

SOFTWARE DEFINED NETWORKING

Lab 6: Introduction to OpenFlow

Document Version: 05-28-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Introduction to OpenFlow

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Data, control and management planes .. 3

1.2 OpenFlow Overview ... 5

1.3 OpenFlow components .. 6

2 Lab topology.. 7

2.1 Lab settings... 8

2.2 Loading a topology ... 8

3 Monitoring and administering OpenFlow switches .. 10

4 Capturing OpenFlow packets .. 14

4.1 Starting Wireshark .. 14

4.2 Starting ONOS controller .. 17

4.3 Capturing PACKET_IN and PACKET_OUT messages ... 20

References .. 22

Lab 6: Introduction to OpenFlow

 Page 3

Overview

This lab is an introduction to OpenFlow, which defines both the communications protocol
between the Software Defined Networking (SDN) data plane and the SDN control plane,
and part of the behavior of the data plane. In this lab, you will use the ovs-ofctl command
line utility to administer OpenFlow switches, such as inserting/deleting flows. The focus
in this lab is to understand and inspect the OpenFlow messages exchanged between the
control plane and the data plane.

Objectives

By the end of this lab, the user will:

1. Understand SDN and its components.
2. Understand OpenFlow.
3. Configure OpenFlow switches using ovs-ofctl.
4. Configure ONOS controller
5. Use Wireshark network analyzer to capture OpenFlow packets.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Monitoring and administering OpenFlow switches.
4. Section 4: Capturing OpenFlow packets.

1 Introduction

1.1 Data, control and management planes

Lab 6: Introduction to OpenFlow

 Page 4

The various switching functions are traditionally segregated into three separate
categories. Since each category may be capable of horizontal communication with peer
elements in adjacent entities in a topology, and also capable of vertical communication
with the other categories, it has become common to represent each of these categories
as a layer or plane. Peer communication occurs in the same plane, and cross-category
messaging occurs in the third dimension, between planes3.

Consider Figure 1. The vast majority of packets handled by the switch are only managed
by the data plane. The data plane consists of the various ports that are used for the
reception and transmission of packets and a forwarding table with its associated logic.
The data plane assumes responsibility for packet buffering, packet scheduling, header
modification, and forwarding. If an arriving data packet’s header information is found in
the forwarding table, it may be subject to some header field modification and then will
be forwarded without any intervention of the other two planes3.

Not all packets can be handled in that way, sometimes simply because their information
is not yet entered into the table, or because they belong to a control protocol that must
be processed by the control plane. The control plane, (see Figure 1), is involved in many
activities. Its principal role is to keep current the information in the forwarding table so
that the data plane can independently handle as high a percentage of the traffic as
possible. The control plane is responsible for processing a number of different control
protocols that may affect the forwarding table, depending on the configuration and type
of switch. These control protocols are jointly responsible for managing the active topology
of the network3.

The third plane depicted in Figure 1 is the management plane. Network administrators
configure and monitor the switch through this plane, which in turn extracts information
from or modifies data in the control and data plane as appropriate. The network
administrators use some form of network management system to communicate with
management plane in a switch3.

Lab 6: Introduction to OpenFlow

 Page 5

Management Plane

Control plane

Data plane

Forwarding
TableData in Data out

Unknown packets
control packets

Update forwarding
table

Policies

ConfigurationStatistics, Status

Simple Network
Management Protocol

Figure 1. Roles of the control, data and management planes3.

1.2 OpenFlow Overview

OpenFlow defines both the communication protocol between the SDN data plane and the
SDN control plane, as well as part of the behavior of the data plane. It does not describe
the behavior of the controller itself. There are other approaches to SDN, but today
OpenFlow is the only nonproprietary, general-purpose protocol for programming the
forwarding plane of SDN switches3.

Consider Figure 2. In a basic component of OpenFlow system, there is always an
OpenFlow controller that communicates to one or more OpenFlow switches. The
OpenFlow protocol defines the specific messages and message formats exchanged
between the controller (control plane) and the device (data plane). The OpenFlow
behavior specifies how the device should react in various situations and how it should
respond to commands from the controller.

Lab 6: Introduction to OpenFlow

 Page 6

s1

c0

s2 s3 s5s4

Figure 2. OpenFlow components.

