-
~—
)it

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 9: Enhancing TCP Throughput with Parallel
Streams

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 9: TCP Parallel Streams

Contents
OVEIVIBW ..ttt e et e e e e e e e e e e e et e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 Introduction to TCP parallel Streamsccccuueiiiriiiieiiiiiiee e e s e 3
1.1 Parallel stream fundamentalsccccveeiiiiiiiiniiiie e 3
1.2 Advantages of parallel streamsS.......c.ueeeiviiiiiiiiiiiee e 4
P IF- | o I o] o Yo Lo -1V 20U SRR PUPRPRUPTPPR 6
2.1 Starting host h1 and hoSt h2ooiiiiiiiii e 7
2.2 Emulating 10 Gbps high-latency WANcoiiiiiiiiieieieee e 8
P2RS T =Y1 o T olo T o | o T=Tot { o] o [N TP 9
3 Parallel streams to overcome TCP buffer limitationc.ccccoeveviviieinieiinieeiieee 11
4 Parallel streams to combat packet 10SSuviiiveeiiiieiceee e 12
4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface....................... 12
4.2 Test with parallel sStreamsc...evviiiiiei e 14
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 16

Page 2

Lab 9: TCP Parallel Streams

Overview

This lab introduces TCP parallel streams in Wide Area Networks (WANs) and explains how
they are used to achieve higher throughput. Then, throughput tests using parallel streams
are conducted.

Objectives
By the end of this lab, students should be able to:

Understand TCP parallel streams.

Describe the advantages of TCP parallel streams.

Specify the number of parallel streams in an iPerf3 test.

Conduct tests and measure performance of parallel streams on an emulated WAN.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP parallel streams.
2. Section 2: Lab topology.
3. Section 3: Parallel streams in a high-latency high-bandwidth WAN.
4. Section 4: Parallel streams with packet loss.
1 Introduction to TCP parallel streams

1.1 Parallel stream fundamentals
Parallel Streams are multiple TCP connections opened by an application to increase

performance and maximize the throughput between communicating hosts. With parallel
streams, data blocks for a single file transmitted from a sender to a receiver are

Page 3

Lab 9: TCP Parallel Streams

distributed over the multiple streams. Figure 1 shows the basic model. A control channel
is established between the sender and the receiver to coordinate the data transfer. The
actual transfer occurs over the parallel streams, collectively referred to as data channels.
In this context, the term stream is a synonym of flow and connection.

Sender Receiver
CP |« Control channel J cp] .,
Data channels egena:
ht CP: Control process
D DP DP: D
@ g : Stream 1 1~ ata process
\ DPZ DP2 /
Stream 2
bP DP
s Stream 3 g

Figure 1. Data transfer model with parallel streams.

1.2 Advantages of parallel streams

Transferring large files over high-latency WANs with parallel streams have multiple
benefits, as describe next.

Combat random packet loss not due congestion: assume that packet loss occurs
randomly rather than due congestion. In steady state, the average throughput of a single
TCP stream is given by

MSS
Average throughput ~ T bytes per second,

where MSS is the maximum segment size and L is the packet loss rate. The above equation
indicates that the throughput is directly proportional to the MSS and inversely
proportional to RTT and the square root of L. When an application uses K parallel streams
and if RTT, packet loss, and MSS are the same in each stream, the aggregate average
throughput is the aggregation of the K single stream throughputs?:

Kk MSS MSS
I=1prryL — RTTVL

Aggregate average throughput = bytes per second.

Thus, an application opening K parallel connections essentially creates a large virtual MSS
on the aggregate connection that is K times the MSS of a single connection?.

The TCP throughput follows the additive increase multiplicative decrease (AIMD) rule: TCP
continuously probes for more bandwidth and increases the throughput of a connection
by approximately 1 MSS per RTT as long as no packet loss occurs (additive increase phase).
When a packet loss occurs, the throughput is reduced by half (multiplicative decrease
event). Figure 2 illustrates the AIMD behavior for two connections with different MSSs.
The MSS of the green connection is six than the MSS of the red connection. Since during
the additive increase phase TCP increases the throughput by one MSS every RTT, the

Page 4

Lab 9: TCP Parallel Streams

speed at which the throughput increases is proportional to the MSS (i.e., the larger the
MSS the faster the recovery after a packet loss).

Slope proportional
4 Additive increase to MSS
Multiplicative
decrease ? MSS, = 6 MSS;

—— MSS; =1 unit

o Packet loss (throughput
decreases by half)

Instantaneous Throughput

» Time

Figure 2. Additive increase multiplicative decrease (AIMD) behavior. The green curve corresponds
to the throughput when the MSS is six times that of the red curve.

