

NETWORK TOOLS AND PROTOCOLS

Lab 8: Bandwidth-delay Product and
TCP Buffer Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 8: BDP and Setting TCP Buffer Size

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP buffers, BDP, and TCP window ... 3

1.1 TCP buffers ... 3

1.2 Bandwidth-delay product... 4

1.3 Practical observations on setting TCP buffer size .. 5

1.4 TCP window size calculated value .. 7

1.5 Zero window ... 8

2 Lab topology.. 8

2.1 Starting host h1 and host h2 .. 9

2.2 Emulating 10 Gbps high-latency WAN ... 10

3 BDP and buffer size ... 13

3.1 Window size in sysctl.. 13

4 Modifying buffer size and throughput test... 15

References .. 17

Lab 8: BDP and Setting TCP Buffer Size

 Page 3

Overview

This lab explains the bandwidth-delay product (BDP) and how to modify the TCP buffer
size in Linux systems. Throughput measurements are also conducted to test and verify
TCP buffer configurations based on the BDP.

Objectives

By the end of this lab, students should be able to:

1. Understand BDP.
2. Define and calculate TCP window size.
3. Modify the TCP buffer size with sysctl, based on BDP calculations.
4. Emulate WAN properties in Mininet.
5. Achieve full throughput in WANs by modifying the size of TCP buffers.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP buffers, BDP, and TCP window.
2. Section 2: Lab topology.
3. Section 3: BDP and buffer size experiments.
4. Section 4: Modifying buffer size and throughput test.

1 Introduction to TCP buffers, BDP, and TCP window

1.1 TCP buffers

The TCP send and receive buffers may impact the performance of Wide Area Networks
(WAN) data transfers. Consider Figure 1. At the sender side, TCP receives data from the

Lab 8: BDP and Setting TCP Buffer Size

 Page 4

application layer and places it in the TCP send buffer. Typically, TCP fragments the data in
the buffer into maximum segment size (MSS) units. In this example, the MSS is 100 bytes.
Each segment carries a sequence number, which is the byte-stream number of the first
byte in the segment. The corresponding acknowledgement (Ack) carries the number of
the next expected byte (e.g., Ack-101 acknowledges bytes 1-100, carried by the first
segment). At the receiver, TCP receives data from the network layer and places it into the
TCP receive buffer. TCP delivers the data in order to the application. E.g., bytes contained
in a segment, say segment 2 (bytes 101-200), cannot be delivered to the application layer
before the bytes contained in segment 1 (bytes 1-100) are delivered to the application.
At any given time, the TCP receiver indicates the TCP sender how many bytes the latter
can send, based on how much free buffer space is available at the receiver.

...

1-100

...

From Application

To Network

TCP send buffer

To Application
(in-order delivery)

From Network

101-200201-300

801-900 701-800

301-400

TCP receive buffer

201-300 101-200 1-100

401-500501-600...

Ack-101 Ack-201 ...

Seq. number
(first byte in segment)

Ack number (next expected byte)

Figure 1. TCP send and receive buffers.

1.2 Bandwidth-delay product

In many WANs, the round-trip time (RTT) is dominated by the propagation delay. Long
RTTs along and TCP buffer size have throughput implications. Consider a 10 Gbps WAN
with a 50-millisecond RTT. Assume that the TCP send and receive buffer sizes are set to 1
Mbyte (1 Mbyte = 10242 bytes = 1,048,576 bytes = 1,048,576 ⋅ 8 bits = 8,388,608 bits).
With a bandwidth (Bw) of 10 Gbps, this number of bits is approximately transmitted in

Ttx =
bits

Bw
=

8,388,608

10 ⋅ 109
= 0.84 milliseconds.

I.e., after 0.84 milliseconds, the content of the TCP send buffer will be completely sent.
At this point, TCP must wait for the corresponding acknowledgements, which will only
start arriving at t = 50 milliseconds. This means that the sender only uses 0.84/50 or 1.68%
of the available bandwidth.

