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Overview 
 
This lab describes a new type of TCP congestion control algorithm called Bottleneck 
Bandwidth and Round-Trip Time (BBR). The lab conducts experimental results using TCP 
BBR and contrasts these results with those obtained using traditional congestion control 
algorithms such as a Reno and HTCP.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Describe the basic operation of TCP BBR. 
2. Describe differences between rate-based congestion control and window-based 

loss-based congestion control. 
3. Modify the TCP congestion control algorithm in Linux using sysctl tool. 
4. Compare the throughput performance of TCP Reno and BBR in high-throughput 

high-latency networks. 
 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP. 
2. Section 2: Lab Topology. 
3. Section 3: iPerf3 Throughput Test. 

 
 
1 Introduction to TCP 
 
 
1.1 Traditional TCP congestion control review 
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TCP congestion control was introduced in the late 1980s. For many years, the main 
algorithm of congestion control was TCP Reno1. Subsequently, multiple algorithms were 
proposed based on Reno’s enhancements. The goal of congestion control is to determine 
how much capacity is available in the network, so that a source knows how many packets 
it can safely have in transit (inflight). Once a source has these packets in transit, it uses 
the arrival of an acknowledgement (ACK) as a signal that one of its packets has left the 
network and that it is therefore safe to insert a new packet into the network without 
adding to the level of congestion. By using ACKs to pace the transmission of packets, TCP 
is said to be self-clocking2. 
 
A major task of the congestion control algorithm is to determine the available capacity. 
In steady state, TCP Reno maintains an estimate of the Round-Trip Time (RTT) -the time 
to send a packet and receive the corresponding ACK-.  If the ACK stream shows that no 
packets are lost in transit, Reno increases the sending rate by one additional segment 
each RTT interval. This period is known as the additive increase. Note that “segment” here 
refers to the protocol data unit (PDU) at the transport layer, and that sometimes the 
terms packet and segment are interchangeably used. Eventually, the increasing flow rate 
saturates the bottleneck link at a router, which drops a packet. The TCP receiver signals 
the missing packet by sending an ACK in response to an out-of-order received segment, 
as illustrated in Figure 1(a). Once the TCP sender receives three duplicate ACKs for the 
same out-of-order segment, it interprets this event as packet loss due to congestion and 
reduces the sending rate by half. This reduction is known as multiplicative decrease. Once 
the loss is repaired, Reno resumes the additive increase phase. This iteration of additive 
increase multiplicative decrease (AIMD) periods is shown in Figure 1(b). 
 

T
im

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

T
ri
p

le
 d

u
p

lic
a

te
 A

C
K

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time

Triple duplicate ACK (packet loss)

Additive increase

Multiplicative decrease

  (a)                                                                                                   (b)

O
u

t-
o

f-
o

rd
e

r 

s
e

g
m

e
n

ts

 
Figure 1. (a) TCP operation. (b) Evolution of TCP’s congestion window. 

 
 
1.2 Traditional congestion control limitations 
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While Reno has proven to perform adequately in the past, when the bulk of the TCP 
connections carried trivial applications such as web browsing and email, it faces severe 
limitations in high-throughput connections that are needed for grid computing and big 
science data transfers. Reno’s average TCP throughput can be approximated by the 
following equation2: 
 

TCP Throughput ≈  
MSS

RTT √𝐿
   [bytes / second] 

 
The equation above indicates that the throughput of a TCP connection in steady state is 
directly proportional to the maximum segment size (MSS) and inversely proportional to 
the product of Round-Trip Time (RTT) and the square root of the packet loss rate (L). 
Essentially, the equation above indicates that the TCP throughput is very sensitive to 
packet loss. In such environments Reno cannot achieve high throughput, especially in 
high-latency scenarios. Figure 2 validates the above equation. It shows the throughput as 
a function of RTT, for two devices connected by a 10 Gbps path. The performance of two 
TCP AIMD-based implementations are provided: Reno1 (blue) and Hamilton TCP3, better 
known as HTCP (red). The theoretical performance (using the above equation) with 
packet losses (green) and the measured throughput without packet losses (purple) are 
also shown. Figure 2 is reproduced from4. 
 

