

ZEEK INSTRUSION DETECTION SERIES

Lab 6: Introduction to Zeek Scripting

Document Version: 03-13-2020

Award 1829698

“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

The Cyber Center for Security and Analytics

Lab 6: Introduction to Zeek Scripting

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab topology.. 3

Lab settings ... 3

Lab roadmap ... 4

1 Introduction to scripting with Zeek .. 4

1.1 Zeek script events ... 4

1.2 Zeek module workspace .. 5

1.3 Zeek log streams .. 5

2 Log file analysis using Zeek scripts .. 6

2.1 Starting a new instance of Zeek ... 6

2.2 Executing a UDP Zeek script ... 7

2.3 Executing a TCP Zeek script .. 9

3 Modifying Zeek log streams .. 10

3.1 Renaming the conn.log stream .. 11

3.2 Updating the conn.log stream ... 12

3.3 Closing the current instance of Zeek .. 14

References .. 14

Lab 6: Introduction to Zeek Scripting

 Page 3

Overview

This lab covers Zeek’s scripting language. It introduces the major keywords and
components required in a Zeek script. The lab then uses these scripts to analyze processed
log files.

Objectives

By the end of this lab, students should be able to:

1. Develop scripts using Zeek’s scripting language.
2. Analyze processed log files using Zeek scripts.
3. Modify log streams for creating additional events and notices.

Lab topology

Figure 1 shows the lab topology. The topology uses 10.0.0.0/8 which is the default
network assigned by Mininet. The zeek1 and zeek2 virtual machines will be used to
generate and collect network traffic.

Figure 1. Lab topology.

Lab settings

The information (case-sensitive) in the table below provides the credentials necessary to
access the machines used in this lab.

Table 1. Credentials to access the Client machine

Device Account Password

Client admin password

Lab 6: Introduction to Zeek Scripting

 Page 4

Table 2. Shell variables and their corresponding absolute paths.

Variable Name Absolute Path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/zeek/scripts/policy/protocols

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to scripting with Zeek.
2. Section 2: Log file analysis using Zeek scripts.
3. Section 3: Modifying Zeek log streams.

1 Introduction to scripting with Zeek

Zeek includes its own event-driven scripting language which provides the primary means
for an organization to extend and customize Zeek’s functionality. By modifying Zeek’s log
streams, a more in-depth analysis can be performed on network events.

Since Zeek’s scripting language is event-driven, we define which events we need Zeek to
respond to when encountered during network traffic analysis.

1.1 Zeek script events

The script below shows events that will be explored during this lab. When developing a
Zeek script, the script’s functionalities are wrapped within respective events.

• zeek_init event: activated when Zeek is first initialized.

• zeek_done event: activated before Zeek is terminated.

Lab 6: Introduction to Zeek Scripting

 Page 5

• tcp_packet event: activated when a packet containing a TCP header is processed.

• udp_request event: activated when a packet containing a UDP request header is
processed.

• udp_reply event: activated when a packet containing a UDP reply header is
processed.

Additional events and their required parameters are outlined and explained in Zeek’s
official documentation. To access the following link, users must have access to an external
computer connected to the Internet, because the Zeek Lab topology does not have an
active Internet connection.

https://docs.zeek.org/en/current/examples/scripting/

1.2 Zeek module workspace

The script below uses the module keyword which assigns the script to a namespace. Codes
from other scripts can be accessed by including a matching module. The export keyword
is used to export the code entered in its block with the module workspace.

• module ZeekScript: changes the module workspace to ZeekScript.

• export block: code entered here will be exported with the module workspace.

Exporting code with a module workspace allows more advanced scripts to be built on top
of other scripts.

1.3 Zeek log streams

The script below shows the log stream functionality. When developing a Zeek script, all
processed outputs will be sent to a specific log stream. These log streams will contain the
format of the corresponding log file output. We can create new streams, modify original
streams or append additional parameters to existing streams.

• connection_established event: activated when a host makes a connection to a
receiver.

Lab 6: Introduction to Zeek Scripting

 Page 6

• Log::create_stream: creates a new log stream, with a name, format structure and
path.

• Log::write: writes included data to the specified log stream.