1.3 OpenFlow components

In a packet switch, the core function is to take packets that arrive on one port and forward
them through another port. OpenFlow switches perform this operation using the packet-
matching function with the flow table. Thus, once a packet arrives to the switch, the latter
will look up in its flow table and check if there is a match. Consequently, the switch will
decide which action to take based on the flow table. The action could be:

• Forward the packet out a local port

• Drop the packet

• Pass the packet to the controller.

The basic functions of an OpenFlow switch and its relationship to a controller is depicted
in Figure 3. When the data plane doesn’t have a match to the incoming packet, it sends a
PACKET_IN message to the controller. The control plane runs routing and switching
protocols and other logic to determine what the forwarding tables and logic in the data
plane should be. Consequently, when the controller has a data packet to forward out
through the switch, it uses the OpenFlow PACKET_OUT message. All the communication
between OpenFlow controller and data plane are defined by the OpenFlow protocol.

Lab 6: Introduction to OpenFlow

 Page 7

OpenFlow controller

Flow table

PACKET_IN PACKET_OUT

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

OpenFlow switch

Packet-matching
function

OpenFlow Protocol

Figure 3. OpenFlow switch.

2 Lab topology

Consider Figure 4. The topology consists of two end-hosts, a switch and a controller. The
blue device is an OpenFlow switch and it is directly connected to the controller c0.

Lab 6: Introduction to OpenFlow

 Page 8

s1

c0

h1 h2

.1 .2

10.0.0.0/8

h1-eth0 h2-eth0

Figure 4. Lab topology.

2.1 Lab settings

The devices are already configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

c0 n/a 127.0.0.1 /32

2.2 Loading a topology

In this section, the user will open MiniEdit and load the lab topology. MiniEdit provides a
Graphical User Interface (GUI) that facilitates the creation and emulation of network
topologies in Mininet. This tool has additional capabilities such as: configuring network
elements (i.e IP addresses, default gateway), saving the topology, and exporting a layer 2
model.

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password.

Lab 6: Introduction to OpenFlow

 Page 9

Figure 5. MiniEdit shortcut.

Step 2. On Miniedit’s menu bar, click on File then open to load the lab’s topology. Open
the Lab6.mn topology file stored in the default directory, /home/sdn/SDN_Labs /lab6 and
click on Open.

Figure 6. Opening topology.

Lab 6: Introduction to OpenFlow

 Page 10

Figure 7. MiniEdit’s topology.

Step 3. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 8. Starting the emulation.

3 Monitoring and administering OpenFlow switches

In this section, you will use ovs-ofctl command line tool to monitor and administer
OpenFlow switches. This tool can show the current state of an OpenFlow switch, including
its features, configuration, and table entries.

Step 1. Open Linux terminal by clicking on the shortcut depicted below.

Figure 9. Opening Linux terminal.

Step 2. Issue the command below to execute programs with the security privileges of
the superuser (root). When prompted for a password, type password.

Lab 6: Introduction to OpenFlow

 Page 11

sudo su

Figure 10. Switching to root mode.

Step 3. Issue the command below to connect to switch s1 and show its information.

ovs-ofctl show s1

Figure 11. Showing switch s1 information.

Consider Figure 11. Switch s1 has three interfaces. Each interface displays the Media
Access Control (MAC) address (addr) along with other information, such as the current
state of the switch.

Step 4. Issue the command below to print the flow entries of switch s1.

ovs-ofctl dump-flows s1

Lab 6: Introduction to OpenFlow

 Page 12

Figure 12. Showing the flow entries of switch s1.

Consider Figure 12. No output was shown in response to the above command. This is
because initially the switch has no flow entries.

Step 5. Hold right-click on host h1 and select Terminal.

Figure 13. Opening host h1 terminal.

Step 6. Run a connectivity test by issuing the command shown below. The ping command
is used to verify the connectivity between two ends. It must be followed by the IP address
of the destination host, which is 10.0.0.2 (host h2) in this case. To stop the test, press
Ctrl+c.

ping 10.0.0.2

Figure 14. Pinging host h2 from host h1.

Consider Figure 14. The connectivity test is unsuccessful since switch s1 flow table is
empty. Incoming traffic to the switch will not match any rule, and hence no action will be
taken. Therefore, switch s1 doesn’t know what to do with incoming traffic, leading to ping
failure.

