

NETWORK TOOLS AND PROTOCOLS

Lab 7: Understanding Rate-based TCP
Congestion Control (BBR)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP ... 3

1.1 Traditional TCP congestion control review .. 3

1.2 Traditional congestion control limitations ... 4

1.3 TCP BBR .. 5

2 Lab topology.. 8

2.1 Starting host h1 and host h2 .. 9

2.2 Emulating 1 Gbps high-latency WAN with packet loss 10

2.3 Testing connection ... 11

3 iPerf3 throughput test .. 12

3.1 Throughput test without delay .. 12

3.1.1 TCP Reno ... 12

3.1.2 TCP BBR ... 13

3.2 Throughput test with 30ms delay .. 15

3.2.1 TCP Reno ... 16

3.2.2 TCP BBR ... 19

References .. 22

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 3

Overview

This lab describes a new type of TCP congestion control algorithm called Bottleneck
Bandwidth and Round-Trip Time (BBR). The lab conducts experimental results using TCP
BBR and contrasts these results with those obtained using traditional congestion control
algorithms such as a Reno and HTCP.

Objectives

By the end of this lab, students should be able to:

1. Describe the basic operation of TCP BBR.
2. Describe differences between rate-based congestion control and window-based

loss-based congestion control.
3. Modify the TCP congestion control algorithm in Linux using sysctl tool.
4. Compare the throughput performance of TCP Reno and BBR in high-throughput

high-latency networks.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab Topology.
3. Section 3: iPerf3 Throughput Test.

1 Introduction to TCP

1.1 Traditional TCP congestion control review

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 4

TCP congestion control was introduced in the late 1980s. For many years, the main
algorithm of congestion control was TCP Reno1. Subsequently, multiple algorithms were
proposed based on Reno’s enhancements. The goal of congestion control is to determine
how much capacity is available in the network, so that a source knows how many packets
it can safely have in transit (inflight). Once a source has these packets in transit, it uses
the arrival of an acknowledgement (ACK) as a signal that one of its packets has left the
network and that it is therefore safe to insert a new packet into the network without
adding to the level of congestion. By using ACKs to pace the transmission of packets, TCP
is said to be self-clocking2.

A major task of the congestion control algorithm is to determine the available capacity.
In steady state, TCP Reno maintains an estimate of the Round-Trip Time (RTT) -the time
to send a packet and receive the corresponding ACK-. If the ACK stream shows that no
packets are lost in transit, Reno increases the sending rate by one additional segment
each RTT interval. This period is known as the additive increase. Note that “segment” here
refers to the protocol data unit (PDU) at the transport layer, and that sometimes the
terms packet and segment are interchangeably used. Eventually, the increasing flow rate
saturates the bottleneck link at a router, which drops a packet. The TCP receiver signals
the missing packet by sending an ACK in response to an out-of-order received segment,
as illustrated in Figure 1(a). Once the TCP sender receives three duplicate ACKs for the
same out-of-order segment, it interprets this event as packet loss due to congestion and
reduces the sending rate by half. This reduction is known as multiplicative decrease. Once
the loss is repaired, Reno resumes the additive increase phase. This iteration of additive
increase multiplicative decrease (AIMD) periods is shown in Figure 1(b).

T
im

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

T
ri
p

le
 d

u
p

lic
a

te
 A

C
K

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time

Triple duplicate ACK (packet loss)

Additive increase

Multiplicative decrease

 (a) (b)

O
u

t-
o

f-
o

rd
e

r

s
e

g
m

e
n

ts

Figure 1. (a) TCP operation. (b) Evolution of TCP’s congestion window.

1.2 Traditional congestion control limitations

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 5

While Reno has proven to perform adequately in the past, when the bulk of the TCP
connections carried trivial applications such as web browsing and email, it faces severe
limitations in high-throughput connections that are needed for grid computing and big
science data transfers. Reno’s average TCP throughput can be approximated by the
following equation2:

TCP Throughput ≈
MSS

RTT √𝐿
 [bytes / second]

The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the product of Round-Trip Time (RTT) and the square root of the packet loss rate (L).
Essentially, the equation above indicates that the TCP throughput is very sensitive to
packet loss. In such environments Reno cannot achieve high throughput, especially in
high-latency scenarios. Figure 2 validates the above equation. It shows the throughput as
a function of RTT, for two devices connected by a 10 Gbps path. The performance of two
TCP AIMD-based implementations are provided: Reno1 (blue) and Hamilton TCP3, better
known as HTCP (red). The theoretical performance (using the above equation) with
packet losses (green) and the measured throughput without packet losses (purple) are
also shown. Figure 2 is reproduced from4.

Figure 2. Throughput vs Round-Trip Time (RTT) for two devices connected via a 10 Gbps path. The
performance of two TCP implementations are provided: Reno1 (blue) and HTCP (red). The
theoretical performance with packet losses (green) and the measured throughput without packet
losses (purple) are also shown.

