

ZEEK INSTRUSION DETECTION

Lab 3: Parsing, Reading and Organizing Zeek Log
Files

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to shell scripts .. 4

1.1 Ubuntu Linux text editors .. 4

1.2 Creating a shell script ... 5

2 Advanced zeek-cut log file analysis .. 7

2.1 Example 1 ... 8

2.2 Example 2 ... 9

2.3 Example 3 ... 11

2.4 Example 4 ... 12

3 Incorporating the AWK scripting language for log file analysis 13

3.1 Example 1 ... 14

3.2 Example 2 ... 15

3.3 Example 3 ... 17

3.4 Closing the current instance of Zeek .. 19

References .. 19

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 3

Overview

This lab explains how to format and organize Zeek’s log files by combining zeek-cut utility
with basic Linux shell commands. Utilities and tools introduced in this lab provide practical
examples for logs customization in a real network environment.

Objectives

By the end of this lab, students should be able to:

1. Use Linux tools and commands for text files processing.
2. Practice Linux shell scripts and the AWK scripting language.
3. Incorporate AWK with zeek-cut to provide formatted logs.

Lab topology

Figure 1 shows the lab topology. The topology uses 10.0.0.0/8 which is the default
network assigned by Mininet.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials to access the
machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to shell scripts.
2. Section 2: Advanced zeek-cut log file analysis.
3. Section 3: Incorporating the AWK scripting language for log file analysis.

1 Introduction to shell scripts

A shell script is a text file containing commands to be executed by the Unix command-line
interpreter. Shell scripts provide a convenient way to manipulate files and automate
programs’ executions. Selection and repetition are incorporated into scripts to branch
control based on conditioning and looping statements. Running a shell script can
immensely save time and prevent manually entering repetitive commands in recurrent
tasks.

1.1 Ubuntu Linux text editors

Linux-based distributions include pre-installed text editors like nano, vi, vim, gedit, etc.
nano is a keyboard-oriented lightweight text editor with a simple Command Line Interface
(CLI). Other editors such as vi and vim are highly customizable and extensible, making
them attractive for users that demand a large amount of control and flexibility over their
text editing environment. Alternatively, the Graphical User Interface (GUI) text editor
gedit can be used to visually work outside of the terminal. More information on these
text editors can be found on the Ubuntu help pages. To access the following links, users
must have access to an external computer connected to the Internet, because the Zeek
Lab topology does not have an active Internet connection.

• Nano – https://help.ubuntu.com/community/Nano

• Vim – https://help.ubuntu.com/community/VimHowto

• Gedit – https://help.ubuntu.com/community/gedit

For simplicity, in this lab we use nano text editor to view, create and edit text files.

https://help.ubuntu.com/community/Nano
https://help.ubuntu.com/community/VimHowto
https://help.ubuntu.com/community/gedit

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 5

1.2 Creating a shell script

Shell scripts are effective in executing repetitive terminal commands. Unlike executing
commands manually in the terminal, scripts can be saved and executed whenever needed
simple by invoking their names. We will begin this lab by writing some basic shell scripts.

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

Step 3. In the Linux terminal, navigate to the lab workspace directory by typing the
following command:

cd Zeek-Labs/

Step 4. Use the nano text editor to create the lab3script.sh file.

sudo nano lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 6

Step 5. Edit the lab3script.sh file contents.

Once the text editor has opened, we will be able to enter the following commands. Each
new line will denote a new Terminal command being passed. To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin

sudo ./zeekctl start

cd ~/Zeek-Labs/TCP-Traffic/

zeek –C -r ../Sample-PCAP/smallFlows.pcap

The file’s content is explained as follows:

• Line 1: changes the current directory to the Zeek’s installation directory.

• Line 2: starts a new instance of Zeek through zeekctl.

• Line 3: changes the current directory to the lab workspace.

• Line 4: invokes the zeek command with the -r option to begin processing the
smallFlows.pcap capture file located in the Sample-PCAP directory.

Step 6. When using nano, the following keyboard shortcuts are used to save a file and
then exit the workspace.

• CTRL + o – save the file

• CTRL + x – save and exit the file, return to terminal

After completing Step 6 and adding the correct commands with proper formatting, we
will save and exit the text editor. Press CTRL + o and hit Enter to save the file’s contents,
then CTRL + x to exit nano and return to the terminal.

Step 7. Use the following command to modify the permissions of the script file to make it
executable. When prompted for a password, type password and hit Enter.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 7

sudo chmod +x lab3script.sh

Step 8. Execute the lab3script.sh shell script by typing the following command.

./lab3script.sh

Step 9. Navigate to the lab workspace directory.

cd ~/Zeek-Labs/TCP-Traffic/

Step 10. Verify that the smallFlows.pcap file was processed successfully.

ls

The above output shows the list of log files generated by Zeek’s processing, verifying that
the script executed without errors.