The solution to that above problem lies in allowing the sender to continuously transmit
segments until the corresponding acknowledgments arrive back. Note that the first
acknowledgement arrives after an RTT. The number of bits that can be transmitted in a
RTT period is given by the bandwidth of the channel in bits per second multiplied by the

Lab 8: BDP and Setting TCP Buffer Size

 Page 5

RTT. This quantity is referred to as the bandwidth-delay product (BDP). For the above
example, the buffer size must be greater than or equal to the BDP:

TCP buffer size ≥ BDP = (10 ⋅ 109)(50 ⋅ 10−3) = 500,000,000 bits = 62,500,000 bytes.

The first factor (10 ⋅ 109) is the bandwidth; the second factor (50 ⋅ 10-3) is the RTT. For
practical purposes, the TCP buffer can be also expressed in Mbytes (1 Mbyte = 10242
bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression, in Mbytes, is

TCP buffer size ≥ 62,500,000 bytes = 59.6 Mbytes ≈ 60 Mbytes.

1.3 Practical observations on setting TCP buffer size

Linux systems configuration. Linux assumes that half of the send/receive TCP buffers are
used for internal structures. Thus, only half of the buffer size is used to store segments.
This implies that if a TCP connection requires certain buffer size, then the administrator
must configure the buffer size equals to twice that size. For the previous example, the
TCP buffer size must be:

TCP buffer size ≥ 2 ⋅ 60 Mbytes = 120 Mbytes.

Packet loss scenarios and TCP BBR1. TCP provides a reliable, in-order delivery service.
Reliability means that bytes successfully received must be acknowledged. In-order
delivery means that the receiver only delivers bytes to the application layer in sequential
order. The memory occupied by those bytes will be deallocated from the receive buffer
after passing the bytes to the application layer. This process has some performance
implications, as illustrated next. Consider Figure 2, which shows a TCP receive buffer.
Assume that the segment carrying bytes 101-200 is lost. Although the receiver has
successfully received bytes 201-900, it cannot deliver to the application layer until bytes
101-200 are received. Note that the receive buffer may become full, which would block
the sender from utilizing the channel.

Figure 2. TCP receive buffer. Although bytes 301-900 have been received, they cannot be
delivered to the application until the segment carrying bytes 201-300 are received.

While setting the buffer size equal to the BDP is acceptable when traditional congestion
control algorithms are used (e.g., Reno2, Cubic3, HTCP4), this size may not allow the full

Lab 8: BDP and Setting TCP Buffer Size

 Page 6

utilization of the channel with BBR1. In contrast to other algorithms, BBR does not reduce
the transmission rate after a packet loss. For example, suppose that a packet sent at t = 0
is lost, as shown in Figure 3. At t = RTT, the acknowledgement identifying the packet to
retransmit is received. By then, the sender has sent BDP bits, which will be stored in the
receive buffer. This data cannot be delivered yet to the application, because of the in-
order delivery requirement. Since the receive buffer has a capacity of BDP only, the
sender is temporarily blocked until the acknowledgement for the retransmitted data is
received at t = 2⋅RTT. Thus, the throughput over the period t = 0 to t = 2⋅RTT is reduced
by half:

throughput =
bits transmitted

period
=

Bw ⋅ RTT

2 ⋅ RTT
=

Bw

2
.

T=RTT

t=0

BDP

Missing data. Buffered data
can’t be released to
application

Missing data arrives. Ready
for in-order delivery

Data delivered to application.
Buffer is drainedt=2RTT

Sender is blocked (TCP
receive buffer full)

...

Sender resumes
transmission

Sender Receiver

TCP receive buffer
(BDP capacity)

Packet loss
Data segment

Legend:

Ack identifying packet
to retransmit

ACK / SACK
Retransmission

Figure 3. A scenario where a TCP receive buffer size of BDP cannot prevent throughput
degradation.

With BBR, to fully utilize the available bandwidth, the TCP send and receive buffers must
be large enough to prevent such situation. Figure 4 shows an example on how a TCP buffer
size of 2⋅BDP mitigates packet loss.

High to moderate packet loss scenarios, using TCP BBR:

TCP send/receive buffer ≥ several BDPs (e.g., 4 ⋅ BDP)

Continuing with the example of Section 1.2, in a Linux system using TCP BBR, the
send/receive buffers for a BDP of 60 Mbytes in a high to moderate packet loss scenario
should be:

TCP buffer size ≥ (2 ⋅ 60 Mbytes) ⋅ 4 = 480 Mbytes.

