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Overview 
 
This lab explains the bandwidth-delay product (BDP) and how to modify the TCP buffer 
size in Linux systems. Throughput measurements are also conducted to test and verify 
TCP buffer configurations based on the BDP.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand BDP. 
2. Define and calculate TCP window size. 
3. Modify the TCP buffer size with sysctl, based on BDP calculations. 
4. Emulate WAN properties in Mininet. 
5. Achieve full throughput in WANs by modifying the size of TCP buffers. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP buffers, BDP, and TCP window. 
2. Section 2: Lab topology. 
3. Section 3: BDP and buffer size experiments. 
4. Section 4: Modifying buffer size and throughput test. 

 
 
1  Introduction to TCP buffers, BDP, and TCP window 
 
 
1.1 TCP buffers 

 
The TCP send and receive buffers may impact the performance of Wide Area Networks 
(WAN) data transfers. Consider Figure 1. At the sender side, TCP receives data from the 
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application layer and places it in the TCP send buffer. Typically, TCP fragments the data in 
the buffer into maximum segment size (MSS) units. In this example, the MSS is 100 bytes. 
Each segment carries a sequence number, which is the byte-stream number of the first 
byte in the segment. The corresponding acknowledgement (Ack) carries the number of 
the next expected byte (e.g., Ack-101 acknowledges bytes 1-100, carried by the first 
segment). At the receiver, TCP receives data from the network layer and places it into the 
TCP receive buffer. TCP delivers the data in order to the application. E.g., bytes contained 
in a segment, say segment 2 (bytes 101-200), cannot be delivered to the application layer 
before the bytes contained in segment 1 (bytes 1-100) are delivered to the application. 
At any given time, the TCP receiver indicates the TCP sender how many bytes the latter 
can send, based on how much free buffer space is available at the receiver.  
 

...

1-100

...

From Application

To Network

TCP send buffer

To Application 
(in-order delivery)

From Network

101-200201-300

801-900 701-800

301-400

TCP receive buffer

201-300 101-200 1-100

401-500501-600...

Ack-101 Ack-201 ...

Seq. number
(first byte in segment)

Ack number (next expected byte)
 

Figure 1. TCP send and receive buffers. 

 
 
1.2 Bandwidth-delay product 

 
In many WANs, the round-trip time (RTT) is dominated by the propagation delay. Long 
RTTs along and TCP buffer size have throughput implications. Consider a 10 Gbps WAN 
with a 50-millisecond RTT. Assume that the TCP send and receive buffer sizes are set to 1 
Mbyte (1 Mbyte = 10242 bytes = 1,048,576 bytes = 1,048,576 ⋅ 8 bits = 8,388,608 bits).  
With a bandwidth (Bw) of 10 Gbps, this number of bits is approximately transmitted in  
 

Ttx =  
# bits

Bw
=

8,388,608

10 ⋅ 109
= 0.84 milliseconds. 

 
I.e., after 0.84 milliseconds, the content of the TCP send buffer will be completely sent. 
At this point, TCP must wait for the corresponding acknowledgements, which will only 
start arriving at t = 50 milliseconds. This means that the sender only uses 0.84/50 or 1.68% 
of the available bandwidth.  
 
The solution to that above problem lies in allowing the sender to continuously transmit 
segments until the corresponding acknowledgments arrive back. Note that the first 
acknowledgement arrives after an RTT. The number of bits that can be transmitted in a 
RTT period is given by the bandwidth of the channel in bits per second multiplied by the 
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RTT. This quantity is referred to as the bandwidth-delay product (BDP). For the above 
example, the buffer size must be greater than or equal to the BDP: 
 

TCP buffer size ≥ BDP = (10 ⋅ 109)(50 ⋅ 10−3) = 500,000,000 bits = 62,500,000 bytes. 
 
The first factor (10 ⋅ 109) is the bandwidth; the second factor (50 ⋅ 10-3) is the RTT. For 
practical purposes, the TCP buffer can be also expressed in Mbytes (1 Mbyte = 10242 
bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression, in Mbytes, is  
 

TCP buffer size ≥ 62,500,000 bytes = 59.6 Mbytes ≈ 60 Mbytes. 

