

SOFTWARE DEFINED NETWORKING

Lab 5: Configuring VXLAN to Provide Network
Traffic Isolation

Document Version: 05-25-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 VXLAN architecture .. 4

1.2 VXLAN packet format ... 5

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 6

2.3 Load the configuration file ... 8

2.4 Run the emulation .. 9

2.5 Verify the configuration ... 10

3 Configuring OSPF on routers r1 and r2 ... 12

4 Configuring VXLAN .. 15

4.1 Run Mininet instances within the containers .. 16

4.2 Adding entries to the switches’ flow tables ... 18

5 Verifying configuration ... 20

5.1 Performing connectivity test between end-hosts ... 20

5.2 Verifying VXLAN network identifiers by using Wireshark 21

References .. 28

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 3

Overview

This lab presents Virtual eXtensible Local Area Network (VXLAN), a network virtualization
scheme that provides a solution for the scalability problems associated with datacenter
and large cloud computing deployments. This lab aims to configure VXLAN to isolate
network traffic within an emulated environment. Additionally, the user will inspect the
packets to identify the fields corresponding to VXLAN network identifiers.

Objectives

By the end of this lab, the user will:

1. Understand the concept of VXLAN.
2. Assign IP addresses to a router interface.
3. Configure a routing protocol.
4. Emulate servers by using docker containers.
5. Push flow tables to configure VXLAN in a switch.
6. Isolate network traffic by using VXLAN.
7. Visualize VXLAN network identifiers by using Wireshark.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Configuring OSPF router r1 and router r2.
4. Section 4: Configuring VXLAN.
5. Section 5: Verifying configuration.

1 Introduction

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 4

Data centers operate by hosting services for multiple tenants such as data servers and
cloud computing services7. Those services require on-demand elastic provisioning of
computing resources for multi-tenant environments. Such feature is supported by
network virtualization, which provide an efficient way to host multiple tenants in the
same server and traffic isolation, to avoid a tenant to have access to the data of another
tenant.

Isolating network traffic could be done via Layer 2 or Layer 3 networks. For Layer 2
networks, VLANs are often used to segregate traffic. In such scenario a tenant could be
identified by its own VLAN. However, VLAN-based network isolation suffers a limitation
of 4094 VLANs, which is inadequate considering the high demand of cloud services.
Additionally, a tenant could require multiple VLANs, which exacerbates the issue.

On the other hand, layer 3 networks do not provide an extensive solution for multi-tenant
networks as well. Two tenants might use the same set of Layer 3 addresses within their
networks, which requires the cloud provider to provide isolation in some other form.
Further, requiring all tenants to use IP excludes customers relying on direct Layer 2 or
non-IP Layer 3 protocols for inter VM communication.

1.1 VXLAN architecture

Hypervisor-based overlay networks is a novel use of Software-defined Network (SDN)
capabilities3. This concept does not modify the physical network, which means that
networking devices and their configurations remains unchanged. Hypervisor-based
virtualized networks are built above such network5. The system at the edge of the
network works as an interface to these virtual networks. In these networks, many details
of the physical network from the devices that connect to the overlays are hidden.

VXLAN (Virtual eXtensible Local Area Network) addresses the above requirements of
Layer 2 and Layer 3 data center network infrastructure in the presence of Virtual
Machines (VMs) in a multi-tenant environment. VXLAN runs over the existing networking
infrastructure and provides a means to increase the number of devices on a Layer 2
network. In summary, VXLAN is a Layer 2 overlay scheme build on the top of a Layer 3
network. Each overlay is unique within the tenant domain and is known as VXLAN
segment. The communication is restricted just between VMs within the same VXLAN
segment. Each VXLAN segment is identified by a 24-bit segment ID, called the VXLAN
Network Identifier (VNI). This allows up to 16 million (224) VXLAN segments to coexist
within the same administrative domain.

Consider Figure 1. VXLAN could be considered as a tunneling scheme to overlay Layer 2
networks on top of Layer 3 networks6. The tunnels are stateless, so each segment is
encapsulated according to a set of rules. The end point of the tunnel (VXLAN Tunnel End
Point or VTEP) is located within the hypervisor on the server that hosts the VM. The traffic
is isolated according to the VNI and the end-hosts can communicate as they are located
within the same network.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 5

Figure 1. VXLAN overview.

