LEVERAGING SONIC FUNCTIONALITIES IN DISAGGREGATED NETWORK SWITCHES

Ali AlSabeh, Elie Kfoury, Jorge Crichigno, Elias Bou-Harb

Presented by: Ali AlSabeh

International Conference on Telecommunications and Signal Processing (TSP 2020)

Submission ID: #147

OVERVIEW

- Introduction
- Motivation
- Contribution
- Background
- Experimentation
- Discussion
- Conclusion and Future Work

INTRODUCTION

TRADITIONAL NETWORK SWITCHES

- Network switches connect multiple computers in a Local Area Network (LAN) by operating on the data link layer
- Traditionally, they are closed source running a proprietary Network Operating System (NOS)
- Thus, limiting network operators and hindering the process of developing new network technologies

WHITE-BOX SWITCHES

- White-box switches are new type of forwarding devices
- Their hardware is decoupled from the software
- Network engineers can install the NOS of their own based on the infrastructure of their network
- Thus, providing the flexibility of customizing the network switch, instead of limiting it to the vendor

MOTIVATION

MOTIVATION

- White-box switches has pushed the need for developing open source NOS to accommodate the ever-increasing network technologies
- However, open source products are usually less maintained and documented than closed source products

CONTRIBUTION

CONTRIBUTION

- Iterating over several open source Internet Protocol (IP) routing suites and NOSs that are vendor-agnostic
- Highlighting the importance of the novel programmable data planes
- Reporting the configuration process and the prerequisites needed to deploy a working disaggregated environment
- Deploying SONiC on top of open source switches, testing the supported network protocols, and detailing the implementation

BACKGROUND

OPEN SOURCE INTERNET ROUTING PROTOCOL SUITES

Open source IP suites provide the ability to run routing protocols, such as static routing and Border Gateway Protocol (BGP)

- BIRD:
 - implements multiple routing protocols, such as OSPF and BGP (Linux)
- OpenBGPD:
 - implements BGP (Linux)
- eXtensible Open Router Platform (XORP):
 - implements multiple routing protocols (Mac OS, Linux, and Windows)
- FRR

FRR

- FRR is an IP routing protocol suite for Linux and Unix platforms
- Implements static routing, BGP, OSPF, and variety of other layer 2 and layer 3 protocols

OPEN SOURCE NOS

Monolithic Network Operating System (NOS)

Proprietary networking switch

Legacy switch

FBOSS Forwarding stack

ONL

ONIE

Open networking switch

SONIC

FBOSS

Big Switch

EXPERIMENTATION

PREPARATORY PHASE

We used Edgecore switches that use programmable switching silicon (Tofino) manufactured by Barefoot Networks, an Intel company

- Loaded with P4 program to handle all supported protocols
- Can add additional protocols by modifying the P4 program
- Allows for more visibility over the network
- Allows the installation of several open source NOSs

ENVIRONMENTAL SETUP

SONIC SUPPORTED ROUTING PROTOCOLS

- Static routing protocol
 - Configure the file /etc/sonic/config_db.json to change the IP addresses of the interfaces
 - Load the configuration to take effect using sudo config load –y
 - Configure static routes using the vtysh session
- BGP
 - Configure the file /etc/sonic/config_db.json to change the IP addresses of the interfaces and the router ID (loopback)
 - Load the configuration
 - Configure BGP using the vtysh session

DISCUSSION

DISCUSSION

- Open source NOSs are mainly targeted to data centers, however, they can be ported to campus networks
- The integration of open source NOSs in white-box switches allows for leveraging the switches capabilities
- With P4 switches, various applications can be done, such as DDoS detection, In-band Network Telemtry (INT), load balancing

CONCLUSION AND FUTURE WORK

CONCLUSION AND FUTURE WORK

- Surveying a number of open source networking software systems
- Highlighting the importance of P4 switches in reshaping the network
- Deploying SONiC NOS on P4 switch and exploring the supported routing protocols, while detailing the implementation
- We plan to deploy SONiC on our programmable switches in our campus network and report their effect

THANKS!

