:

1. Identify and describe the components of end-to-end latency.
2. Understand the buffering process in a router.
3. Explain the impact of PIE handling the queuing policy in a router egress port.
4. Visualize queue occupancy in a router.
5. Analyze how PIE manages the queue length in order to allow end-hosts to achieve

high throughput and low latency.
6. Modify the network condition in order to evaluate the performance on PIE’s

dropping policy.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing throughput on a network using Drop Tail AQM algorithm.
4. Section 4: Configuring PIE on switch S2.

1 Introduction

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 4

The increasing number of time-sensitive applications in the Internet brings a set of
challenges to control end-to-end delay. To avoid packet loss, many service providers or
data center operators require vendors to increase router’s buffer as much as possible.
Due to the decrease in memory chip prices, these requests are easily satisfied assuring
low packet loss and high TCP throughput however, it suffers from a major downside. The
TCP protocol continuously increases its sending rate and causes network buffers to fill up.
TCP cuts its rate only when it receives a packet drop or mark that is interpreted as a
congestion signal. Nevertheless, drops and marks usually occur when network buffers are
full or almost full. As a result, excess buffers, initially designed to avoid packet drops,
would lead to highly elevated queueing latency and latency variation. The design of a
queue management scheme should not only should allow short-term burst to smoothly
pass, but also should control the average latency in the presence of bursty TCP flows.

Active queue management (AQM) algorithms are designed to tackle the aforementioned
problem. New algorithms are beginning to emerge to control queueing latency directly to
address the bufferbloat problem1. In this lab, it is presented Proportional Integral
Controller-Enhanced AQM algorithm (PIE). PIE randomly drops an incoming packet at the
onset of the congestion. The congestion detection, however, is based on the queueing
latency instead of the queue length. Furthermore, PIE also uses the derivative (rate of
change) of the queueing latency to help determine congestion levels and an appropriate
response. The design parameters of PIE are chosen via control theory stability analysis.
While these parameters can be fixed to work in various traffic conditions, they could be
made self-tuning to optimize system performance.

1.1 The PIE algorithm

As illustrated in Figure 1, PIE is comprised of three simple basic components: a) random
dropping at enqueueing; b) periodic drop probability update; c) latency calculation2.
When a packet arrives, a random decision is made regarding whether to drop the packet.
The drop probability is updated periodically based on how far the current latency is away
from the target and whether the queueing latency is currently trending up or down. The
queueing latency can be obtained using direct measurements or using estimations
calculated from the queue length and the dequeue rate.

Figure 1. Buffer managed by PIE AQM.

The basic pie syntax used with tc is as follows:

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 5

tc qdisc [add | ...] dev [dev_id] root pie limit [PACKETS] target [SECONDS]

tupdate [SECONDS] alpha [0-32] beta [0-32] ecn|noecn bytemode|nobytemode

• tc: Linux traffic control tool.

• qdisc: A queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

• [add | del | replace | change | show]: This is the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be add. To change or remove it, the operation will be change or del,
respectively.

• dev [dev_id]: This parameter indicates the interface is to be subject to
emulation.

• pie: This parameter specifies the Proportional Integral Controller-Enhanced AQM
algorithm.

• limit [BYTES]: Limit on the queue size in packets. Incoming packets are dropped
when this limit is reached. Default is 1000 packets.

• target: Denotes the expected queue delay. The default value is 15ms.

• tupdate: Specifies the frequency at which the system drop probability is

calculated. The default value is 15ms.

• alpha/beta: Alpha and beta are parameters chosen to set the proportional and

integral gain in the controller. With these values the drop probability is calculated.

These values should be in the range between 0 and 32.

• ecn/noecn: Is used to mark packets instead of dropping ecn to turn on ecn mode,

noecn to turn off ecn mode. By default, ecn is turned off.

• bytemode/nobytemode: Is used to scale drop probability proportional to packet

size bytemode to turn on bytemode, nobytemode to turn off bytemode. By default,

bytemode is turned off.

In this lab, we will use the pie AQM algorithm to control the queue size at the egress port

of a router.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 6

Figure 2. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 19.mn topology file and click on Open.

Figure 4. MiniEdit’s Open dialog.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 7

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, and host h3

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.3. This command tests the connectivity between host
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 8

Figure 7. Connectivity test using ping command.