Lab 6: Introduction to OpenFlow

 Page 13

Step 7. Open Linux terminal.

Figure 15. Opening Linux terminal.

Step 8. Issue the below command to manually install a flow into switch s1. The inserted
flow forwards incoming packets at port 1 (in_port=1) to port 2 (actions=output:2).

ovs-ofctl add-flow s1 in_port=1,actions=output:2

Figure 16. Adding a flow entry to switch s1.

Step 9. Issue the below command to manually install a flow into switch s1. The inserted
flow forwards incoming packets at port 2 (in_port=2) to port 1 (actions=output:1).

ovs-ofctl add-flow s1 in_port=2,actions=output:1

Figure 17. Adding a flow entry to switch s1.

Step 10. Issue the command below to print the flow entries of switch s1.

Figure 18. Showing the flow entries of switch s1.

Step 11. In host h1, run a connectivity test with host h2 by issuing the following command.

ping 10.0.0.2

Lab 6: Introduction to OpenFlow

 Page 14

Figure 19. Pinging host h2 from host h1.

Step 12. In addition to adding flow entries to the switches using ovs-ofctl, you can also
delete entries as well as deleting the whole flow table. Issue the following command on
Linux terminal to delete the flow table of switch s1.

ping 10.0.0.2

Figure 20. Deleting the flow table of switch s1.

4 Capturing OpenFlow packets

In this section, you will start Wireshark, navigate through some of its features, and learn
how to monitor network traffic. Additionally, you will enable ONOS controller and capture
OpenFlow packets.

4.1 Starting Wireshark

In this section, you will use Wireshark, the defacto network protocol analyzer, to monitor
the network and inspect OpenFlow packets that are being transmitted between the
controller and the data plane (switch).

Step 1. In Linux terminal, issue the following command to launch Wireshark.

wireshark &

Lab 6: Introduction to OpenFlow

 Page 15

Figure 21. Starting Wireshark.

Wireshark window depicted in Figure 22 will appear after executing the above command.

Figure 22. Wireshark window.

Step 2. In the opened Wireshark window, you will see a list of interfaces that Wireshark
can capture network traffic on, such as s1-eth1, s1-eth2. Click on ‘Loopback: lo’ then start
capturing the packets by clicking the ‘shark fin’ icon on the top left of the Window.

Lab 6: Introduction to OpenFlow

 Page 16

Figure 23. Start capturing packets in Wireshark.

Step 3. When you start capturing packets, you will notice that Wireshark is divided into
three sections. The first section displays the captured packets including their number,
time they were captured, source and destination IP addresses, protocol, length, and
information of the packet. The second section contains detailed information about every
capture packet (each selected packet will have its own information). The third section
contains the real data that was captured in the packet.

Figure 24. Capturing from Loopback: lo interface.

Lab 6: Introduction to OpenFlow

 Page 17

Step 4. Wireshark supports filters, i.e., you can apply filters to display a specific set of
capture packets. To show OpenFlow packets only (protocol: OpenFlow), write the
following expression in Wireshark filter text box, then hit Enter.

openflow_v1

Figure 25. Capturing only OpenFlow packets in Wireshark.

Consider Figure 25. The applied filter in Wireshark displays packets with protocol type
OpenFlow only, specifically. No packets appear in the packet capturing section since we
haven’t enabled the controller that exchanges OpenFlow packets with the data plane
devices.

4.2 Starting ONOS controller

In this section, you will start ONOS controller and activate basic ONOS applications, such
as OpenFlow application. The latter triggers the exchange of OpenFlow packets between
the data plane (switch s1) and the control plane (c0). Thus, allowing the controller to
discover the topology and insert flow entries into switch s1. Using Wireshark, you will
capture the exchanged OpenFlow packets and understand their main types.

Step 1. In Linux terminal, where Wireshark was launched, issue the following command
to exit the superuser mode.

exit

Figure 26. Exiting superuser mode.

Lab 6: Introduction to OpenFlow

 Page 18

Step 2. Navigate into SDN_Labs/lab6 directory by issuing the following command. This
folder contains the script responsible for starting ONOS. The cd command is short for
change directory followed by an argument that specifies the destination directory.

cd SDN_Labs/lab6

Figure 27. Entering the SDN_Labs/lab6 directory.

