

NETWORK TOOLS AND PROTOCOLS

Lab 6: Understanding Traditional TCP Congestion
Control (HTCP, Cubic, Reno)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Understanding Traditional TCP Congestion Control

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP ... 3

1.1 TCP review .. 4

1.2 TCP throughput .. 4

1.3 TCP packet loss event ... 5

1.4 Impact of packet loss in high-latency networks ... 6

2 Lab topology.. 7

2.1 Starting host h1 and host h2 .. 8

2.2 Emulating 10 Gbps high-latency WAN with packet loss 9

2.3 Testing connection ... 10

3 Introduction to sysctl .. 11

3.1 Read sysctl parameters .. 11

3.2 Write sysctl parameters ... 12

3.3 Configuring sysctl.conf file ... 12

4 Congestion control algorithms and sysctl ... 14

4.1 Inspect and install/load congestion control algorithms 15

4.2 Inspect the default (current) congestion control algorithm 16

4.3 Modify the default (current) congestion control algorithm 17

5 iPerf3 throughput test .. 17

5.1 Throughput test without delay .. 18

5.1.1 TCP Reno ... 18

5.1.2 Hamilton TCP (HTCP) .. 19

5.1.3 TCP Cubic .. 21

5.2 Throughput test with 30ms delay .. 22

5.2.1 TCP Reno ... 23

5.2.2 Hamilton TCP (HTCP) .. 24

5.2.3 TCP Cubic .. 26

References .. 27

Lab 6: Understanding Traditional TCP Congestion Control

 Page 3

Overview

This lab reviews key features and behavior of Transmission Control Protocol (TCP) that
have a large impact on data transfers over high-throughput, high-latency networks. The
lab describes the behavior of TCP’s congestion control algorithm, its impact on
throughput, and how to modify the congestion control algorithm in a Linux machine.

Objectives

By the end of this lab, students should be able to:

1. Describe the basic operation of TCP congestion control algorithm and its impact
on high-throughput networks.

2. Explain the concepts of congestion window, bandwidth probing, and Additive-
Increase Multiplicative-Decrease (AIMD).

3. Understand TCP throughput calculation.
4. Understand the impact of packet loss on high-latency networks.
5. Deploy emulated WANs in Mininet.
6. Modify the TCP congestion control algorithm in Linux using sysctl tool.
7. Compare TCP Reno, HTCP, and Cubic with injected packet loss.
8. Compare TCP Reno, HTCP, and Cubic with both injected delay and packet loss.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab topology.
3. Section 3: Introduction to sysctl.
4. Section 4: Congestion control algorithms and sysctl.
5. Section 5: iPerf3 throughput test.

1 Introduction to TCP

Lab 6: Understanding Traditional TCP Congestion Control

 Page 4

1.1 TCP review

Big data applications require the transmission of large amounts of data between end
devices. Data must be correctly delivered from one device to another; e.g., from an
instrument to a Data Transfer Node (DTN). Reliability is one of the services provided by
TCP and a reason why TCP is the protocol used by most data transfer tools. Thus,
understanding the behavior of TCP is essential for the design and operation of networks
used to transmit big data.

TCP receives data from the application layer and places it in the TCP send buffer, as shown
in Figure 1(a). Data is typically broken into Maximum Segment Size (MSS) units. Note that
“segment” here refers to the Protocol Data Unit (PDU) at the transport layer, and
sometimes the terms packet and segment are interchangeably used. The MSS is simply
the Maximum Transmission Unit (MTU) minus the combined lengths of the TCP and IP
headers (typically 40 bytes). Ethernet’s normal MTU is 1,500 bytes. Thus, MSS’s typical
value is 1,460. The TCP header is shown in Figure 1(b).