2.1 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 8. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 20ms delay to switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root netem delay 20ms

Figure 9. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 9

2.4 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

Figure 10. Output of ping 10.0.0.3 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Figure 11. Output of ping 10.0.0.3 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 10

3 Testing throughput on a network using Drop Tail AQM algorithm

In this section, you are going to change the switch S2’s buffer size to 10 ⋅ BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf) as well as hosts’
h1 and h3 TCP sending and receiving windows. The AQM algorithm is Drop Tail, which
works dropping newly arriving packets when the queue is full therefore, the parameter
that is configured is the queue size which is given by the limit value set with the tbf rule.
Then, you will test the throughput between host h1 and host h3. In this section, 10 ⋅ BDP
is 25 Mbytes, thus the tbf limit value will be set to 10 ⋅ BDP = 26,214,400 bytes.

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 1,000,000,000 · 0.02 = 20,000,000 bits
 = 2,500,000 bytes ≈ 2.5 Mbytes

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 · 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to 10·BDP. In addition, to ensure that the bottleneck is not the hosts’
TCP buffers, we configure the buffers to 20·BDP (52,428,800).

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled (2·10·BDP) as Linux only allocates
half of the assigned value.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 12. Receive window change in sysctl.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 11

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 13. Send window change in sysctl.

Step 3. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 14. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 15. Send window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 12

3.2 Setting switch S2’s buffer size to 10 ⋅ BDP

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 1gbit

• burst: 500,000

• limit: 26,214,400

sudo tc qdisc add dev s2-eth2 root handle 1: tbf rate 1gbit burst 500000 limit

26214400

Figure 16. Limiting rate to 1 Gbps and setting the buffer size to 10 ⋅ BDP on switch S2’s interface.

3.3 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 17. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time.

sudo plot_q.sh s2-eth2

Figure 18. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 13

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Figure 19. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. In host h1, create a directory called Drop_Tail and navigate into it using the
following command:

mkdir Drop_Tail && cd Drop_Tail

Figure 20. Creating and navigating into directory Drop_Tail.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 21. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 14

Figure 22. Typing ping command on host h2.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 23. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 · 107, which is the
maximum buffer size we configure on the switch.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot_iperf.sh out.json && cd results

Figure 24. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 15

Figure 25. Opening the throughput.pdf file.

Figure 26. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is approximately 900 Mbps. We can see now that the maximum
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 10 · BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

Figure 27. Opening the RTT.pdf file.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 16

Figure 28. Measured round-trip time.

The graph above shows that the RTT was approximately 200,000 microseconds (200ms)
The output shows that there is bufferbloat as the average latency is at least ten times
greater than the configured delay (20ms).

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the ping output.

Figure 29. ping test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.083, 192.823, 228.407, and 26.954 milliseconds, respectively. The

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 17

output also verifies that there is bufferbloat as the average latency (192.823) is
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

Figure 30. Congestion window evolution.

The graph above shows the evolution of the congestion window which peaked at 2.5
Mbytes. In the next section you will configure Random Early Detection on switch S2 and
observe how the algorithm controls the queue length.

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

4 Configuring PIE on switch S2

In this section, you are going to configure PIE in switch S2’s s2-eth2 interface. Then, you
will conduct throughput and latency measurements between host h1 and host h3. Note
that the buffer size is set to 10·BDP.

4.1 Setting PIE parameter on switch S2’s egress interface

Step 1. Apply pie rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 18

• limit: 17476

• target: 22ms

• tupdate: 5ms

• alpha: 2

• beta: 25

sudo tc qdisc add dev s2-eth2 parent 1: handle 2: pie limit 17476 target 22ms

tupdate 5ms alpha 2 beta 25

Figure 31. Setting PIE parameters on switch S2’s s2-eth2 interface.

4.2 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 32. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type password and hit Enter.

sudo plot_q.sh s2-eth2

Figure 33. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 19

Figure 34. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from Drop_Tail/results directory, then create a directory PIE and navigate
into it using the following command.

cd ../../ && mkdir PIE && cd PIE

Figure 35. Creating and navigating into directory RED.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 36. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 20

Figure 37. Typing ping command on host h2.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 38. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 1.6⋅106 bytes, which is
closer to a buffer of BDP size.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot_iperf.sh out.json && cd results

Figure 39. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 21

Figure 40. Opening the throughput.pdf file.