2 Advanced zeek-cut log file analysis

This section introduces more advanced zeek-cut functionality to analyze packet capture
statistics. These statistics can be used for planning and anomaly analysis. For instance, if
a single port has been targeted and received a large number of network traffic, it may

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 8

highlight a possible vulnerability. We can use the zeek-cut utility to determine if a host
sends an abnormal number of packets to a specific destination and further analyze this
event.

2.1 Example 1

Example 1: Show the 10 source IP addresses that generated the most network traffic,
organized in descending order.

To solve this example, we will be looking at the id.orig_h column because it contains
the source IP addresses from the packet capture file.

Step 1. Open the lab3script.sh file with nano text editor.

sudo nano ~/Zeek-Labs/lab3script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut id.orig_h < conn.log | sort | uniq -c | sort -rn | head –n 10

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut id.orig_h < conn.log: selects the id.orig_h column from the
conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -rn: uses the sort command with the -rn option to organize the rows
in reverse numerical order.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 9

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

Step 3. Navigate into Zeek-Labs folder by issuing the following command:

cd ..

Step 4. Execute the modified shell script.

./lab3script.sh

The number of duplicates is seen in the left column, while the matching source IP address
is seen in the right column. Only 8 unique source addresses were found, and each was
returned. From this output, we can conclude that the majority of network traffic was
generated by the top 3 source IP addresses.

2.2 Example 2

Example 2: Show the 10 destination ports that received the most network traffic,
organized in descending order.

To solve this example, we will be looking at the id.resp_p column because it contains
the destination ports from the packet capture file.

Step 1. Open the lab3script.sh file with nano text editor.

sudo nano lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 10

Step 2. Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut id.resp_p < conn.log | sort | uniq -c | sort -rn | head –n 10

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut id.resp_p < conn.log: selects the id.resp_p column from the
conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -rn: uses the sort command with the -rn option to organize the rows
in reverse numerical order.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

Step 3. Execute the modified shell script.

./lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 11

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. More than 10 unique destination ports were found, so only
the top 10 were returned. From this output we can conclude that port 80 received the
most traffic.

2.3 Example 3

Example 3: Show the number of connections per protocol service.

To solve this example, we will be looking at the service column because it contains the
destination ports from the packet capture file.

Step 1. Open the lab3script.sh file with nano text editor.

sudo nano lab3script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut service < conn.log | sort | uniq -c | sort -n

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut service < conn.log: selects the service column from the conn.log
file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | uniq -c: uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• | sort -n: uses the sort command with the -n option to organize the rows in
numerical order.

Step 3. Execute the modified shell script.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 12

./lab3script.sh

The number of duplicates is seen in the left column, while the matching destination port
is seen in the right column. From this output we can see that 331 packets did not have a
marked protocol. This can be caused by a number of anomalies and is an example of how
you can use the zeek-cut utility to return anomalies that require further identification.

2.4 Example 4

Example 4: Print the distinct browsers used by the hosts in this packet capture file to a
separate file.

To solve this example, we will be looking at the user_agent column because it contains
the browser and connection-related information from the packet capture file.

Step 1. Open the lab3script.sh file with nano text editor.

sudo nano lab3script.sh

Step 2. Modify the script file’s contents.

cd TCP-Traffic/

zeek-cut user_agent < http.log | sort -u > browser.txt

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 13

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut user_agent < http.log selects the user_agent column from the
http.log file.

• | sort -u > browser.txt uses the sort command to sort the lines in the file
and the -u option checks for strict ordering. The output is then saved into the
browser.txt file.

Step 3. Execute the modified shell script.

./lab3script.sh

Step 4. Use a text editor to view the contents of the browser.txt file.

nano TCP-Traffic/browser.txt

Step 5. View the distinct browser information.

Each browser found within the packet capture file is printed with related information
extracted from the traffic by Zeek.

3 Incorporating the AWK scripting language for log file analysis

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 14

AWK is a terminal scripting language used to parse, filter and modify text files. AWK is
specifically useful when processing rows and columns found in a Comma Separated Value
(CSV) file. Additionally, AWK’s integrated string manipulation functions allow for the
searching and modifying of specific output.

Like cat and head commands, AWK output can be piped into the zeek-cut utility,
allowing more advanced parsing and formatting options. AWK reads each column in a file
through its position. The first input column is accessed using $1 while the second column
is accessed using $2 and so on. AWK also allows creating simple variables to store and
read script values. AWK reads the input data as a loop, starting from the top of the file
and finishing at the end of the file. Each row is considered an instance within the script.

3.1 Example 1

Example 1: Find the source and destination IP address of all UDP and TCP connections
that lasted more than one minute.

Step 1. Open the lab3script.sh file with nano text editor.

sudo nano lab3script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

awk ‘$9 > 60’ conn.log | zeek-cut id.orig_h id.resp_h

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano
and return to the terminal. The above command is explained as follows:

• awk ‘$9 > 60’ conn.log selects the rows that have their 9th column value
greater than 60 from the conn.log file. The 9th field represents the connection
duration, and we are checking if the value is greater than 60 seconds (or 1 minute).