 
Figure 2. Throughput vs Round-Trip Time (RTT) for two devices connected via a 10 Gbps path. The 
performance of two TCP implementations are provided: Reno1 (blue) and HTCP (red). The 
theoretical performance with packet losses (green) and the measured throughput without packet 
losses (purple) are also shown. 
 
 
1.3 TCP BBR 

 
The main issue surrounding  traditional congestion control algorithms in high-speed high-
latency networks is that the sender cannot recover from the packet loss and multiplicative 
decrease, even when the packet losses are sporadic. When the RTT is large, increasing the 
congestion window (and thus the sending rate) by only 1 MSS every RTT is too slow. 
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BBR5 is a new congestion control algorithm that does not adhere to the AIMD rule and 
the above equation. BBR is a rate-based algorithm, meaning that at any given time it sends 
data at a rate that is independent of current packet losses. Note that this feature is a 
drastic departure from traditional congestion control algorithms, which operate by 
reducing the sending rate by half each time a packet loss is detected.   
 
The behavior of BBR can be described using Figure 3, which shows a TCP’s viewpoint of 
an end-to-end connection. At any time, the connection has exactly one slowest link, or 
bottleneck bandwidth (btlbw), that determines the location where queues are formed. 
When router buffers are large, traditional congestion control keeps them full (i.e., they 
keep increasing the rate during the additive increase phase). When buffers are small, 
traditional congestion control misinterprets a loss as a signal of congestion, leading to low 
throughput. The output port queue increases when the input link arrival rate exceeds 
btlbw. The throughput of loss-based congestion control is less than btlbw because of the 
frequent packet losses. 
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Figure 3. TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified 
TCP interpretation of the connection. (b) Throughput and RTT, as a function of in-flight data. 

 
Figure 3(b) illustrates the RTT and throughput with the amount of data inflight5. RTTmin is 
the propagation time with no queueing component (the network is not congested). In the 
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application limited region, the delivery rate/throughput increases as the amount of data 
generated by the application layer increases, while the RTT remains constant. The 
pipeline between sender and receiver becomes full when the inflight number of bits is 
equal to the bandwidth multiplied by the RTT. This number is also called bandwidth-delay 
product (BDP) and quantifies the number of bits that can be inflight if the sender 
continuously sends segments. In the bandwidth limited region, the queue size at the 
router of Figure 3(a) starts increasing, resulting in an increase of the RTT. The throughput 
remains constant, as the bottleneck link is fully utilized. Finally, when no buffer is available 
at the router to store arriving packets (the number of inflight bits is equal to BDP plus the 
buffer size of the router), these are dropped.  
 
It is important to understand that packets to be sent are paced at the estimated 
bottleneck rate, which is intended to avoid network queuing that would otherwise be 
encountered when the network performs rate adaptation at the bottleneck point. The 
intended operational model here is that the sender is passing packets into the network at 
a rate that is not anticipated to encounter queuing at any point within the entire path. 
This is a significant contrast to protocols such as Reno, which tends to send packet bursts 
at the epoch of the RTT and relies on the network’s queues to perform rate adaptation in 
the interior of the network if the burst sending rate is higher than the bottleneck capacity. 
 
BBR also periodically probes for additional bandwidth. It spends one RTT interval 
deliberately sending at a rate that is higher than the current estimate bottleneck 
bandwidth. Specifically, it sends data at 125% the bottleneck bandwidth. If the available 
bottleneck bandwidth has not changed, then the increased sending rate will cause a 
queue to form at the bottleneck. This will cause the ACK signaling to reveal an increased 
RTT, but the bottleneck bandwidth estimate will be unaltered. If this is the case, then the 
sender will subsequently send at a compensating reduced sending rate for an RTT interval. 
The reduced rate is set to 75% the bottleneck bandwidth, allowing the bottleneck queue 
to drain. On the other hand, if the available bottleneck bandwidth estimate has increased 
because of this probe, then the sender will operate according to this new bottleneck 
bandwidth estimate. The entire cycle duration lasts eight RTTs and is repeated indefinitely 
in steady state.  
 