1.2 VXLAN packet format

Figure 2 illustrates the format of a VXLAN packet5. The outer header contains the MAC
and IP addresses appropriate for sending a unicast packet to the destination switch, acting
as a virtual tunnel end point. The VXLAN header follows the outer header and contains a
VXLAN Network Identifier of 24 bits in length, sufficient for about 16 million networks.

Figure 2. VXLAN packet format.

2 Lab topology

Consider Figure 3. The topology consists of four end-hosts, two switches and two routers.
The end hosts and switches are running inside Server 1 and Server 2. Those servers are
implemented by Docker8 containers which run Mininet instances. Router r1 and router r2
are supported by Free-range Routing (FRR) engine.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 6

Figure 3. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

r1

r1-eth0 192.168.12.1 /30

r1-eth1 192.168.1.1 /24

r2

r2-eth0 192.168.12.2 /30

r2-eth1 192.168.2.1 /24

h1 h1-eth0 10.0.0.1 /8

h11 h11-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h22 h22-eth0 10.0.0.2 /8

d1 d1-eth0 192.168.1.10 /24

d2 d2-eth0 192.168.2.10 /24

2.2 Loading a topology

In this section, the user will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e IP addresses, default gateway), save the topology and export a layer 2 model.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 7

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On Miniedit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab5.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab5 and
click on Open.

Figure 5. Opening topology.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 8

Figure 6. MiniEdit’s topology.

2.3 Load the configuration file

At this point the topology is loaded however, the interfaces are not configured. In order
to assign IP addresses to the devices’ interfaces, you will execute a script that loads the
configuration to the routers and end devices.

Step 1. Click on the icon below to open Linux terminal.

Figure 7. Opening Linux terminal.

Step 2. Click on the Linux terminal and navigate into SDN_Labs/lab5 directory by issuing
the following command. This folder contains a configuration file and the script
responsible for loading the configuration. The configuration file will assign the IP
addresses to the routers’ interfaces. The cd command is short for change directory
followed by an argument that specifies the destination directory.

cd SDN_Labs/lab5

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 9

Figure 8. Entering the SDN_Labs/lab5 directory.

Step 3. To execute the shell script, type the following command. The argument of the
program corresponds to the configuration zip file that will be loaded in all the routers in
the topology.

./config_loader.sh lab5_conf.zip

Figure 9. Executing the shell script to load the configuration.

Step 4. Type the following command to exit the Linux terminal.

exit

Figure 10. Exiting from the terminal.

2.4 Run the emulation

In this section, you will run the emulation and check the links and interfaces that connect
the devices in the given topology.

Step 1. To proceed with the emulation, click on the Run button located in lower left-hand
side.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 10

Figure 11. Starting the emulation.

Step 2. Issue the following command on Mininet terminal to display the interface names
and connections.

links

Figure 12. Displaying network interfaces.

In Figure 12, the link displayed within the gray box indicates that interface eth0 of router
r1 connects to interface eth0 of router r2 (i.e., r1-eth0<->r2-eth0).

2.5 Verify the configuration

You will verify the IP addresses listed in Table 2 and inspect the routing table of routers r1, r2,
and r3.

Step 1. In order to verify router r1, hold right-click on router r1 and select Terminal.

Figure 13. Opening a terminal on router r1.

Step 2. In this step, you will start zebra daemon, which is a multi-server routing software
that provides TCP/IP based routing protocols. The configuration will not be working if you

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 11

do not enable zebra daemon initially. In order to start the zebra, type the following
command:

zebra

Figure 14. Starting zebra daemon.

Step 3. After initializing zebra, vtysh should be started in order to provide all the CLI
commands defined by the daemons. To proceed, issue the following command:

vtysh

Figure 15. Starting vtysh on router r1.