1.3 TCP BBR

The main issue surrounding traditional congestion control algorithms in high-speed high-
latency networks is that the sender cannot recover from the packet loss and multiplicative
decrease, even when the packet losses are sporadic. When the RTT is large, increasing the
congestion window (and thus the sending rate) by only 1 MSS every RTT is too slow.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 6

BBR5 is a new congestion control algorithm that does not adhere to the AIMD rule and
the above equation. BBR is a rate-based algorithm, meaning that at any given time it sends
data at a rate that is independent of current packet losses. Note that this feature is a
drastic departure from traditional congestion control algorithms, which operate by
reducing the sending rate by half each time a packet loss is detected.

The behavior of BBR can be described using Figure 3, which shows a TCP’s viewpoint of
an end-to-end connection. At any time, the connection has exactly one slowest link, or
bottleneck bandwidth (btlbw), that determines the location where queues are formed.
When router buffers are large, traditional congestion control keeps them full (i.e., they
keep increasing the rate during the additive increase phase). When buffers are small,
traditional congestion control misinterprets a loss as a signal of congestion, leading to low
throughput. The output port queue increases when the input link arrival rate exceeds
btlbw. The throughput of loss-based congestion control is less than btlbw because of the
frequent packet losses.

R
T

T
T

h
ro

u
g

h
p

u
t

Inflight data

btlbw

RTTmin

Buffer limitedBandwidth limitedApp. limited

Optimal operating point

Operating point of traditional congestion control algorithms

BDP = RTTmin · btlbw BDP + buffer size

Packet lossRTT increases at

router’s queue

Sender Receiver

Bottleneck

(btlbw)

Output port buffer

Router

(a)

(b)
Figure 3. TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified
TCP interpretation of the connection. (b) Throughput and RTT, as a function of in-flight data.

Figure 3(b) illustrates the RTT and throughput with the amount of data inflight5. RTTmin is
the propagation time with no queueing component (the network is not congested). In the

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 7

application limited region, the delivery rate/throughput increases as the amount of data
generated by the application layer increases, while the RTT remains constant. The
pipeline between sender and receiver becomes full when the inflight number of bits is
equal to the bandwidth multiplied by the RTT. This number is also called bandwidth-delay
product (BDP) and quantifies the number of bits that can be inflight if the sender
continuously sends segments. In the bandwidth limited region, the queue size at the
router of Figure 3(a) starts increasing, resulting in an increase of the RTT. The throughput
remains constant, as the bottleneck link is fully utilized. Finally, when no buffer is available
at the router to store arriving packets (the number of inflight bits is equal to BDP plus the
buffer size of the router), these are dropped.

It is important to understand that packets to be sent are paced at the estimated
bottleneck rate, which is intended to avoid network queuing that would otherwise be
encountered when the network performs rate adaptation at the bottleneck point. The
intended operational model here is that the sender is passing packets into the network at
a rate that is not anticipated to encounter queuing at any point within the entire path.
This is a significant contrast to protocols such as Reno, which tends to send packet bursts
at the epoch of the RTT and relies on the network’s queues to perform rate adaptation in
the interior of the network if the burst sending rate is higher than the bottleneck capacity.

BBR also periodically probes for additional bandwidth. It spends one RTT interval
deliberately sending at a rate that is higher than the current estimate bottleneck
bandwidth. Specifically, it sends data at 125% the bottleneck bandwidth. If the available
bottleneck bandwidth has not changed, then the increased sending rate will cause a
queue to form at the bottleneck. This will cause the ACK signaling to reveal an increased
RTT, but the bottleneck bandwidth estimate will be unaltered. If this is the case, then the
sender will subsequently send at a compensating reduced sending rate for an RTT interval.
The reduced rate is set to 75% the bottleneck bandwidth, allowing the bottleneck queue
to drain. On the other hand, if the available bottleneck bandwidth estimate has increased
because of this probe, then the sender will operate according to this new bottleneck
bandwidth estimate. The entire cycle duration lasts eight RTTs and is repeated indefinitely
in steady state.

S
e

n
d

in
g

 r
a

te

Time

btlbw

probe

drain

8 RTTs

100

125

75

cycle 2 ...cycle 1

Figure 4. The rate used by the sender is the estimate bottleneck bandwidth (btlbw). During the
probe period (1 RTT duration), the sender probes for additional bandwidth, sending at a rate of
125% of the bottleneck bandwidth. During the subsequent period, drain (1 RTT duration), the
sender reduces the rate to 75% of the bottleneck bandwidth, thus allowing any bottleneck queue
to drain.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 8

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 5. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 6. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 7.mn topology file and click on Open.

Figure 7. MiniEdit’s Open dialog.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 9

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 8. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 9. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 10

Figure 10. Connectivity test using ping command.