 
 
1.3 Practical observations on setting TCP buffer size 

 
Linux systems configuration. Linux assumes that half of the send/receive TCP buffers are 
used for internal structures. Thus, only half of the buffer size is used to store segments. 
This implies that if a TCP connection requires certain buffer size, then the administrator 
must configure the buffer size equals to twice that size. For the previous example, the 
TCP buffer size must be: 
 

TCP buffer size ≥ 2 ⋅ 60 Mbytes = 120 Mbytes.  
 
Packet loss scenarios and TCP BBR1. TCP provides a reliable, in-order delivery service. 
Reliability means that bytes successfully received must be acknowledged. In-order 
delivery means that the receiver only delivers bytes to the application layer in sequential 
order. The memory occupied by those bytes will be deallocated from the receive buffer 
after passing the bytes to the application layer. This process has some performance 
implications, as illustrated next. Consider Figure 2, which shows a TCP receive buffer. 
Assume that the segment carrying bytes 101-200 is lost. Although the receiver has 
successfully received bytes 201-900, it cannot deliver to the application layer until bytes 
101-200 are received. Note that the receive buffer may become full, which would block 
the sender from utilizing the channel.  
 

 
Figure 2. TCP receive buffer. Although bytes 301-900 have been received, they cannot be 
delivered to the application until the segment carrying bytes 201-300 are received. 

 
While setting the buffer size equal to the BDP is acceptable when traditional congestion 
control algorithms are used (e.g., Reno2, Cubic3, HTCP4), this size may not allow the full 
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utilization of the channel with BBR1. In contrast to other algorithms, BBR does not reduce 
the transmission rate after a packet loss. For example, suppose that a packet sent at t = 0 
is lost, as shown in Figure 3. At t = RTT, the acknowledgement identifying the packet to 
retransmit is received. By then, the sender has sent BDP bits, which will be stored in the 
receive buffer. This data cannot be delivered yet to the application, because of the in-
order delivery requirement. Since the receive buffer has a capacity of BDP only, the 
sender is temporarily blocked until the acknowledgement for the retransmitted data is 
received at t = 2⋅RTT. Thus, the throughput over the period t = 0 to t = 2⋅RTT is reduced 
by half: 
 

throughput =  
# bits transmitted

period
=

Bw ⋅ RTT

2 ⋅ RTT
=

Bw

2
. 

 

T=RTT

t=0

BDP

Missing data. Buffered data 
can’t be released to 
application

Missing data arrives. Ready 
for in-order delivery

Data delivered to application. 
Buffer is drainedt=2RTT

Sender is blocked (TCP 
receive buffer full)

...

Sender resumes 
transmission

Sender Receiver

TCP receive buffer 
(BDP capacity)

Packet loss
Data segment

Legend:

Ack identifying packet 
to retransmit

ACK / SACK
Retransmission

 
Figure 3. A scenario where a TCP receive buffer size of BDP cannot prevent throughput 
degradation.  
 

With BBR, to fully utilize the available bandwidth, the TCP send and receive buffers must 
be large enough to prevent such situation. Figure 4 shows an example on how a TCP buffer 
size of 2⋅BDP mitigates packet loss. 
 

High to moderate packet loss scenarios, using TCP BBR: 
 

TCP send/receive buffer ≥ several BDPs (e.g., 4 ⋅ BDP) 
 

 
Continuing with the example of Section 1.2, in a Linux system using TCP BBR, the 
send/receive buffers for a BDP of 60 Mbytes in a high to moderate packet loss scenario 
should be: 
 

TCP buffer size ≥ (2 ⋅ 60 Mbytes)  ⋅ 4 = 480 Mbytes.  
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The factor 2 is because of the Linux systems configuration, and the factor 4 is because of 
the use of TCP BBR in a high to moderate packet loss scenario. 
 

t=RTT

t=0

2BDP

Missing data. Still ~BDP 
buffer capacity available

Data delivered to application. 
Buffer is drained

t=2RTT

...