Mitigate TCP round-trip time (RTT) bias: when different flows with different RTTs share
a given bottleneck link, TCP’s throughput is inversely proportional to the RTT2. This is also
noted in the equations discussed above. Hence, low-RTT flows get a higher share of the
bandwidth than high-RTT flows. Thus, for transfers across high-latency WANs, one
approach to combat the higher (unfair) bandwidth allocated to low-latency connections
is by using parallel streams. By doing so, even if each high-latency stream receives less
amount of bandwidth than low-latency flows, the aggregate throughput of the parallel
streams can be high.

Overcome TCP buffer limitation: TCP receives data from the application layer and places
it in the TCP buffer, as shown in Figure 3. TCP implements flow control by requiring the
receiver indicate how much spare room is available in the TCP receive buffer. For a full
utilization of the path, the TCP send and receive buffers must be greater than or equal to
the bandwidth-delay product (BDP). This buffer size value is the maximum number of bits
that can be outstanding (in-flight) if the sender continuously sends segments. If the buffer
size is less than the bandwidth-delay product, then throughput will not be maximized.
One solution to overcome small TCP buffer size situations is by using parallel streams.
Essentially, an application opening K parallel connections creates a large buffer size on
the aggregate connection that is K times the buffer size of a single connection.

Sender Receiver
From To application
application layer layer
Spare TCP data in TCP data

room buffer -1 — Spare room in buffer

| o | (BDEEE)| J

T T
TCP send buffer TCP receive buffer

Figure 3. TCP send and receive buffers.

Page 5

Lab 9: TCP Parallel Streams

In this lab, we will explore the use of parallel streams to overcome TCP buffer limitation
and to mitigate random packet loss.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl s2 h2

10 Gbps
h1l-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-eth0

10.0.0.1 10.0.0.2
Figure 4. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|,

H_

Tenminal

Miniedit

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 9.mn topology file and click on Open.

MiniEdit

Edit Run Help

New
|Open|
Save p— Open = X
Export Level 2 Script

Directory: /home/admin/lab_topologies —»l @
Put [[JLab2.mn [Lab8.mn [Lab 14.mn [Z] Lab 20.mn

[l tab 3.mn [C/[EREEEM [Lab 15.mn
[[]Lab4.mn [] Lab 10.mn [-] Lab 16.mn
|[C] Lab 5.mn [£] Lab 11.mn [£] Lab 17.mn
[E] Lab 6.mn [£] Lab 12.mn [C] Lab 18.mn
[[] tab 7.mn [] Lab 13.mn [£] Lab 19.mn

[4 ¥

File name: Lab 9.mn | Open I

Files of type: Mininet Topology (*.mn) 4’ Cancel |

-mg

Figure 6. MiniEdit’s Open dialog.

Page 6

Lab 9: TCP Parallel Streams

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

I o

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

- MiniEdit

File Edit Run Help

5
—
Host Options E

— h2

= =
1 52

|

|

Figure 8. Opening a terminal on host h1l.
Step 2. Apply the same steps on host h2 and open its Terminals.

Step 3. Test connectivity between the end-hosts using the fping command. On host h1,
type the command [ping 10.0.0.2]. This command tests the connectivity between host
h1 and host h2. To stop the test, press [ctrl+d The figure below shows a successful
connectivity test.

Page 7

Lab 9: TCP Parallel Streams

"Host: h1"

from
s from
from

from
s from

Figure 9. Connectivity test using command.

Figure 9 indicates that there is connectivity between host h1l and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between

switch S1 and switch S2 to measure the throughput. Then, we will set the bandwidth
between host hl and host h2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Terminal

Miniedit

Figure 10. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.
Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on switch S1's s1-eth2

interface.

sudo tc gdisc add dev sl-eth2 root handle 1: netem delay 20ms

Page 8

Lab 9: TCP Parallel Streams

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ (X

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 root handle

1: netem delay 20ms
[sudo] password for admin

admin@admin-pc:~$ i

Figure 11. Adding delay of 20ms to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [cate): 10gbit
. m: burst: 5,000,000
. : 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2:

tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (]

admxn@admtn pc 5 udo c qdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit

admn@admn pc. S l

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type ping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1"
root@admin-pc:~#|ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from .0.0.2: seq=1 ttl=64 time=40.9
64 bytes from .0.0.2: i seq=2 tt1=64 time=20.1
64 bytes from - T - kil seq=3 ttl=64 time=20.1

64 bytes from <8002 3 seq=4 ttl=64 time=20.1
"G

--- 10.0.0.2 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 7ms

rtt min/avg/max/mdev = 20.080/25.284/40.883/9.006 ms
root@admin-pc:~# [j

Figure 13. Output of [ping 10.0.0.2/ command.