Step 4. Type the following command on router r1 terminal to verify the routing table of
router r1. It will list all the directly connected networks. The routing table of router r1
does not contain any route to external networks as there is no routing protocol configured
yet.

show ip route

Figure 16. Displaying routing table of router r1.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 12

The output in the figure above shows that the networks 192.168.1.0/24 and
192.168.12.0/30 are directly connected through the interfaces r1-eth1 and r1-eth0,
respectively.

Step 5. Hold right-click on router r2 and select Terminal.

Figure 17. Opening a terminal on router r2.

Step 6. Router r2 is configured similarly to router r1 but, with different IP addresses (see
Table 2). Those steps are summarized in the following figure. To proceed, in router r2
terminal issue the commands depicted below. At the end, you will verify all the directly
connected networks of router r2.

Figure 18. Displaying routing table of router r2.

3 Configuring OSPF on routers r1 and r2

In this section, you will configure OSPF routing protocol in router r1 and router r2. First,
you will enable the OSPF daemon on routers r3 and r4. Second, you will a establish single
area OSPF, which is classified as area 0 or backbone area. Finally, you will advertise all the
connected networks.

Step 1. To configure OSPF routing protocol, you need to enable the OSPF daemon first.
In router r1, type the following command to exit the vtysh session.

exit

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 13

Figure 19. Exiting the vtysh session.

Step 2. Type the following command on router r1 terminal to enable OSPF daemon.

ospfd

Figure 20. Starting OSPF daemon.

Step 3. In order to enter to router r1 terminal, issue the following command.

vtysh

Figure 21. Star Starting vtyshon router r1.

Step 4. To enable router r1 configuration mode, issue the following command:

configure terminal

Figure 22. Enabling configuration mode on router r1.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 14

Step 5. In order to configure OSPF routing protocol, type the command shown below. This
command enables OSPF configuration mode where you advertise the networks directly
connected to router r1.

router ospf

Figure 23. Configuring OSPF on router r1.

Step 6. In this step, you will enable all the interfaces of router r1 to participate in the OSPF
routing process, i.e., all the attached networks will be advertised to OSPF neighbors. The
advertised networks are associated with area 0. To advertise all connected networks in
the same command, the network 0.0.0.0/0 will be used. This network address matches
all IP addresses.

network 0.0.0.0/0 area 0

Figure 24. Enabling all the interfaces of router r1 to participate in the OSPF routing process.

Step 7. Type the following command to exit from the configuration mode.

end

Figure 25. Exiting from the configuration mode.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 15

Step 8. Router r2 is configured similarly to router r1. Those steps are summarized in the
following figure. To proceed, on route r2 terminal, issue the commands depicted below.

Figure 26. Exiting from the configuration mode.

Step 9. Type the following command to verify the routing table of router r1.

Figure 27. Verifying the routing table of router r1.

Consider Figure 27. The network 192.168.2.0/24 is learned via OSPF (O>*) and it is reachable via

the next hop 192.168.12.2 (route r2).

4 Configuring VXLAN

In this section, the user will start the networks within the containers d1 and d2. Both
containers run a Mininet topology as depicted in Figure 3. In container d1, the topology
consists in two hosts (h1 and h11) connected to a switch (s1). Similarly, container d2 runs
a topology with two hosts (h2 and h22) connected to a switch (s2). The end-hosts within
the containers will be isolated by using VXLAN.

Note that the containers d1 and d2 emulates a multitenant environment. Multi-tenancy
is a mode of operation where multiple independent instances such as end-hosts (see
Figure 3) of a tenant operate in a shared environment, while ensuring logical
segmentation between the instances. A tenant could be a business entity, user group,

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 16

applications, or cloud services. The tenant instances such as h1, h11, h2 and h22 are
logically isolated but physically operate on the same fabric.

4.1 Run Mininet instances within the containers

The following section shows the steps to run a Mininet topology within the containers
and how to navigate through the configuration files.

Step 1. In container d1 terminal, type the following python script to start a Mininet
instance that consists of two hosts connected to a switch.

python start_server1.py

Figure 28. Starting a Mininet instance within container d1.

The figure above starts a Mininet instance in the container d1. Also, the information about
the hosts are summarized after starting switch s1.

Notice that host h1 and host h11 have the same IP addresses and MAC addresses. These
hosts will be isolated b using VXLAN.