Sender Receiver

Missing data 
arrives. Ready for 
in-order delivery

ACK / SACK identifying 
packet to retransmit

 
Figure 4. A scenario where a TCP buffer size of 2⋅BDP mitigates packet loss. 

 
 
1.4 TCP window size calculated value 

 
The receiver must constantly communicate with the sender to indicate how much free 
buffer space is available in the TCP receive buffer. This information is carried in a TCP 
header field called window size. The window size has a maximum value of 65,535 bytes, 
as the header value allocated for the window size is two bytes long (16 bits; 216-1 = 65,535). 
However, this value is not large enough for high-bandwidth high-latency networks. 
Therefore, TCP window scale option was standardized in RFC 13235. By using this option, 
the calculated window size may be increased up to a maximum value of 1,073,725,440 
bytes. When advertising its window, a device also advertises the scale factor (multiplier) 
that will be used throughout the session. The TCP window size is calculated as follows: 
 
 

Scaled TCPWin =  TCPWin ⋅ Scaling Factor 
 

 
As an example, consider the following example. For an advertised TCP window of 2,049 
and a scale factor of 512, then the final window size is 1,049,088 bytes. Figure 5 displays 
a packet inspected in Wireshark protocol analyzer for this numerical example. 
 

 
Figure 5. Window Scaling in Wireshark. 
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1.5 Zero window 

 
When the TCP buffer is full, a window size of zero is advertised to inform the other end 
that it cannot receive any more data. When a client sends a TCP window of zero, the 
server will pause its data transmission, and waits for the client to recover. Once the client 
is recovered, it digests data, and inform the server to resume the transmission again by 
setting again the TCP window. 
 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using Miniedit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 6. Lab topology. 

 
Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by 
clicking on Miniedit’s shortcut. When prompted for a password, type password. 
 

 

Figure 7. Miniedit shortcut. 

 
Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the lab8.mn topology file and click on Open. 
 

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2
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Figure 8. Miniedit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of Miniedit’s window 
to start the emulation.  
 

 
Figure 9. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 
 

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
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Figure 10. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 11. Connectivity test using ping command. 

 
Figure 11 indicates that there is connectivity between host h1 and host h2.  
 
 
2.2 Emulating 10 Gbps high-latency WAN 

 
This section emulates a high-latency WAN by introducing delays to the network. We will 
first set the bandwidth between hosts 1 and 2 to 10 Gbps. Then, we will emulate a 20 ms 
delay and measure the throughput. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
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Figure 12. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit enter. This command introduces 20ms delay on S1’s s1-eth2 interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms 

 

 
Figure 13. Adding 20ms delay to switch S1’s s1-eth2 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switches S1 and S2: on the same 
terminal, type the command below. This command sets the bandwidth to 10 Gbps on S1’s 
s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 25,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 25000000 

 

Figure 14. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface. 

 
Step 3. On h1’s terminal, type ping 10.0.0.2. This command tests the connectivity 
between host h1 and host h2. The test was initiated by h1 as the command is executed 
on h1’s terminal.  
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To stop the test, press Ctrl+c. The figure below shows a successful connectivity test. 
Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses 
back.  
 

 
Figure 15. Output of ping 10.0.0.2 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the round-trip time 
(RTT) were 20.092, 25.353, 41.132, and 9.111 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 4. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
H2’s terminal: 
 
iperf3 -s          

 

 
Figure 16. Host h2 running iperf3 as server. 

 
Step 5. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in h1’s terminal:  
 
iperf3 -c 10.0.0.2      
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Figure 17. iPerf3 throughput test. 

 
Notice the measured throughput now is approximately 3 Gbps, which is different than 
the value assigned in our tbf rule. Next, we explain why the 10 Gbps maximum 
theoretical bandwidth is not achieved. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3 BDP and buffer size 
 
In connections that have a small BDP (either because the link has a low bandwidth or 
because the latency is small), buffers are usually small. However, in high-bandwidth high-
latency networks, where the BDP is large, a larger buffer is required to achieve the 
maximum theoretical bandwidth.  
 