Application

TCP send

buffer

MSS MSS

Source port
2

0
 b

y
te

s
Destination port

Sequence number

Acknowledgment number

DO R Ctrl bits Window

Checksum Urgent pointer

Application

TCP

receive

buffer

(a) (b)

Options Padding

Segments

Figure 1. (a) TCP Connection. (b) TCP header.

For reliability, TCP uses two fields of the TCP header to convey information to the sender:
sequence number and acknowledgement (ACK) number. The sequence number is the
byte-stream number of the first byte in the segment. The acknowledgement number that
the receiver puts in its segment is the sequence number of the next byte the receiver is
expecting from the sender. In the example of Figure 2(a), after receiving the first two
segments containing sequence number 90 (which contains bytes 90-99) and 100 (bytes
100-109), the receiver sends a segment with acknowledge number 110. This segment is
called cumulative acknowledgement.

1.2 TCP throughput

The TCP rate limitation is defined by the receive buffer shown in Figure 1(a). If this buffer
size is too small, TCP must constantly wait until an acknowledgement arrives before
sending more segments. This limitation is removed by setting a large receive buffer size.

A second limitation is imposed by the congestion control mechanism operating at the
sender side, which keeps track of a variable called congestion window. The congestion

Lab 6: Understanding Traditional TCP Congestion Control

 Page 5

window, referred to as cwnd (in bytes), imposes a constraint on the rate at which a TCP
sender can send traffic. The cwnd value is the amount of unacknowledged data at the
sender. To see this, note that at the beginning of every Round-Trip Time (RTT), the sender
can send cwnd bytes of data into the connection; at the end of the RTT the sender receives
acknowledgments for the data. Thus, the sender’s send rate is roughly cwnd/RTT
bytes/sec. By adjusting the value of cwnd, the sender can therefore adjust the rate at
which it sends data into the connection.

TCP Throughput ≈
cwnd

RTT
 [bytes/second]

T
im

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

T
ri
p

le
 d

u
p

lic
a

te
 A

C
K

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time

Triple duplicate ACK (packet loss)

Additive increase

Multiplicative decrease

 (a) (b)

Figure 2. (a) TCP operation. (b) Adaptation of TCP’s congestion window.

1.3 TCP packet loss event

TCP is a reliable transport protocol that requires each segment be acknowledged. If an
acknowledgement for an outstanding segment is not received, TCP retransmits that
segment. Alternatively, instead of waiting for a timeout-triggered retransmission, the
sender can also detect a packet loss before the timeout by detecting duplicate ACKs. A
duplicate ACK is an ACK that re-acknowledges a segment for which the sender has already
received. If the TCP sender receives three duplicate ACKs for the same segment, TCP
interprets this event as packet loss due to congestion and reduces the congestion window
cwnd by half. This congestion window reduction is known as multiplicative decrease.

In steady state (ignoring the initial TCP period when a connection begins), a packet loss
will be detected by a triple duplicate ACK. After decreasing cwnd by half, and as long as
no other packet loss is detected, TCP will slowly increase cwnd again by 1 MSS per RTT.
This congestion control phase essentially produces an additive increase in the congestion
window. For this reason, TCP congestion control is referred to as an Additive-Increase
Multiplicative-Decrease (AIMD) form of congestion control. AIMD gives rise to the “saw

Lab 6: Understanding Traditional TCP Congestion Control

 Page 6

tooth” behavior shown in Figure 2(b), which also illustrates the idea of TCP “probing” for
bandwidth—TCP linearly increases its congestion window size (and hence its transmission
rate) until a triple duplicate-ACK event occurs. It then decreases its congestion window
size by a factor of two but then again begins increasing it linearly, probing to see if there
is additional available bandwidth.

1.4 Impact of packet loss in high-latency networks

During the additive increase phase, TCP only increases cwnd by 1 MSS every RTT period.
This feature makes TCP very sensitive to packet loss on high-latency networks, where the
RTT is large.