Step 2. In container d1, run the following command to verify the devices in the
topology:

links

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 17

Figure 29. Verifying the links between the devices in container d1.

The figure above shows that the host h1 and switch s1 are connected via the interface
pair h1-eth0<->s1-eth1. Similarly, host h11 is connected to the switch s1 (h11-eth0<->s1-
eth2).

Step 3. Similarly, in container d2 terminal, type the following python script to start a
Mininet instance that consists in two hosts connected to a switch as well.

python start_server2.py

Figure 30. Starting a Mininet instance within container d2.

The figure above starts a Mininet instance in the container d2. Also, the information about
the hosts are summarized after starting switch s2.

Notice that host h2 and host h22 have the same IP addresses and MAC addresses. These
hosts will be isolated b using VXLAN.

Step 4. In container d2 terminal, run the following command to verify the devices in the
topology:

links

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 18

Figure 31. Verifying the links between the devices in container d2.

The figure above shows that the host h2 and switch s2 are connected via the interface
pair h2-eth0<->s2-eth1. Similarly, host h22 is connected to the switch s2 (h22-eth0<->s2-
eth2).

4.2 Adding entries to the switches’ flow tables

In this section you will add entries to the flow tables of switch s1 and switch s2. These
entries are added to a table that is responsible for traffic processing. In this lab, the flow
tables specify the VXLAN tags and the actions to forward the packets to their right
destination.

The main purpose of configuring VXLAN in this lab is to isolate the traffic from h1 to h2
and from h11 to h22.

Step 1. To visualize the entries to be added to the flow table of switch s1, in container
d1, type the following command:

sh cat flow1.txt | nl

Figure 32. Flow table in container d1.

Step 2. In container d1, Issue the following command to add entries to the flow table of
switch s1.

sh ovs-ofctl add-flows s1 flows1.txt

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 19

Figure 33. Adding flow entries to switch s1.

Step 3. In this step, you will configure a VXLAN tunnel endpoint (VTEP) that will enable
outgoing traffic from switch s1 to the outer network. A script is written to facilitate this
process. To execute the script, type the following command.

sh ./vxlan_cmd1.cmd

Figure 34. Enabling outgoing traffic in switch s1.

VTEP is the device responsible for encapsulating and de-encapsulating layer 2 traffic. This
device is the connection between the overlay and the underlay network. In this case, the
VTEP is configured to provide connectivity between the switches and the containers’
egress interfaces.

Step 4. In container d2, issue the following command to add entries to the flow table of
switch s2.

sh ovs-ofctl add-flows s2 flows2.txt

Figure 35. Adding flow entries to switch s2.

Step 5. Similarly, in container d2, type the command below to configure a VXLAN tunnel
endpoint (VTEP) in order that enables outgoing traffic from switch s2 to the outer network,
issue the following command:

sh ./vxlan_cmd2.cmd

Figure 36. Enabling outgoing traffic in switch s2.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 20

5 Verifying configuration

In this section, the user will verify that the VXLAN tags were applied accordingly. Notice
that the traffic between h1 and h2 has the VXLAN tag 100 and, the traffic between h11
and h22 corresponds to the VXLAN tag 200. This tag is known as the VXLAN Network
Identifier (VNI). The VNI is used to identify VXLAN traffic.

5.1 Performing connectivity test between end-hosts

The following steps aim to verify the connectivity between end-hosts. This means that
there should be connectivity between h1 and h2, also between h11 and h22.

Step 1. In container d1 terminal, issue the following command to verify the connectivity
between host h1 and host h11. Notice that h1 specifies host 1 as the source.

h1 ping 10.0.0.2

Figure 37. Performing a connectivity test between host h1 and host h2.

Consider Figure 37. The results show a successful connectivity test.

Step 2. In container d2 terminal, issue the command shown below to disable the network
interface of host h2.

Figure 38. Disabling h2 network interface.

Step 3. Click on container d1 terminal. The user will verify that the connectivity is lost.
Press Ctrl+c to stop the test.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 21

Figure 39. Verifying connectivity between host h1 and host h2.