Figure 10 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 1 Gbps high-latency WAN with packet loss

This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 1 Gbps. Then
we will emulate packet losses between switch S1 and switch S2, and measure the
throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 11. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the below command. When prompted for a password, type
password and hit enter. This command basically introduces a 0.01% packet loss rate on
switch S1’s s1-eth2 interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01%

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 11

Figure 12. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 1 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 1gbit

• burst: 500,000

• limit: 2,500,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000

limit 2500000

Figure 13. Limiting the bandwidth to 1 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 14. Output of ping 10.0.0.2 command.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 12

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

3 iPerf3 throughput test

In this section, the throughput between host h1 and host h2 is measured using two
congestion control algorithms: Reno and BBR. Moreover, the test is repeated using
various injected delays to observe the throughput variations depending on each
congestion control algorithm and the selected RTT.

3.1 Throughput test without delay

In this test, we measure the throughput between host h1 and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

3.1.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 15. Changing TCP congestion control algorithm to reno on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 16. Starting iPerf3 server on host h2.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 13

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 17. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 956 Mbps (sender) and 956 Mbps (receiver), and the number of retransmissions is
161 (due to the injected packet loss - 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.1.2 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 14

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 18. Changing TCP congestion control algorithm to bbr on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 19. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 20. Running iPerf3 client on host h1.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 15

Figure 20 shows the iPerf3 test output report. The average achieved throughputs are 937
Mbps (sender) and 937 Mbps (receiver), and the number of retransmissions is 92 (due to
the injected packet loss - 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1 and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. In order to add delay to the switch 1 or interface s1-eth2, go back to the Client’s
terminal, run the following command to modify the previous rule to include 30ms delay:

sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms

Figure 21. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Figure 22. Modifying the TCP buffer size on host h1.

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 16

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Figure 23. Modifying the TCP buffer size on host h2.

3.2.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 24. Changing TCP congestion control algorithm to reno on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 25. Starting iPerf3 server on host h2.

Step 3. Create and enter to a new directory reno on host h1’s terminal:

mkdir reno && cd reno

Figure 26. Creating and entering a new directory reno.

Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -J > reno.json

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 17

Figure 27. Running iPerf3 client on host h1 and redirecting the output to reno.json.

Step 5. Once the test is finished, type the following command to generate the output
plots for iPerf3’s JSON file:

plot_iperf.sh reno.json

Figure 28. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) to be used by applicable programs. These files are stored in a directory results
created in the same directory where the script was executed as shown in the figure below.

Step 6. Navigate to the results folder using the cd command.

cd results/

Figure 29. Entering the results directory using the cd command.

Step 7. To open any of the generated files, use the xdg-open command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 30. Opening the throughput.pdf file using xdg-open.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 18

Figure 31. Reno’s throughput.

Step 8. Close the throughput.pdf file and open the cwnd.pdf file using the following
command:

xdg-open cwnd.pdf

Figure 32. Opening the throughput.pdf file using xdg-open.

Figure 33. Reno’s congestion window.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 19

Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 10. Exit the /reno/results directory by using the following command on host h1’s
terminal:

cd ../..

Figure 34. Exiting the /reno/results directory.

3.2.2 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 35. Changing TCP congestion control algorithm to bbr on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 36. Starting iPerf3 server on host h2.

Step 3. Create and enter to a new directory bbr host h1’s terminal:

mkdir bbr && cd bbr

Figure 37. Creating and entering a new directory bbr .

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 20

Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a

file.

iperf3 -c 10.0.0.2 -t 30 -J > bbr.json

Figure 38. Running iPerf3 client on host h1 and redirecting the output to bbr.json.

Step 5. To generate the output plots for iPerf3’s JSON file run the following command:

plot_iperf.sh bbr.json

Figure 39. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) to be used by applicable programs. These files are stored in a directory results
created in the same directory where the script was executed as shown in the figure below.

Step 6. Navigate to the results folder using the cd command.

cd results/

Figure 40. Entering the results directory using the cd command.

Step 7. To open any of the generated files, use the xdg-open command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 41. Opening the throughput.pdf file using xdg-open.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 21

Figure 42. BBR’s throughput.

Step 8. Figure 42 shows that in steady state, BBR has already attained the maximum
throughput, which is over 900 Mbps (the bottleneck bandwidth is 1 Gbps, with an
observed effective bandwidth of ~937 Gbps). Note also the periodic (short) drain intervals,
where the throughput decreases to ~75% of maximum throughput, as discussed in
Section 1.3. To proceed, close the throughput.pdf file and open the cwnd.pdf file using
the following command:

xdg-open cwnd.pdf

Figure 43. Opening the cwnd.pdf file using xdg-open.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 22

Figure 44. BBR’s congestion window.

Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 10. Exit the /bbr/results directory by using the following command on host h1’s
terminal:

cd ../..

Figure 45. Exiting the /bbr/results directory.

It is clear from the above test that when introducing delay, BBR preforms significantly
better than Reno.

This concludes Lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

2. J. Kurose, K. Ross, “Computer networking, a top down approach,” Pearson, 6th
Edition, 2017.

3. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

4. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 23

Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

5. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

6. S. Ha, I., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

7. Leith D, Shorten R. H-TCP: TCP congestion control for high bandwidth-delay
product paths. draft-leith-tcp-htcp-06 (work in progress). 2008 Apr.

8. System information variables – sysctl(7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