Step 3. A script was written to run ONOS and enter its Command Line Interface (CLI). In
order to run the script, issue the following command.

./run_onos.sh

Figure 28. Starting ONOS.

Once the script finishes executing and ONOS is ready, you will be able to execute
commands on ONOS CLI as shown in the figure below. Note that this script may take a
couple of minutes.

Lab 6: Introduction to OpenFlow

 Page 19

Figure 29. ONOS CLI.

Step 4. In ONOS terminal, issue the following command to activate the OpenFlow
application. This application allows ONOS controller to discover the hosts, devices, and
links in the current topology.

app activate org.onosproject.openflow

Figure 30. Activating OpenFlow application.

Step 5. After activating the OpenFlow application, you should see a number of OpenFlow
messages displayed in Wireshark as shown in the below figure.

Figure 31. Capturing OpenFlow packets using Wireshark.

Lab 6: Introduction to OpenFlow

 Page 20

Consider Figure 31. The exchanged OpenFlow messages include:

• Hello message (from the controller to the switch): the controller sends its version
number to the switch.

• Hello message (from the switch to the controller): the switch replies with its
supported version number.

• Features request (from the controller to the switch): the controller asks to see
which ports are available.

• Features reply (from the switch to the controller): the switch replies with a list of
ports, port speeds, and supported tables and actions.

• Set Config)from the controller to the switch): the controller asks the switch to
send flow expirations.

• Port status (from the switch to the controller):

4.3 Capturing PACKET_IN and PACKET_OUT messages

In this section, you will capture more OpenFlow messages exchanged between the
controller and the switch after activating ONOS forwarding application. The latter inserts
flow entries into the flow table of the switches allowing them to handle IP packets.

Step 1. To enable the forwarding application, type the command shown below. This
command activates the forwarding application.

app activate org.onosproject.fwd

Figure 32. Activating OpenFlow application.

Step 2. On Linux terminal, click on File>New Tab to open an additional tab in Linux
terminal.

Figure 33. Opening an additional tab.

Lab 6: Introduction to OpenFlow

 Page 21

Step 3. Issue the command below to execute programs with the security privileges of
the superuser (root). When prompted for a password, type password.

sudo su

Figure 34. Switching to root mode.

Step 4. Issue the command below to print the flow entries of switch s1.

ovs-ofctl dump-flows s1

Figure 35. Showing the flow entries of switch s1.

Consider Figure 35. Instead of manually adding entries in switch s1 flow table, ONOS
controller inserted the above rules to discover the topology, as well as to manage
incoming IP packets by forwarding them to the controller (ip
actions=CONTROLLER:65535).

Step 5. In host h1, ping host h2 and observe the captured packets in Wireshark. To do this,
write the following command.

ping 10.0.0.2

Figure 36. Pinging host h2 from host h1.

Lab 6: Introduction to OpenFlow

 Page 22

Step 6. Go to Wireshark window and inspect the exchanged OpenFlow packets.

Figure 37. Capturing OpenFlow packets using Wireshark.

Consider Figure 37. During the pinging process from host h1 to host h2, you will notice a
number of OpenFlow packets of the following types:

• PACKET_IN: the switch sends this message to the controller when a packet is
received and didn’t match any entry in the switch’s flow table.

• PACKET_OUT: the controller sends a packet out one or more switch ports.

Other OpenFlow packet types include:

• OFPT_STATS_REQUEST: the controller sends this message type to query datapath's
current state

• OFPT_STATS_REPLY: the switch responds to the request sent by the controller
(OFPT_STATS_REQUEST)

Step 7. Stop capturing packets in Wireshark by clicking the red icon.

Figure 38. Stop Capturing Wireshark packets.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough, [Online]. Available: http://mininet.org.
2. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner. "OpenFlow: enabling innovation in campus networks." ACM
SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

3. P. Goransson, C. Black, T. Culver. “Software defined networks: a comprehensive
approach”. Morgan Kaufmann, 2016.

4. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, "ONOS:
towards an open, distributed SDN OS," In Proceedings of the third workshop on Hot
topics in software defined networking, pp. 1-6, 2014.

