

NETWORK TOOLS AND PROTOCOLS

Lab 9: Enhancing TCP Throughput with Parallel
Streams

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 9: TCP Parallel Streams

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP parallel streams .. 3

1.1 Parallel stream fundamentals .. 3

1.2 Advantages of parallel streams .. 4

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 7

2.2 Emulating 10 Gbps high-latency WAN ... 8

2.3 Testing connection ... 9

3 Parallel streams to overcome TCP buffer limitation .. 11

4 Parallel streams to combat packet loss .. 12

4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface 12

4.2 Test with parallel streams .. 14

References .. 16

Lab 9: TCP Parallel Streams

 Page 3

Overview

This lab introduces TCP parallel streams in Wide Area Networks (WANs) and explains how
they are used to achieve higher throughput. Then, throughput tests using parallel streams
are conducted.

Objectives

By the end of this lab, students should be able to:

1. Understand TCP parallel streams.
2. Describe the advantages of TCP parallel streams.
3. Specify the number of parallel streams in an iPerf3 test.
4. Conduct tests and measure performance of parallel streams on an emulated WAN.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP parallel streams.
2. Section 2: Lab topology.
3. Section 3: Parallel streams in a high-latency high-bandwidth WAN.
4. Section 4: Parallel streams with packet loss.

1 Introduction to TCP parallel streams

1.1 Parallel stream fundamentals

Parallel Streams are multiple TCP connections opened by an application to increase
performance and maximize the throughput between communicating hosts. With parallel
streams, data blocks for a single file transmitted from a sender to a receiver are

Lab 9: TCP Parallel Streams

 Page 4

distributed over the multiple streams. Figure 1 shows the basic model. A control channel
is established between the sender and the receiver to coordinate the data transfer. The
actual transfer occurs over the parallel streams, collectively referred to as data channels.
In this context, the term stream is a synonym of flow and connection.

DP1

Sender

CP

Receiver

DP2

DP3

DP1

DP2

DP3

Stream 1

Stream 2

Stream 3

Control channel
CP

Legend:

CP: Control process

DP: Data process

Data channels

Figure 1. Data transfer model with parallel streams.

1.2 Advantages of parallel streams

Transferring large files over high-latency WANs with parallel streams have multiple
benefits, as describe next.

Combat random packet loss not due congestion: assume that packet loss occurs
randomly rather than due congestion. In steady state, the average throughput of a single
TCP stream is given by1:

𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭 ≈
𝐌𝐒𝐒

𝐑𝐓𝐓 √𝑳
 bytes per second,

where MSS is the maximum segment size and L is the packet loss rate. The above equation
indicates that the throughput is directly proportional to the MSS and inversely
proportional to RTT and the square root of L. When an application uses K parallel streams
and if RTT, packet loss, and MSS are the same in each stream, the aggregate average
throughput is the aggregation of the K single stream throughputs2:

Aggregate average throughput ≈ ∑
𝑀𝑆𝑆

𝑅𝑇𝑇√𝐿
= 𝐾 ⋅

𝑀𝑆𝑆

𝑅𝑇𝑇√𝐿
𝐾
𝑖=1 bytes per second.

Thus, an application opening K parallel connections essentially creates a large virtual MSS
on the aggregate connection that is K times the MSS of a single connection2.

The TCP throughput follows the additive increase multiplicative decrease (AIMD) rule: TCP
continuously probes for more bandwidth and increases the throughput of a connection
by approximately 1 MSS per RTT as long as no packet loss occurs (additive increase phase).
When a packet loss occurs, the throughput is reduced by half (multiplicative decrease
event). Figure 2 illustrates the AIMD behavior for two connections with different MSSs.
The MSS of the green connection is six than the MSS of the red connection. Since during
the additive increase phase TCP increases the throughput by one MSS every RTT, the

Lab 9: TCP Parallel Streams

 Page 5

speed at which the throughput increases is proportional to the MSS (i.e., the larger the
MSS the faster the recovery after a packet loss).

In
s
ta

n
ta

n
e

o
u

s
 T

h
ro

u
g

h
p

u
t

Time

MSS2 = 6 MSS1

MSS1 = 1 unit

Packet loss (throughput

decreases by half)

Slope proportional

to MSS
Additive increase

Multiplicative

decrease

Figure 2. Additive increase multiplicative decrease (AIMD) behavior. The green curve corresponds
to the throughput when the MSS is six times that of the red curve.

Mitigate TCP round-trip time (RTT) bias: when different flows with different RTTs share
a given bottleneck link, TCP’s throughput is inversely proportional to the RTT3. This is also
noted in the equations discussed above. Hence, low-RTT flows get a higher share of the
bandwidth than high-RTT flows. Thus, for transfers across high-latency WANs, one
approach to combat the higher (unfair) bandwidth allocated to low-latency connections
is by using parallel streams. By doing so, even if each high-latency stream receives less
amount of bandwidth than low-latency flows, the aggregate throughput of the parallel
streams can be high.