Additional log stream commands are explained in detail in Zeek’s official documentation.

2 Log file analysis using Zeek scripts

With Zeek’s event-driven scripting language, we can create specific event-based filters to
be applied during packet capture analysis. This section shows example scripts for network
analysis.

2.1 Starting a new instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to enter the
Client machine.

Step 2. The Client machine will now open, and the desktop will be displayed. On the left
side of the screen, click on the LXTerminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal. This command
enters Zeek’s default installation directory and invokes Zeekctl tool to start a new instance.
To type capital letters, it is recommended to hold the Shift key while typing rather than
using the Caps key. When prompted for a password, type password and hit Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

Lab 6: Introduction to Zeek Scripting

 Page 7

A new instance of Zeek is now active, and we are ready to proceed to the next section of
the lab.

2.2 Executing a UDP Zeek script

This lab series includes a Lab-Scripts directory, containing all of the relevant Zeek scripts
that will be used during the labs.

Step 1. Navigate to the Lab-Scripts directory.

cd ~/Zeek-Labs/Lab-Scripts/

Within this directory, all lab scripts can be accessed, viewed, and modified.

Step 2. Display the content of the lab6_sec2-2.zeek Zeek script using nl command. nl
shows the line numbers in the file.

nl lab6_sec2-2.zeek

The script is explained as follows. Each number represents the respective line number:

1. Event udp_request is activated when a packet containing a UDP Request header
is processed. The related packet header information is stored in the connection
data structure passed to the function through the u variable.

Lab 6: Introduction to Zeek Scripting

 Page 8

2. Prints the specified string. %s is a format specifier for strings with fmt. It indicates
the position of the corresponding variable’s information in the string.
uidresp_h retrieves the destination IP address from the UDP packet.

3. End of the udp_request event.
4. Event udp_reply activated when a packet containing a UDP Reply header is

processed. The related packet header information is stored in the connection data
structure passed to the function through the u variable.

5. Prints the specified string. uidresp_h retrieves the destination IP address from
the UDP packet.

6. End of the udp_reply event.

Step 3. Navigate to the UDP-Traffic workspace directory.

cd Zeek-Labs/UDP-Traffic/

Step 4. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C –r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6_sec2-2.zeek

The packet capture file is processed into output log files. Since we did not create a new
log stream, the script’s output is displayed on the standard output (the screen). When

Lab 6: Introduction to Zeek Scripting

 Page 9

udp_request or udp_reply events are triggered, the resulting packet information is
displayed.

2.3 Executing a TCP Zeek script

Step 1. Display the content of the lab6_sec2-3.zeek Zeek script using nl command. nl
shows the line numbers in the file. It is possible to use the tab key to autocomplete the
longer paths.

nl ../Lab-Scripts/lab6_sec2-3.zeek

The script is explained as follows. Each number represents the respective line number:

1. Event tcp_packet is activated when a packet containing a TCP header is
processed. The related packet header information is stored in the connection data
structure passed to the function through the u variable. Additional TCP-related
information is passed in a similar manner.

2. Prints the specified string. %s is a format specifier for strings with fmt. It indicates
the position of the corresponding variable’s information in the string.
uidresp_h retrieves the destination IP address from the TCP packet.

3. End of the tcp_packet event.

Step 2. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6_sec2-3.zeek

The following output is produced:

Lab 6: Introduction to Zeek Scripting

 Page 10

When the tcp_packet event is triggered, the resulting packet information is displayed.
Highlighted is an example of Port 8443 and Port 80 traffic.

These examples highlight Zeek’s capabilities of tracking specific traffic. For instance, a
script can be designed to collect all Port 80 traffic daily and to export it to a log file. In the
following section we introduce log streams.

3 Modifying Zeek log streams

Zeek log streams determine where an event’s output will be returned, as well as how it is
formatted. It is possible to append new streams, modify default streams, or remove
streams.

Before continuing, we must clear the lab workspace directory.