Consider Figure 3, which shows the TCP throughput of a data transfer across a 10 Gbps
path. The packet loss rate is 1/22,000, or 0.0046%. The purple curve is the throughput in
a loss-free environment; the green curve is the theoretical throughput computed
according to the equation below, where L is the packet loss rate.

Figure 3. Throughput vs Round-Trip Time (RTT), for two devices connected via a 10 Gbps path.
The performance of two TCP implementations are provided: Reno1 (blue) and Hamilton TCP2
(HTCP) (red). The theoretical performance with packet losses (green) and the measured
throughput without packet losses (purple) are also shown3.

TCP Throughput ≈
MSS

RTT √𝐿
 [bytes / second]

The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the Round-Trip Time (RTT) and the square root of the packet loss rate (L). The red and
blue curves are real throughput measurements of two popular implementations of TCP:
Reno1 and Hamilton TCP (HTCP)2. Because TCP interprets losses as network congestion, it
reacts by decreasing the rate at which packets are sent. This problem is exacerbated as
the latency increases between the communicating hosts. Beyond LAN transfers, the
throughput decreases rapidly to less than 1 Gbps. This is often the case when research
collaborators sharing data are geographically distributed.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 7

TCP Reno is an early congestion control algorithm. TCP Cubic4, HTCP5, and BBR6 are more
recent congestion control algorithms, which have demonstrated improvements with
respect to TCP Reno.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 6.mn topology file and click on Open.

Figure 6. MiniEdit shortcut.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 6: Understanding Traditional TCP Congestion Control

 Page 8

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 9

Figure 9. Connectivity test using ping command.

Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN with packet loss

This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 10 Gbps. Then
we will emulate packet losses between switch S1 and switch S2 and measure the
throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01%

Lab 6: Understanding Traditional TCP Congestion Control

 Page 10

Figure 11. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2; on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Lab 6: Understanding Traditional TCP Congestion Control

 Page 11

Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

3 Introduction to sysctl

sysctl is a tool for dynamically changing parameters in the Linux operating system7. It
allows users to modify kernel parameters dynamically without rebuilding the Linux kernel.

Step 1. Run the command below on the Client1’s terminal. When prompted for a
password, type password and hit enter.

sudo sysctl -a

Figure 14. Listing all system parameters in Linux.

This command produces a large output containing the kernel parameters and their values.
This is represented in a key-value pair. For instance, net.ipv4.ip_forward = 0 implies
that the key net.ipv4.ip_forward has the value 0.

3.1 Read sysctl parameters

It is often useful to search for specific keys without having to manually locate the needed
key. This can be achieved using the following command:

sysctl <key>

Where <key> is replaced by the needed key. For example, the command sysctl
net.ipv4.ip_forward returns net.ipv4.ip_forward = 0.

Step 1. Run the following command on the host h1’s terminal:

Lab 6: Understanding Traditional TCP Congestion Control

 Page 12

sysctl net.ipv4.ip_forward

Figure 15. Reading the value of a given key.

3.2 Write sysctl parameters

It is also very useful to modify kernel parameters on the fly. The -w switch is added to
the sysctl to “write” a value for a specific key.

sysctl -w <key>=<value>

Step 1. For example, if the user decides to enable IP forwarding (i.e., to configure a device
as a router), then the following command is used:

sudo sysctl -w net.ipv4.ip_forward=1

Run the above command on the host h1’s terminal:

Figure 16. Modifying a system parameter.

The changes made to a parameter using this command are temporary. Therefore, a new
boot resets the value of a key to its default value. Also, when stopping MiniEdit’s
emulation, the configured parameters are reset.

3.3 Configuring sysctl.conf file

If the user wishes to permanently modify the value of a specific key, then the key-value
pair must be stored within the file /etc/sysctl.conf.

Step 1. In the Linux terminal, open the /etc/sysctl.conf file using your favorite text editor.
Run the following command on the Client1’s terminal. When prompted for a password,
type password and hit enter.

sudo featherpad /etc/sysctl.conf

This is a text file that can be edited in any text editor (vim, nano, etc.). For simplicity, we
use a Graphical User Interface (GUI)-based text editor (featherpad).