Step 4. In container d1 terminal, issue the following command to test the connectivity
between host h11 and host h22. Notice that h11 specifies host 11 as the source.

h11 ping 10.0.0.2

Figure 40. Performing a connectivity test between host h11 and host h22.

The results will display a successful connectivity test. Do not stop the connectivity test.

5.2 Verifying VXLAN network identifiers using Wireshark

The following steps show how to verify VXLAN network identifiers using Wireshark
network analyzer. The identifiers are used by the switch to isolate network traffic.

Step 1. Click on router r1 terminal and issue the following command to exit the vtysh
session.

exit

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 22

Figure 41. Exiting from vtysh.

Step 2. In router r1 terminal, start Wireshark dissector by issuing the following command.
A new window will emerge.

wireshark

Figure 42. Starting Wireshark network analyzer.

After executing the above command on router r1 terminal, Wireshark window will open,
where you monitor different interfaces related to router r1.

Step 3. Click on interface r1-eth0 then on the icon located on upper left-hand side to start
capturing packets on this interface.

Figure 43. Starting packet capturing on interface r1-eth0.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 23

Step 4. In the filter box located in upper left-hand side, type vxlan in order to filter the
packets that contains VXLAN tags.

Figure 44. Filtering network traffic.

Step 5. Click on the arrow located on leftmost of the field called Virtual eXtensible Local
Area Network. A list will be displayed. Verify that the VXLAN Network Identifier is 200.
Notice that such tag corresponds to the traffic from h11 to h22.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 24

Figure 45. Verifying VXLAN network identifier.

Step 6. To stop packet capturing, click on the red button located on the upper left-hand
side.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 25

Figure 46. Stopping packet capturing.

Step 7. In container d1, press ctrl+c to stop the test.

Step 8. In container d2 terminal, re-enable the network interface in host h2 by issuing the
following command:

h2 ip link set dev h2-eth0 up

Figure 47. Enabling interface h2-eth0.

Step 9. Perform a connectivity test between h1 and h2 by issuing the following command:

h1 ping 10.0.0.2

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 26

Figure 48. Performing a connectivity test between host h1 and host h2.

Consider Figure 48. The results show a successful connectivity test.

Step 10. In Wireshark window, start packet capturing by clicking on the button located on
upper left-hand side.

Figure 49. Starting packet capturing.

Step 11. A notification window will be prompted. Click on Continue without Saving to
proceed.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 27

Figure 50. Closing without saving previous packet capture.

Step 12. Verify that the VXLAN Network Identifier is 100. Notice that such tag corresponds
to the traffic from h1 to h2.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 28

Figure 51. Verifying VXLAN network identifier.

This concludes Lab 5. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough, [Online]. Available: http://mininet.org.
2. Peuster, Manuel, Johannes Kampmeyer, and Holger Karl. "Containernet 2.0: A rapid

prototyping platform for hybrid service function chains." 2018 4th IEEE Conference
on Network Softwarization and Workshops (NetSoft). IEEE, 2018.

3. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner. "OpenFlow: enabling innovation in campus networks." ACM
SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

4. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive
approach”. Morgan Kaufmann, 2016.

5. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, "ONOS:
towards an open, distributed SDN OS," In Proceedings of the third workshop on Hot
topics in software defined networking, pp. 1-6, 2014.

6. Mahalingam, Mallik, et al. "Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks." RFC
7348 (2014): 1-22.

7. Juniper Networks, “Understanding EVPN with VXLAN Data Plane Encapsulation”,
[Online]. Available: https://www.juniper.net/documentation/en_US/junos/topics
/concept/evpn-vxlan-data-plane-encapsulation.html.

Lab 5: Configuring VXLAN to Provide Network Traffic Isolation

 Page 29

8. Qu, Xiaorong, Weiguo Hao, and Yuanbin Yin. "L3 gateway for VXLAN." U.S.
Patent No. 8,923,155. 30 Dec. 2014.

9. Merkel, Dirk. "Docker: lightweight linux containers for consistent development
and deployment." Linux journal 2014.239 (2014): 2.

10. Linux foundation collaborative projects, “FRRouting: what’s in your router”,
[Online]. https://frrouting.org/