Overcome TCP buffer limitation: TCP receives data from the application layer and places
it in the TCP buffer, as shown in Figure 3. TCP implements flow control by requiring the
receiver indicate how much spare room is available in the TCP receive buffer. For a full
utilization of the path, the TCP send and receive buffers must be greater than or equal to
the bandwidth-delay product (BDP). This buffer size value is the maximum number of bits
that can be outstanding (in-flight) if the sender continuously sends segments. If the buffer
size is less than the bandwidth-delay product, then throughput will not be maximized.
One solution to overcome small TCP buffer size situations is by using parallel streams.
Essentially, an application opening K parallel connections creates a large buffer size on
the aggregate connection that is K times the buffer size of a single connection.

TCP data
in buffer

Spare room

TCP receive buffer

To application
layer

From
IP

Receiver

TCP data in
buffer

Spare
room

TCP send buffer

From
application layer

To IP

Sender

Figure 3. TCP send and receive buffers.

Lab 9: TCP Parallel Streams

 Page 6

In this lab, we will explore the use of parallel streams to overcome TCP buffer limitation
and to mitigate random packet loss.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 9.mn topology file and click on Open.

Figure 6. MiniEdit’s Open dialog.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 9: TCP Parallel Streams

 Page 7

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host

h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 9: TCP Parallel Streams

 Page 8

Figure 9. Connectivity test using ping command.

Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 to measure the throughput. Then, we will set the bandwidth
between host h1 and host h2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on switch S1’s s1-eth2
interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms

Lab 9: TCP Parallel Streams

 Page 9

Figure 11. Adding delay of 20ms to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

Lab 9: TCP Parallel Streams

 Page 10

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.284, 40.883, and 9.006 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Step 3. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. To stop the test, press Ctrl+c.

iperf3 -c 10.0.0.2

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.22 Gbps. This is because the TCP buffer size is less than the bandwidth-
delay product. In the upcoming section, we run a throughput test without modifying the
TCP buffer size, but with multiple parallel streams.

Lab 9: TCP Parallel Streams

 Page 11

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Parallel streams to overcome TCP buffer limitation

In this section, parallel streams are specified by the client when executing the throughput
test in iPerf3. The iPerf3 server should start as usual, without specifying any additional
options or parameters.

Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal as shown the figure below:

iperf3 -s

Figure 16. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the -P option specified (not to be
confused with the -p option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host h1’s
terminal:

iperf3 -c 10.0.0.2 -P 8

Figure 17. iPerf3 throughput test with parallel streams.

Lab 9: TCP Parallel Streams

 Page 12

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

Figure 18. iPerf3 throughput test with parallel streams summary output.

Note the measured throughput now is approximately 9.5 Gbps, which is close to the value
assigned in the tbf rule (10 Gbps).

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Parallel streams to combat packet loss

Packet loss is inevitable in real-world networks. This section explores the use of parallel
streams to mitigate packet loss not due congestion (i.e., random packet loss), and
compares the performance of single and parallel streams.

4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface

In this topology, rate limiting is applied on switch S1’s interface which connects it to
switch S2 (s1-eth2) and 1% packet loss is introduced.

Step 1. Before applying any additional configuration, the previous rules assigned on the
switch’s interface must be deleted. To remove these, type the following command on the
Client’s terminal. When prompted for a password, type password and hit enter.

Lab 9: TCP Parallel Streams

 Page 13

sudo tc qdisc del dev s1-eth2 root

Figure 19. Deleting previous rules on switch S1’s s1-eth2 interface.

Step 2. On the same terminal, type the below command to add 1% packet loss.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1%

Figure 20. Adding 1% packet loss to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 21. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal as shown the figure below:

iperf3 -s

Lab 9: TCP Parallel Streams

 Page 14

Figure 22. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. To stop the test, press Ctrl+c.

iperf3 -c 10.0.0.2

Figure 23. Running iPerf3 client on host h1.

Note the measured throughput now is approximately 7.6 Gbps, which is different than
the value assigned in the tbf rule (10 Gbps).

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4.2 Test with parallel streams

Step 1. Now the test is repeated while using parallel streams. To launch iPerf3 in server
mode, run the command iperf3 -s in host h2’s terminal as shown in Figure 24:

iperf3 -s

Lab 9: TCP Parallel Streams

 Page 15

Figure 24. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the -P option specified (not to be
confused with the -p option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host h1’s
terminal:

iperf3 -c 10.0.0.2 -P 8

Figure 25. Host h1 running iPerf3 as client with 8 parallel streams.

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

Figure 26. iPerf3 throughput test with parallel streams summary output.

Lab 9: TCP Parallel Streams

 Page 16

Note the measured throughput now is approximately 9.6 Gbps, which is close to the value
assigned in our tbf rule (10 Gbps). In conclusion, parallel streams are beneficial when the
packet loss rate is high. As shown in the previous test, when using parallel streams, the
host was able to achieve the maximum theoretical bandwidth.

This concludes Lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm,” ACM Computer Communication Review, vol. 27,
no 3, pp. 67-82, Jul. 1997.

2. T. Hacker, B. Athey, B. Noble, “The end-to-end performance effects of parallel TCP
sockets on a lossy wide-area network,” in Proceedings of the Parallel and
Distributed Processing Symposium, Apr. 2001.

3. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and protocols for
computer communication, pp. 303-314, Sep. 1998.