S
e

n
d

in
g

 r
a

te

Time

btlbw

probe

drain

8 RTTs

100

125

75

cycle 2        ...cycle 1

 
Figure 4. The rate used by the sender is the estimate bottleneck bandwidth (btlbw). During the 
probe period (1 RTT duration), the sender probes for additional bandwidth, sending at a rate of 
125% of the bottleneck bandwidth. During the subsequent period, drain (1 RTT duration), the 
sender reduces the rate to 75% of the bottleneck bandwidth, thus allowing any bottleneck queue 
to drain. 
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2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 5. Lab topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 6. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 7.mn topology file and click on Open. 
 

 
Figure 7. MiniEdit’s Open dialog. 
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Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 8. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 
 

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 
Figure 9. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
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Figure 10. Connectivity test using ping command. 

 
Figure 10 indicates that there is connectivity between host h1 and host h2. Thus, we are 
ready to start the throughput measurement process.  
 
 
2.2 Emulating 1 Gbps high-latency WAN with packet loss 

 
This section emulates a high-latency WAN, which is used to validate the results observed 
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 1 Gbps. Then 
we will emulate packet losses between switch S1 and switch S2, and measure the 
throughput.  
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 11. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. In the terminal, type the below command. When prompted for a password, type 
password and hit enter. This command basically introduces a 0.01% packet loss rate on 
switch S1’s s1-eth2 interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01% 
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Figure 12. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 1 Gbps 
on switch S1’s s1-eth2 interface. The tbf parameters are the following: 
 

• rate: 1gbit 

• burst: 500,000 

• limit: 2,500,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000 

limit 2500000 

 

 
Figure 13. Limiting the bandwidth to 1 Gbps on switch S1’s s1-eth2 interface. 

 
 
2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 14. Output of ping 10.0.0.2 command. 
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The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the 
standard deviation is an average of how far each ping RTT is from the average RTT. The 
higher the standard deviation the more variable the RTT is. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test 
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 
 
3 iPerf3 throughput test 
 
In this section, the throughput between host h1 and host h2 is measured using two 
congestion control algorithms: Reno and BBR. Moreover, the test is repeated using 
various injected delays to observe the throughput variations depending on each 
congestion control algorithm and the selected RTT.  
 
 
3.1 Throughput test without delay 

 
In this test, we measure the throughput between host h1 and host h2 without introducing 
delay on the switch S1’s s1-eth2 interface.  
 
 
3.1.1 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 15. Changing TCP congestion control algorithm to reno on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 16. Starting iPerf3 server on host h2. 
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Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify 
the number of seconds to omit in the resulting report. 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 17. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughputs 
are 956 Mbps (sender) and 956 Mbps (receiver), and the number of retransmissions is 
161 (due to the injected packet loss - 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.1.2 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
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sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 18. Changing TCP congestion control algorithm to bbr on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 19. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal: 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 20. Running iPerf3 client on host h1. 
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Figure 20 shows the iPerf3 test output report. The average achieved throughputs are 937 
Mbps (sender) and 937 Mbps (receiver), and the number of retransmissions is 92 (due to 
the injected packet loss - 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.2 Throughput test with 30ms delay 

 
In this test, we measure the throughput between host h1 and host h2 while introducing 
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps: 
 
Step 1. In order to add delay to the switch 1 or interface s1-eth2, go back to the Client’s 
terminal, run the following command to modify the previous rule to include 30ms delay: 
 
sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms 

 

 
Figure 21. Injecting 30ms delay on switch S1’s s1-eth2 interface. 

 
Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following 
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w 
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in 
future labs. 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’ 

 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’ 

 

 
Figure 22. Modifying the TCP buffer size on host h1. 

 
Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following 
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w 
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.  
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’ 
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sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’ 

 

 
Figure 23. Modifying the TCP buffer size on host h2. 