Step 1. Display the contents of the lab_clean.sh shell script using nl command.

nl ../Lab-Scripts/lab_clean.sh

The shell script removes a list of files expected to be generated by Zeek’s processing using
default log streams. Executing this shell script will clear the directory of log files generated
previously. Output messages from running this script as nore displayed in the Terminal,
instead the code > /dev/null 2>&1 will set errors and notices to be sent to a null folder,
effectively eliminating them.

Step 2. Execute the lab_clean.sh shell script. It is possible to use the tab key to
autocomplete the longer paths. If required, type password as the password.

Lab 6: Introduction to Zeek Scripting

 Page 11

./../Lab-Scripts/lab_clean.sh

With the workspace directory cleared, we can move to the next section.

3.1 Renaming the conn.log stream

In this example, we will rename the conn.log file to be UpdatedConn.log. Renaming log
streams can help with files organization, especially if a log file has been modified from its
original functionality.

Step 1. Display the contents of the lab6_sec3-1.zeek Zeek script using the nl command.
It is possible to use the tab key to autocomplete the longer paths.

nl ../Lab-Scripts/lab6_sec3-1.zeek

The script is explained as follows. Each number represents the respective line number:

1. Event zeek_init is activated when Zeek is first initialized.
3. Creates a local variable update initialized to the default Conn::LOG filter.
4. Sets the update variable’s path to UpdatedConn.log.
5. Appends the new filter to the active log streams.
6. End of the zeek_init event.

Step 2. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/smallFlows.pcap ../Lab-Scripts/lab6_sec3-1.zeek

Lab 6: Introduction to Zeek Scripting

 Page 12

Step 3. List the generated log files in the current directory.

ls

Note the UpdatedConn.log, highlighted by the orange box. Since we did not change any
formatting, it is an exact replica of the original conn.log file.

3.2 Updating the conn.log stream

In this example, we modify the conn.log file to generate an additional conn-http.log file.
This modification will split the conn.log contents between two log files, which is useful
when organizing specific events – such as splitting UDP traffic from TCP traffic, or reply
messages from requests.

Step 1. Execute the included lab_clean.sh shell script. If required, type password as the
password. It is possible to use the tab key to autocomplete the longer paths.

./../Lab-Scripts/lab_clean.sh

Step 2. Display the contents of lab6_sec3-1.zeek Zeek script using the nl command.

nl ../Lab-Scripts/lab6_sec3-2.zeek

Lab 6: Introduction to Zeek Scripting

 Page 13

The script is explained as follows. Each number represents the respective line number:

1. Boolean function that has the parameter rec, an instance of Conn::Info.
3. Returns True if the service stored in rec is the HTTP protocol.
4. End of the function.
5. Event zeek_init is activated when Zeek is first initialized.
6. Creates a local filter with http related naming and pathing.
7. Appends the new filter to the active log streams.
8. End of the zeek_init event.

Step 3. Process a packet capture file using the Zeek script. It is possible to use the tab
key to autocomplete the longer paths.

zeek –C -r ../Sample-PCAP/ smallFlows.pcap ../Lab-Scripts/lab6_sec3-2.zeek

Step 4. List the the generated log files in the current directory.

ls

Lab 6: Introduction to Zeek Scripting

 Page 14

Note the conn-http.log file in the first column. This file will have the same formatting as
the conn.log file; however, it will only contain HTTP traffic. These files are highlighted by
the orange box in the proceeding image.

3.3 Closing the current instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active instance
of Zeek. Shutting down a computer while an active instance persists will cause Zeek to
shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal. If required, type
password as the password. If the Terminal session has not been terminated or closed,

you may not be prompted to enter a password. To type capital letters, it is recommended
to hold the Shift key while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Concluding this lab, we have introduced the Zeek scripting language. Using event-driven
functionality, Zeek scripts can be used to customize the output log streams. Besides
renaming existing files, you can also split the files to generate a more protocol or event-
specific log file. Zeek scripts are the backbone of creating an organized workspace for
storing and parsing generated log files.

References

1. “Logging framework”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/frameworks/logging.html#streams

2. “Monitoring HTTP traffic”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/httpmonitor/

3. “Writing scripts”, Zeek user manual, [Online], Available:
https://docs.zeek.org/en/stable/examples/scripting/#the-event-queue-and-
event-handlers.