Figure 40. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also
achieved (1 Gbps) when we set PIE at the egress port of switch S2.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT.pdf) file
using the command below.

xdg-open RTT.pdf

Figure 41. Opening the RTT.pdf file.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 22

Figure 42. Measured Round-Trip Time.

The graph above shows that the RTT was contained between 30ms and 40ms which is not
significantly greater that the configured delay (20ms) thus, there is not bufferbloat. Since
the AQM algorithm configured on the switch is applying a dropping policy to prevent
unnecessary delays.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the ping output.

Figure 43. ping test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 23

Time (RTT) were 20.078, 64.165, 217.367, and 70.417 milliseconds, respectively. The
output also verifies that there is not bufferbloat as the average latency (34.048) is not
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

Figure 44. Opening the cwnd.pdf file.

Figure 45. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 5 Mbytes.
In the next section you will maintain the current parameters of Random Early Detection on switch
S2 however, you will change the link rate in order to verify if the algorithm performs well if the
network condition changes.

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

4.3 Changing the bandwidth to 100Mbps

This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps while
RED is tuned to work with the previous network condition. The results will show that RED
requires a reconfiguration if the network conditions changes (i.e., latency, bandwidth,
loss rate). First, you will change the bandwidth to 100 Mbps then, you will observe the
queue occupancy, RTT and congestion window in order to evaluate the performance of
RED when the network condition changes.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 24

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and

hit Enter.

• rate: 100mbit

• burst: 50,000

• limit: 26,214,400

sudo tc qdisc change dev s2-eth2 root handle 1: tbf rate 100mbit burst 50000

limit 26214400

Figure 46. Limiting rate to 100 Mbps and keeping the buffer size to 10⋅BDP on switch S2’s interface.

4.4 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 47. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time.

sudo plot_q.sh s2-eth2

Figure 48. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 25

Figure 49. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from PIE/results directory, then create a directory PIE_100Mbps and navigate
into it using the following command.

cd ../.. && mkdir PIE_100Mbps && cd PIE_100Mbps

Figure 50. Creating and navigating into directory PIE_100Mbps.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 51. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Figure 52. Typing ping command on host h2.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 26

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 53. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 1.7⋅106. In this case we
set a 100 Mbps link when PIE is configured to operate for 1 Gbps link therefore, the point
of operation changed. However, bufferbloat is not experienced because PIE controller
configuration does not depend on the network condition, it depends on the queue length
and latency as shown in section 1.1.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot_iperf.sh out.json && cd results

Figure 54. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 27

Figure 55. Opening the throughput.pdf file.

Figure 55. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 100 Mbps.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

Figure 56. Opening the RTT.pdf file.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 28

Figure 57. Measured Round-Trip Time.

The graph above shows that the RTT peaked at 10 seconds up to 140ms then, the latency
went down and stabilize around 40ms which is closer to the default latency (20ms). This
output shows that there is not bufferbloat as the average latency is not significantly
greater as in the previous section. Since PIE is configured to operate on a 1 Gbps link, for
this test the point of operation changed therefore, this change does not affect the queue
management policy.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the ping output.

Figure 58. ping test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 29

Time (RTT) were 22.073, 37.541, 139.705 and 16.828 milliseconds, respectively. The
output also verifies that there is a bufferbloat problem as the average latency (186.175)
is significantly greater than the configured delay (20ms).

Step 12. Close the RTT.pdf window then open the retransmissions (retransmits) file using
the command below.

xdg-open cwnd.pdf

Figure 59. Opening the cwnd.pdf file.

Figure 60. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 1.8 Mbytes.

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

This concludes Lab 19. Stop the emulation and then exit out of MiniEdit.

References

1. Bufferbloat project, “Bufferbloat” [Online]. Available:
https://www.bufferbloat.net/projects/

2. IETF draft, “PIE: A lightweight control scheme to address the bufferbloat problem,”
[Online]. Available: https://tools.ietf.org/html/draft-ietf-aqm-pie-10

Lab 19: Proportional Integral Controller-Enhanced (PIE)

 Page 30

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

5. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

6. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

7. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