Lab 8: BDP and Setting TCP Buffer Size

 Page 7

The factor 2 is because of the Linux systems configuration, and the factor 4 is because of
the use of TCP BBR in a high to moderate packet loss scenario.

t=RTT

t=0

2BDP

Missing data. Still ~BDP
buffer capacity available

Data delivered to application.
Buffer is drained

t=2RTT

...

Sender Receiver

Missing data
arrives. Ready for
in-order delivery

ACK / SACK identifying
packet to retransmit

Figure 4. A scenario where a TCP buffer size of 2⋅BDP mitigates packet loss.

1.4 TCP window size calculated value

The receiver must constantly communicate with the sender to indicate how much free
buffer space is available in the TCP receive buffer. This information is carried in a TCP
header field called window size. The window size has a maximum value of 65,535 bytes,
as the header value allocated for the window size is two bytes long (16 bits; 216-1 = 65,535).
However, this value is not large enough for high-bandwidth high-latency networks.
Therefore, TCP window scale option was standardized in RFC 13235. By using this option,
the calculated window size may be increased up to a maximum value of 1,073,725,440
bytes. When advertising its window, a device also advertises the scale factor (multiplier)
that will be used throughout the session. The TCP window size is calculated as follows:

Scaled TCPWin = TCPWin ⋅ Scaling Factor

As an example, consider the following example. For an advertised TCP window of 2,049
and a scale factor of 512, then the final window size is 1,049,088 bytes. Figure 5 displays
a packet inspected in Wireshark protocol analyzer for this numerical example.

Figure 5. Window Scaling in Wireshark.

Lab 8: BDP and Setting TCP Buffer Size

 Page 8

1.5 Zero window

When the TCP buffer is full, a window size of zero is advertised to inform the other end
that it cannot receive any more data. When a client sends a TCP window of zero, the
server will pause its data transmission, and waits for the client to recover. Once the client
is recovered, it digests data, and inform the server to resume the transmission again by
setting again the TCP window.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 6. Lab topology.

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password.

Figure 7. Miniedit shortcut.

Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate
the lab8.mn topology file and click on Open.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 8: BDP and Setting TCP Buffer Size

 Page 9

Figure 8. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of Miniedit’s window
to start the emulation.

Figure 9. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Lab 8: BDP and Setting TCP Buffer Size

 Page 10

Figure 10. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 11. Connectivity test using ping command.

Figure 11 indicates that there is connectivity between host h1 and host h2.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN by introducing delays to the network. We will
first set the bandwidth between hosts 1 and 2 to 10 Gbps. Then, we will emulate a 20 ms
delay and measure the throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 8: BDP and Setting TCP Buffer Size

 Page 11

Figure 12. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on S1’s s1-eth2 interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms

Figure 13. Adding 20ms delay to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switches S1 and S2: on the same
terminal, type the command below. This command sets the bandwidth to 10 Gbps on S1’s
s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 25,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 25000000

Figure 14. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. On h1’s terminal, type ping 10.0.0.2. This command tests the connectivity
between host h1 and host h2. The test was initiated by h1 as the command is executed
on h1’s terminal.

Lab 8: BDP and Setting TCP Buffer Size

 Page 12

To stop the test, press Ctrl+c. The figure below shows a successful connectivity test.
Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses
back.

Figure 15. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the round-trip time
(RTT) were 20.092, 25.353, 41.132, and 9.111 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 4. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
H2’s terminal:

iperf3 -s

Figure 16. Host h2 running iperf3 as server.

Step 5. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in h1’s terminal:

iperf3 -c 10.0.0.2

Lab 8: BDP and Setting TCP Buffer Size

 Page 13

Figure 17. iPerf3 throughput test.

Notice the measured throughput now is approximately 3 Gbps, which is different than
the value assigned in our tbf rule. Next, we explain why the 10 Gbps maximum
theoretical bandwidth is not achieved.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 BDP and buffer size

In connections that have a small BDP (either because the link has a low bandwidth or
because the latency is small), buffers are usually small. However, in high-bandwidth high-
latency networks, where the BDP is large, a larger buffer is required to achieve the
maximum theoretical bandwidth.