Page 9

Lab 9: TCP Parallel Streams

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.284, 40.883, and 9.006 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type [ping 10.0.0.1]. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop

the test, press[ctrl+d.

Step 3. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

dmin-pc:~#|iperf3 -s

Server listening on 5201

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1’s terminal. To stop the test, press[Ctrl+d|.

iperf3 -c 10.0.0.2

"Host: hl"

root@admin-pc:~# iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
15] local 10.0.0.1 port 59976 connected to 10.0.0.2 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 328 MBytes 2.75 Gbits/sec 90 16.1 MBytes
15] .00-2.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-3.00 sec 391 MBytes .28 Gbits/sec 16.1 MBytes
15] .00-4.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-5.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-6.00 sec 390 MBytes .27 Gbits/sec 16.1 MBytes
7
8
9
1

(<]

15] .00-7.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-8.00 sec 396 MBytes .32 Gbits/sec 16.1 MBytes
15] .00-9.00 sec 396 MBytes .32 Gbits/sec 16.1 MBytes
15] .00-10.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes

OO NOWUSE WN
wWwwwwwwww
[ocloNoNoNoNoNoNol
el el

ID] Interval Transfer Bitrate
15] 0.00-10.00 3.78 GBytes 3.25 Gbits/sec sender
15] 0.00-10.04 3.78 GBytes 3.23 Gbits/sec receiver

iperf Done.
root@admin-pc:~# [

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.22 Gbps. This is because the TCP buffer size is less than the bandwidth-
delay product. In the upcoming section, we run a throughput test without modifying the
TCP buffer size, but with multiple parallel streams.

Page 10

Lab 9: TCP Parallel Streams

Step 5. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Parallel streams to overcome TCP buffer limitation

In this section, parallel streams are specified by the client when executing the throughput
test in iPerf3. The iPerf3 server should start as usual, without specifying any additional
options or parameters.

Step 1. To launch iPerf3 in server mode, run the command in host h2’s
terminal as shown the figure below:

iperf3 -s

"Host: h2"

Figure 16. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the [-F option specified (not to be
confused with the option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host hl’s
terminal:

iperf3 -c 10.0.0.2 -P 8

s [

root@admin-pc:~#|iperf3 -c 10.0.0.2 -P 8
Connecting to host 10.0.0.2, port 5201
[15] local 10.0.0.1 port 60000 connected to 10.

port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201

[17] local 10.0.0.1 port 60002 connected to 10.
[19] local 10.0.0.1 port 60004 connected to 10.
[21] local 10.0.0.1 port 60006 connected to 10.
[23] local 10.0.0.1 port 60008 connected to 10.
[25] local 10.0.0.1 port 60010 connected to 10.
[27] local 10.0.0.1 port 60012 connected to 10.
[29] local 10.0.0.1 port 60014 connected to 10.
[ID] Interval Transfer Bitrate Retr Cwnd

[151 0.00-1.00 sec 221 MBytes 1.85 Gbits/sec 5 13.2 MBytes
[

[

[

[

[

[

[

[

[cloNoNoNoNoNo Nl
(oMo Mo Moo Moo o)
NNNNNNNN

17] .00-1.00 sec 206 MBytes 1.73 Gbits/sec 1477 9.61 MBytes
19] .00-1.00 sec 139 MBytes 1.16 Gbits/sec 1935 .23 MBytes
21] .00-1.00 sec 138 MBytes 1.16 Gbits/sec 4151 .16 MBytes
23] .00-1.00 sec 64.3 MBytes 539 Mbits/sec 2630 .39 MBytes
25] .00-1.00 sec 104 MBytes 874 Mbits/sec 2823 .57 MBytes
27] .00-1.00 sec 64.3 MBytes 539 Mbits/sec 1815 .95 MBytes
29] .00-1.00 sec 89.3 MBytes 748 Mbits/sec 2105 .88 MBytes
SUM] 8.60 Gbits/sec 16941

'
[<M <o Moo NoRNoRNo)

.00-1.00 sec 1.00 GBytes

Figure 17. iPerf3 throughput test with parallel streams.