 
 
3.2.1 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 24. Changing TCP congestion control algorithm to reno on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 25. Starting iPerf3 server on host h2. 

 
Step 3. Create and enter to a new directory reno on host h1’s terminal: 
 
mkdir reno && cd reno      

 

 
Figure 26. Creating and entering a new directory reno. 

 
Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to 
produce a JSON output and the redirection operator > to send the standard output to a 
file. 
 
iperf3 -c 10.0.0.2 -t 30 -J > reno.json       
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Figure 27. Running iPerf3 client on host h1 and redirecting the output to reno.json. 

 
Step 5. Once the test is finished, type the following command to generate the output 
plots for iPerf3’s JSON file: 
 
plot_iperf.sh reno.json             

 

 
Figure 28. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time 
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit 
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file 
(1.dat) to be used by applicable programs. These files are stored in a directory results 
created in the same directory where the script was executed as shown in the figure below.  
 
Step 6. Navigate to the results folder using the cd command. 
 
cd results/        

 

 
Figure 29. Entering the results directory using the cd command. 

 
Step 7. To open any of the generated files, use the xdg-open command followed by the 
file name. For example, to open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 30. Opening the throughput.pdf file using xdg-open. 
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Figure 31. Reno’s throughput. 

 
Step 8. Close the throughput.pdf file and open the cwnd.pdf file using the following 
command: 
 
xdg-open cwnd.pdf 

 

 
Figure 32. Opening the throughput.pdf file using xdg-open. 

 

 
Figure 33. Reno’s congestion window. 
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Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
Step 10. Exit the /reno/results directory by using the following command on host h1’s 
terminal: 
 
cd ../.. 

 

 
Figure 34. Exiting the /reno/results directory. 

 
 
3.2.2 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 35. Changing TCP congestion control algorithm to bbr on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 36. Starting iPerf3 server on host h2. 

 
Step 3. Create and enter to a new directory bbr host h1’s terminal: 
 
mkdir bbr && cd bbr      

 

 
Figure 37. Creating and entering a new directory bbr . 
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Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to 
produce a JSON output and the redirection operator > to send the standard output to a 

file. 
 
iperf3 -c 10.0.0.2 -t 30 -J > bbr.json       

 

 
Figure 38. Running iPerf3 client on host h1 and redirecting the output to bbr.json. 

 

Step 5. To generate the output plots for iPerf3’s JSON file run the following command: 
 
plot_iperf.sh bbr.json             

 

 
Figure 39. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time 
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit 
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file 
(1.dat) to be used by applicable programs. These files are stored in a directory results 
created in the same directory where the script was executed as shown in the figure below.  
 
Step 6. Navigate to the results folder using the cd command. 
 
cd results/      

 

 
Figure 40. Entering the results directory using the cd command. 

 
Step 7. To open any of the generated files, use the xdg-open command followed by the 
file name. For example, to open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 41. Opening the throughput.pdf file using xdg-open. 
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Figure 42. BBR’s throughput. 

 
Step 8. Figure 42 shows that in steady state, BBR has already attained the maximum 
throughput, which is over 900 Mbps (the bottleneck bandwidth is 1 Gbps, with an 
observed effective bandwidth of ~937 Gbps). Note also the periodic (short) drain intervals, 
where the throughput decreases to ~75% of maximum throughput, as discussed in 
Section 1.3.  To proceed, close the throughput.pdf file and open the cwnd.pdf file using 
the following command: 
 
xdg-open cwnd.pdf 

 

 
Figure 43. Opening the cwnd.pdf file using xdg-open. 
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Figure 44. BBR’s congestion window. 

 
Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
Step 10. Exit the /bbr/results directory by using the following command on host h1’s 
terminal: 
 
cd ../.. 

 

 
Figure 45. Exiting the /bbr/results directory. 

 
It is clear from the above test that when introducing delay, BBR preforms significantly 
better than Reno.  
 
This concludes Lab 7. Stop the emulation and then exit out of MiniEdit. 
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