3.1 Window size in sysctl

The tool sysctl is used for dynamically changing parameters in the Linux operating system.
It allows users to modify kernel parameters dynamically without rebuilding the Linux
kernel.

The sysctl key for the receive window size is net.ipv4.tcp_rmem and the send window
size is net.ipv4.tcp_wmem

Step 1. To read the current receiver window size value of host h1, use the following
command on h1’s terminal:

sysctl net.ipv4.tcp_rmem

Lab 8: BDP and Setting TCP Buffer Size

 Page 14

Figure 18. Receive window read in sysctl.

Step 2. To read the current send window size value of host h1, use the following command
on h1’s terminal:

sysctl net.ipv4.tcp_wmem

Figure 19. Send window read in sysctl.

The returned values of both keys (net.ipv4.tcp_rmem and net.ipv4.tcp_wmem) are
measured in bytes. The first number represents the minimum buffer size that is used by
each TCP socket. The middle one is the default buffer which is allocated when applications
create a TCP socket. The last one is the maximum receive buffer that can be allocated for
a TCP socket.

The default values used by Linux are:

• Minimum: 10,240

• Default: 87,380

• Maximum: 16,777,216

In the previous test (10 Gbps, 20ms delay), the buffer size was not modified on end-hosts.
The BDP for the above test is:

BDP = (10 ⋅ 109) ⋅ (20 ⋅ 10−3) = 200,000,000 bits = 25,000,000 bytes ≈ 25 Mbytes.

Note that this value is significantly greater than the maximum buffer size (16 Mbytes),
and therefore, the pipe is not getting filled, which leads to network resources
underutilization. Moreover, since Linux systems by default uses half of the send/receive
TCP buffers for internal kernel structures (see Section 1.3 Linux systems configuration),
only half of the buffer size is used to store TCP segments. Figure 20 shows the calculated
window size of a sample packet of the previous test- approximately 8 Mbytes. This is 50%
of the default buffer size used by Linux (16 Mbytes).

Figure 20. Sample window size from previous test.

Note that the observation in Figure 20 reinforces the best practice described in Section
1.3: in Linux systems, the TCP buffer size must be at least twice the BDP.

Lab 8: BDP and Setting TCP Buffer Size

 Page 15

4 Modifying buffer size and throughput test

This section repeats the throughput test of Section 4 after modifying the buffer size
according to the formula describe above. This test assumes the same network parameters
introduced in the previous test, therefore, the bandwidth is limited to 10 Gbps, and the
RTT (delay or latency) is 20ms. The send and receive buffer sizes should be set to at least
2 · BDP (if BBR is used as the congestion control algorithm, this should be set to even a
larger value, as described in Section 1). We will use 25 Mbytes value for the BDP instead
of 25,000,000 bytes (1 Mbyte = 10242 bytes).

BDP = 25 Mbytes = 25 ⋅ 10242 bytes = 26,214,400 bytes

TCP buffer size = 2 · BDP = 2 · 26,214,400 bytes = 52,428,800 bytes

Step 1. To change the TCP receive receive-window size value(s), use the following
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 21. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 22. Send window change in sysctl.

Next, the same commands must be configured on host h2.

Lab 8: BDP and Setting TCP Buffer Size

 Page 16

Step 3. To change the current receiver-window size value(s), use the following command
on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 23. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 24. Send window change in sysctl.

Step 5. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
h2’s terminal:

iperf3 -s

Figure 25. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in h1’s terminal:

iperf3 -c 10.0.0.2

Lab 8: BDP and Setting TCP Buffer Size

 Page 17

Figure 26. iPerf3 throughput test.

Note the measured throughput now is approximately 10 Gbps, which is close to the value
assigned in our tbf rule (10 Gbps).

This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

2. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

3. S. Ha, I., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

4. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf

5. V. Jacobson, R. Braden, D. Borman, “TCP extensions for high performance,”
Internet Request for Comments, RFC Edit, RFC 1323, May 1992. [Online].
Available: https://tools.ietf.org/rfc/rfc1323.txt