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 15

• | zeek-cut id.orig_h id.resp_h returns the source and destination IP
addresses.

Step 3. Execute the modified shell script.

./lab3script.sh

The source IP address is seen in the left column, while the matching destination IP address
is seen in the right column. The pairs will only be displayed if the connection lasted at
least one minute.

3.2 Example 2

Example 2: Show the top source host addresses in terms of total traffic (in bytes) sent in
descending order.

The Lab-Scripts directory contains an AWK script named lab3_sec3-2.awk that can be
viewed with the following command:

nl Lab-Scripts/lab3_sec3-2.awk

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 16

The script is explained as follows. Each number represents the respective line number:

1. The { character is used to begin nested statements. This instance is the main
functionality of the script.

2. The host variable, which will be used to store the source IP addresses found in the
first column ($1), is checked against the current data entry in the column. If it is
not equal, we will enter the next statement. Because we only want one instance
of each source IP address, but the summed value of bytes sent, we will use this
check to prevent duplicate entries.

3. This line contains a check to make sure the current packet is not empty and does
contain a payload. If the current packet contains a payload of more than 0 bytes,
we will proceed to line 4.

4. The current source IP address and its byte payload will be printed or returned to
the next statements.

5. Now that we know the current source IP address is not yet stored in the host
variable, we will create a new entry into the variable.

6. The size variable is reset back to zero
7. The } character is used to end nested statements. Therefore, the first case of a

source IP address not being contained in host is complete.
8. If the host variable contains the current data entry, we will proceed to line 9.
9. Here we will sum the unique source IP address’ total bytes by adding the payload

from the second column ($2).
10. The } character is used to end nested statements. This is the ending of the main

functionality of the script.
11. The END statement denotes what the script will do once it has reached the end of

the file, and there are no more input data rows to be read.
12. If a source IP address contains a total payload of more than 0 bytes, we will

proceed to line 13.
13. AWK will return the source IP address found in the first column, as well as the size

variable, containing the total payload in relation to that source IP address.

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 17

Step 1. Input the following command.

zeek-cut id.orig_h orig_bytes < TCP-Traffic/conn.log | sort | awk -f Lab-

Scripts/lab3_sec3-2.awk | sort -k 2 | head -n 10

• zeek-cut id.orig_h orig_bytes < conn.log: selects the id.orig_h and
orig_bytes columns from the conn.log file.

• | sort: uses the sort command to organize the rows in alphabetical order.

• | awk -f lab3_sec3-2.awk: will execute awk with the -f option to denote using
the script find within the lab3_sec3-2.awk file.

• | sort -k 2: uses the sort command with the -k option to organize the rows
based on the values found in the second column – the total number of bytes.

• | head –n 10: uses the head command with the -n option to display the 10
topmost values.

The left column contains the source IP address, while the right column contains the
number of bytes produced by the paired source IP address.

3.3 Example 3

Example 3: Are there any web servers operating on non-standardized ports?

To solve this example, we will be looking at the service column to view the packets using
the Hyper Text Transport Protocol (HTTP) protocol. The standard ports for the HTTP
protocol are 80 and 8080, so we will be searching for the network traffic that does not
reach those ports.

Step 1. Open the lab3script.sh file with nano text editor.

sudo nano lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 18

Step 2. Modify the script file’s contents. Delete all the previous content and type the
following command:

cd TCP-Traffic/

zeek-cut service id.resp_p id.resp_h < conn.log \

 | awk ‘$1 == “http” && ! ($2 == 80 || $2 == 8080) {print $3}’ \

 | sort -u

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x to exit nano and
return to the terminal. The above command is explained as follows:

• zeek-cut service id.resp_p id.resp_h < conn.log: selects the service,
id.resp_p and id.resp_h columns from the conn.log file.

• | awk: passes the input into the following AWK command:
o $1 == “http”: performs a check on the first column to make sure the

active data entry is running on the http service.
o && ! ($2 == 80 || $2 == 8080): performs a second check if the first

check is successfully passed. The ports will be checked and if they are not
equal to either of the standard http ports (80 and 8080), they will be
passed to the print statement

o {print $3}: prints the destination IP address of any host that passes both
of the previous checks.

• | sort -u: uses the sort command to sort the lines in the file and the -u option
checks for strict ordering.

Step 3. Execute the modified shell script.

./lab3script.sh

Lab 3: Parsing, Reading and Organizing Zeek Log Files

 Page 19

The destination IP addresses that received traffic on non-standardized ports are displayed.

3.4 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,
you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we have reviewed the process of creating shell scripts to be used for
network analysis. We introduced more complex commands for the zeek-control utility,

as well as used the AWK scripting language to retrieve information from Zeek log files.

References

1. “Logging”, Zeek user manual, [Online], Available:
docs.zeek.org/en/stable/examples/logs.

2. “Exercise: understanding and examining bro logs”, Zeek user manual, [Online],
Available: https://www.zeek.org/bro-workshop-2011/solutions/logs/index.html.