Lab 6: Understanding Traditional TCP Congestion Control

 Page 13

Figure 17. Opening the /etc/sysctl.conf file.

Step 2. Keys and values are appended to this file. Enable IP forwarding permanently on
the system by append net.ipv4.ip_forward=1 to the /etc/sysctl.conf file and save it.
Once you have saved the file, close the text editor.

net.ipv4.ip_forward=1

Lab 6: Understanding Traditional TCP Congestion Control

 Page 14

Figure 18. Appending key+value to the /etc/sysctl.conf file and saving.

Step 3. To refresh the system with the new parameters, the -p switch is passed to the
sysctl command as follows:

sudo sysctl -p

When prompted for a password, type password and hit enter.

Figure 19. Loading new sysctl.conf parameters.

Now, even after a new system boot (or reboot), the system will have IP forwarding
enabled.

4 Congestion control algorithms and sysctl

Congestion control algorithms can be inspected and modified using the sysctl command
and the /etc/sysctl.conf file. Specifically, the following operations are possible:

1. Check the installed congestion control algorithms on the system.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 15

2. Inspect the default congestion control algorithm (i.e., the current algorithm used
by the system).

3. Modify the congestion control algorithm.

4.1 Inspect and install/load congestion control algorithms

In Linux, it is possible to check the available TCP congestion control algorithms installed
on the system with the command below.

Step 1. Execute the command below on the Client1’s terminal.

sysctl net.ipv4.tcp_available_congestion_control

Figure 20. Displaying the system’s available congestion control algorithms.

Usually, the default congestion control algorithm is CUBIC or Reno, depending on the
installed operating system. A list of some of the possible output is:

• reno: Traditional TCP used by almost all other Operating Systems. Characterized
by slow start, congestion avoidance, and fast retransmission via triple duplicate
ACKs.

• cubic: CUBIC-TCP. Optimized congestion control algorithm for high bandwidth
networks with high latency. Operates in a similar but more systematic fashion than
BIC-TCP, in which its congestion window is a cubic function of time since the last
packet loss, with the inflection point set to the window prior to the congestion
event.

• bic: BIC-TCP. Congestion window utilizes a binary search algorithm to find the
largest congestion window that will last the maximum amount of time.

• htcp: Hamilton TCP. A loss-based algorithm using additive-increase and
multiplicative-decrease to control TCP’s congestion window.

• vegas: TCP Vegas. Emphasizes packet delay, rather than packet loss, as a signal to
help determine the rate at which to send packets.

• bbr: a new algorithm, discussed in future labs. Measures bottleneck bandwidth
and Round-Trip Propagation (RTP) time in its execution of congestion control.

If the above command does not return a specific congestion control algorithm, it means
that it is not loaded on the distribution.

Step 2. The command used in Step 1 listed three algorithms: reno cubic bbr. To install
a new algorithm, its corresponding kernel module must be loaded. This can be done using

Lab 6: Understanding Traditional TCP Congestion Control

 Page 16

insmod or modprobe commands. For example, to load the BIC-TCP module, use the
following command on the Client1’s terminal:

sudo modprobe tcp_bic

Figure 21. Loading tcp_bic module into the Linux kernel.

modprobe and insmod commands require high sudo privileges to insert kernel modules.

When prompted for a password, type password and hit enter.

Step 3. To verify that the BIC-TCP algorithm is loaded, execute the below command on
the Client1’s terminal.

sysctl net.ipv4.tcp_available_congestion_control

Figure 22. Displaying the system’s available congestion control algorithms after loading TCP-BIC.

4.2 Inspect the default (current) congestion control algorithm

To check which TCP congestion control is currently being used by the Linux kernel, the
net.ipv4.tcp_congestion_control sysctl key is read. This key can be read on an end-host’s
terminal (host h1 or host h2) or on the Client1’s terminal.