Page 11

Lab 9: TCP Parallel Streams

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

"Host: h1"

ID] Interval Transfer Bitrate Retr

15] 0.00-10. .48 GBytes .13 Gbits/sec 50 sender
15] .00-10. .47 GBytes .12 Gbits/sec receiver
17] .00-10. .22 GBytes .91 Gbits/sec 1792 sender
17] .00-10. .22 GBytes .90 Gbits/sec receiver
19] .00-10. .19 GBytes .02 Gbits/sec 1935 sender
19] .00-10. .19 GBytes .02 Gbits/sec receiver
21] .00-10. .79 GBytes Gbits/sec 4151 sender
21] .00-10. .78 GBytes Gbits/sec receiver
23] .00-10. 697 MBytes Mbits/sec 3872 sender
.00-10. 688 MBytes Mbits/sec receiver
.00-10. 981 MBytes Mbits/sec 3948 sender
.00-10. 971 MBytes Mbits/sec receiver
.00-10. 708 MBytes Mbits/sec 1815 sender
.00-10. 699 MBytes Mbits/sec receiver
.00-10. 1.02 GBytes Mbits/sec 2105 sender
.00-160. 1.01 GBytes _ 864 Mbits/sec receiver
.00-10. 11.0 GBytes : Gbits/sec” 19668 sender
.00-10. 11.0 GBytes |9. Gbits/sec

o =N NNN
= e e e NN

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

receiver

iperf Done.
root@admin-pc:~# ||

Figure 18. iPerf3 throughput test with parallel streams summary output.

Note the measured throughput now is approximately 9.5 Gbps, which is close to the value
assigned in the rule (10 Gbps).

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Parallel streams to combat packet loss

Packet loss is inevitable in real-world networks. This section explores the use of parallel
streams to mitigate packet loss not due congestion (i.e., random packet loss), and
compares the performance of single and parallel streams.

4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface

In this topology, rate limiting is applied on switch S1’s interface which connects it to
switch S2 (s1-eth2) and 1% packet loss is introduced.

Step 1. Before applying any additional configuration, the previous rules assigned on the

switch’s interface must be deleted. To remove these, type the following command on the
Client’s terminal. When prompted for a password, type and hit enter.

Page 12

Lab 9: TCP Parallel Streams

sudo tc gdisc del dev sl-eth2 root

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$|sudo tc qdisc del dev sl-eth2 root

admin@admin-pc:~$ |

Figure 19. Deleting previous rules on switch S1’s s1-eth2 interface.

Step 2. On the same terminal, type the below command to add 1% packet loss.
sudo tc gdisc add dev sl-eth2 root handle 1: netem loss 1%

= admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (X

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 root handle 1: netem loss 1%

admin@admin-pc:~$ |

Figure 20. Adding 1% packet loss to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [fate) 10gbit
e [urst]: 5,000,000
e [Limit: 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (>

admin@admin :~5 | sudo 1 c add dev sl-eth2 parent 1: handle 2: tbf rate 10
burst 5000¢

admin@admin-pc:-~$

Figure 21. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. The user can now verify the rate limit configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
host h2’s terminal as shown the figure below:

iperf3 -s

Page 13

Lab 9: TCP Parallel Streams

"Host: h2"

Figure 22. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1’s terminal. To stop the test, press[ctril+d|.

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~# iperf3 -c 10.0.0.2

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 60018 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 919 MBytes 7.70 Gbits/sec 6172 218 KBytes
15] .00-2.00 sec 866 MBytes .27 Gbits/sec 6089 157 KBytes
15] .00-3.00 sec 891 MBytes .48 Gbits/sec 6589 129 KBytes
15] .00-4.00 sec 952 MBytes .99 Gbits/sec 6761 42 .4 KBytes
15] .00-5.00 sec 1.00 GBytes .62 Gbits/sec 7597 24.0 KBytes
15] .00-6.00 sec 671 MBytes .63 Gbits/sec 4937 42.4 KBytes
15] .00-7.00 sec 804 MBytes .74 Gbits/sec 5573 2.83 KBytes
15] .00-8.00 sec 901 MBytes .56 Gbits/sec 7123 160 KBytes
15] .00-9.00 sec 892 MBytes .49 Gbits/sec 6052 1.16 MBytes
15] .00-10.00 sec 1.10 GBytes .47 Gbits/sec 7598 400 KBytes

LCOoONOOULLE WN =
O NN U NNN

ID] Interval Transfer Bitrate Retr
15] 0.00-10.00 8.84 GBytes 7.59 Gbits/sec 64491 sender
15] 0.00-10.04 8.83 GBytes 7.56 Gbits/sec receiver

iperf Done.
root@admin-pc:~# ||

Figure 23. Running iPerf3 client on host h1.

Note the measured throughput now is approximately 7.6 Gbps, which is different than
the value assigned in the rule (10 Gbps).