 
3.1 Window size in sysctl 

 
The tool sysctl is used for dynamically changing parameters in the Linux operating system. 
It allows users to modify kernel parameters dynamically without rebuilding the Linux 
kernel. 
 
The sysctl key for the receive window size is net.ipv4.tcp_rmem and the send window 
size is net.ipv4.tcp_wmem 
 
Step 1. To read the current receiver window size value of host h1, use the following 
command on h1’s terminal: 
 
sysctl net.ipv4.tcp_rmem 
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Figure 18. Receive window read in sysctl. 

 
Step 2. To read the current send window size value of host h1, use the following command 
on h1’s terminal: 
 
sysctl net.ipv4.tcp_wmem 

 

 
Figure 19. Send window read in sysctl. 

 
The returned values of both keys (net.ipv4.tcp_rmem and net.ipv4.tcp_wmem) are 
measured in bytes. The first number represents the minimum buffer size that is used by 
each TCP socket. The middle one is the default buffer which is allocated when applications 
create a TCP socket. The last one is the maximum receive buffer that can be allocated for 
a TCP socket. 
 
The default values used by Linux are: 
 

• Minimum: 10,240 

• Default: 87,380 

• Maximum: 16,777,216 
 
In the previous test (10 Gbps, 20ms delay), the buffer size was not modified on end-hosts. 
The BDP for the above test is: 

 
BDP = (10 ⋅ 109) ⋅ (20 ⋅ 10−3) =  200,000,000 bits = 25,000,000 bytes ≈ 25 Mbytes. 

  
Note that this value is significantly greater than the maximum buffer size (16 Mbytes), 
and therefore, the pipe is not getting filled, which leads to network resources 
underutilization. Moreover, since Linux systems by default uses half of the send/receive 
TCP buffers for internal kernel structures (see Section 1.3 Linux systems configuration), 
only half of the buffer size is used to store TCP segments. Figure 20 shows the calculated 
window size of a sample packet of the previous test- approximately 8 Mbytes. This is 50% 
of the default buffer size used by Linux (16 Mbytes). 
 

 
Figure 20. Sample window size from previous test. 

 
Note that the observation in Figure 20 reinforces the best practice described in Section 
1.3: in Linux systems, the TCP buffer size must be at least twice the BDP. 
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4 Modifying buffer size and throughput test 
 
This section repeats the throughput test of Section 4 after modifying the buffer size 
according to the formula describe above. This test assumes the same network parameters 
introduced in the previous test, therefore, the bandwidth is limited to 10 Gbps, and the 
RTT (delay or latency) is 20ms. The send and receive buffer sizes should be set to at least 
2 · BDP (if BBR is used as the congestion control algorithm, this should be set to even a 
larger value, as described in Section 1). We will use 25 Mbytes value for the BDP instead 
of 25,000,000 bytes (1 Mbyte = 10242 bytes). 
 

BDP =  25 Mbytes = 25 ⋅ 10242 bytes =  26,214,400 bytes 

 
TCP buffer size = 2 ·  BDP =  2 · 26,214,400 bytes = 52,428,800 bytes 

 
Step 1. To change the TCP receive receive-window size value(s), use the following 
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

  
Figure 21. Receive window change in sysctl. 

 
The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be 
allocated for a TCP socket. 
 
Step 2. To change the current send-window size value(s), use the following command on 
h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 22. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2. 
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Step 3. To change the current receiver-window size value(s), use the following command 
on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 23. Receive window change in sysctl. 

 
Step 4. To change the current send-window size value(s), use the following command on 
h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 24. Send window change in sysctl. 

 
Step 5. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
h2’s terminal: 
 
iperf3 -s          

 

 
Figure 25. Host h2 running iPerf3 as server. 

 
Step 6. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in h1’s terminal: 
 
iperf3 -c 10.0.0.2      
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Figure 26. iPerf3 throughput test. 

 
Note the measured throughput now is approximately 10 Gbps, which is close to the value 
assigned in our tbf rule (10 Gbps).  
 
This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and Linux terminal. 
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