Step 1. Execute the following command on the Client1’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp_congestion_control

Figure 23. Current TCP congestion control algorithm.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 17

The output shows that the default congestion control algorithm is Cubic. Note that
applications can set this value (congestion control algorithm) for individual connections.

4.3 Modify the default (current) congestion control algorithm

To temporarily change the TCP congestion control algorithm, the sysctl command is
used with the -w switch on the net.ipv4.tcp_congestion_control key.

Step 1. To modify the current algorithm to TCP Reno, the following command is used.
Execute the command below on the Client1’s terminal. When prompted for a password,
type password and hit enter.

sudo sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 24. Modifying the congestion control algorithm to reno.

If no error occurred in the assignment (e.g., the module is not installed on the system),
the output echoes back the new key-value pair, i.e.:
net.ipv4.tcp_congestion_control=reno

Step 2. Execute the following command on the Client1’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp_congestion_control

Figure 25. Current TCP congestion control algorithm after modifying to reno.

The output shows that the default congestion control algorithm is now Reno instead of
Cubic.

5 iPerf3 throughput test

In this section, the throughput between host h1 and host h2 is measured using different
congestion control algorithms, namely Reno, HTCP, and Cubic. Moreover, the test is

Lab 6: Understanding Traditional TCP Congestion Control

 Page 18

repeated using various injected delays to observe the throughput variations depending
on each congestion control algorithm and the selected RTT.

5.1 Throughput test without delay

In this test, we measure the throughput between host h1 and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

5.1.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 26. Changing TCP congestion control algorithm to reno on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 27. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1 ’s terminal. The -O option is used to
specify the number of seconds to omit in the resulting report. Note that this option is a
capitalized ‘O’, not a zero.

iperf3 -c 10.0.0.2 -t 20 -O 10

Lab 6: Understanding Traditional TCP Congestion Control

 Page 19

Figure 28. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1890
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.1.2 Hamilton TCP (HTCP)

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=htcp

Lab 6: Understanding Traditional TCP Congestion Control

 Page 20

Figure 29. Changing TCP congestion control algorithm to htcp on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 30. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 31. Running iPerf3 client on host h1.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 21

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1789
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.1.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 32. Changing TCP congestion control algorithm to cubic on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 33. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Lab 6: Understanding Traditional TCP Congestion Control

 Page 22

Figure 34. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1845
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1 and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. On the client’s terminal, run the following command to modify the previous rule
to include 30ms delay. When prompted for a password, type password and hit enter.

sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms

Lab 6: Understanding Traditional TCP Congestion Control

 Page 23

Figure 35. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Figure 36. Modifying the TCP buffer size on host h1.

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.

Figure 37. Modifying the TCP buffer size on host h2.

5.2.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 38. Changing TCP congestion control algorithm to reno on host h1.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 24

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 39. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 40. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 472 Mbps (sender) and 472 Mbps (receiver), and the number of retransmissions is 45.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2.2 Hamilton TCP (HTCP)

Lab 6: Understanding Traditional TCP Congestion Control

 Page 25

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=htcp

Figure 41. Changing TCP congestion control algorithm to htcp on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 43. Running iPerf3 client on host h1.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 26

The figure above shows the iPerf3 test output report. The average achieved throughput
is 344 Mbps (sender) and 344 Mbps (receiver), and the number of retransmissions is 93.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 44. Changing TCP congestion control algorithm to cubic on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 45. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Lab 6: Understanding Traditional TCP Congestion Control

 Page 27

Figure 46. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 938 Mbps (sender) and 939 Mbps (receiver), and the number of retransmissions is 180.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux
terminal.

References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 28

2. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

3. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

4. S. Ha, I., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

5. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

6. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

7. System information variables – sysctl (7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