Step 5. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

4.2 Test with parallel streams

Step 1. Now the test is repeated while using parallel streams. To launch iPerf3 in server
mode, run the command in host h2’s terminal as shown in Figure 24:

iperf3 -s

"Host: h2"

Page 14

Lab 9: TCP Parallel Streams

Figure 24. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the [-F option specified (not to be
confused with the option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host hl’s
terminal:

iperf3 -c 10.0.0.2 -P 8

"Host: hl"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -P 8
Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 60022 connected to 10.
[17] local 10.0.0.1 port 60024 connected to 10.
[19] local 10.0.0.1 port 60026 connected to 10.
[21] local 10.0.0.1 port 60028 connected to 10.
[23] local 10.0.0.1 port 60030 connected to 10.
[25] local 10.0.0.1 port 60032 connected to 10.
[27] local 10.0.0.1 port 60034 connected to 10.
[29] local 10.0.0.1 port 60036 connected to 10.
[ID] Interval Transfer Bitrate Retr Cwnd

[15] 0.00-1. sec 137 MBytes 1.15 Gbits/sec 933 413 KBytes
[

[

[

[

[

[

[

[

port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201

0.
0.
0.
0.
0.
0.
0.
0.

[clcNoNoNoNoNoNol
NNNNNNNN

17] .00-1. sec 135 MBytes 1.14 Gbits/sec 905 29.7 KBytes
19] .00-1. sec 121 MBytes 1.02 Gbits/sec 1161 36.8 KBytes
21] .00-1. sec 209 MBytes 1.76 Gbits/sec 1267 130 KBytes
23] .00-1. sec 161 MBytes 1.35 Gbits/sec 1093 378 KBytes
25] .00-1. sec 111 MBytes 931 Mbits/sec 1036 199 KBytes
27] .00-1. sec 125 MBytes 1.05 Gbits/sec 1060 31.1 KBytes
29] .00-1. sec 170 MBytes 1.42 Gbits/sec 1013 80.6 KBytes
SUM] .00-1. sec 1.14 GBytes 9.81 Gbits/sec 8468

[cNcoNoNoNoNoNoNol

Figure 25. Host h1 running iPerf3 as client with 8 parallel streams.

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

"Host: h1"

ID] Interval Transfer Bitrate Retr

15] 0.00-10.00 1.48 GBytes 1.27 Gbits/sec 10341 sender
15] .00-10.02 .47 GBytes .26 Gbits/sec receiver
17] .00-10.00 .34 GBytes 15 Gbits/sec 9173 sender
17] 00-10.02 .33 GBytes .14 Gbits/sec receiver
19] .00-10.00 .35 GBytes .16 Gbits/sec 11049 sender
19] .00-10.02 .34 GBytes .15 Gbits/sec receiver
21] .00-10.00 .41 GBytes .21 Gbits/sec 10069 sender
21] .00-10.02 .41 GBytes .20 Gbits/sec receiver
23] 00-10.00 .34 GBytes 15 Gbits/sec 9948 sender
23] 00-10.02 .34 GBytes .15 Gbits/sec receiver
25] .00-10.00 .53 GBytes .31 Gbits/sec 10783 sender
25] .00-10.02 .52 GBytes .31 Gbits/sec receiver
27] .00-10.00 .33 GBytes .14 Gbits/sec 10676 sender
27] .00-10.02 .32 GBytes .13 Gbits/sec receiver
29] 00-10.00 .41 GBytes .21 Gbits/sec 10025 sender
29] .00-10.02 .40 GBytes 1.20 Gbits/sec receiver

[SuM] .00-10.00 11.2 GBytes ﬂ9.60 Gbits/sec|

" 82064 sender
[SUM] .00-10.02 11.1 GBytes |9.55 Gbits/sec| receiver

[cloloNoNoNoNoNoNoNoRoNoNoNoNo ool
el el el il el el
e i sl

L

iperf Done.
root@admin-pc:~# ||

Figure 26. iPerf3 throughput test with parallel streams summary output.

Page 15

Lab 9: TCP Parallel Streams

Note the measured throughput now is approximately 9.6 Gbps, which is close to the value
assigned in our rule (10 Gbps). In conclusion, parallel streams are beneficial when the
packet loss rate is high. As shown in the previous test, when using parallel streams, the
host was able to achieve the maximum theoretical bandwidth.

This concludes Lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm,” ACM Computer Communication Review, vol. 27,
no 3, pp. 67-82, Jul. 1997.

2. T.Hacker, B. Athey, B. Noble, “The end-to-end performance effects of parallel TCP
sockets on a lossy wide-area network,” in Proceedings of the Parallel and
Distributed Processing Symposium, Apr. 2001.

3. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and protocols for
computer communication, pp. 303-314, Sep. 1998.

Page 16

