A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS
LAB SERIES

Book Version: 01-25-2021

Principal Investigator: Jorge Crichigno

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Network Tools and Protocols Lab Series

Contents

Lab 1: Introduction to Mininet

Exercise 1: Building a Basic Topology

Lab 2: Introduction to iPerf

Lab 3: Emulating WAN with NETEM | Latency, Jitter

Lab 4: Emulating WAN with NETEM Il Packet Loss, Duplication, Reordering, and
Corruption

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Exercise 2: Emulating a Wide Area Network (WAN)

Problem 1: Troubleshooting a WAN

Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Lab 8: Bandwidth-delay Product and TCP Buffer Size

Exercise 3: Tuning TCP and Switch's Buffer Size

Exercise 4: Running Tests with Competing TCP Flows and Different Congestion
Control Algorithms

Lab 9: Enhancing TCP Throughput with Parallel Streams

Exercise 5: Enhancing the Aggregate TCP Throughput with Parallel Streams
Problem 2: Enhancing TCP Throughput

Lab 10: Measuring TCP Fairness

Exercise 6: RTT Unfairness

Problem 3: Minimizing the Unfairness

Lab 11: Router’s Buffer Size

Lab 12: TCP Rate Control with Pacing

Exercise 7: Setting the Pacing Rate

Lab 13: Maximum Segment Size (MSS)

Lab 14: Router's Bufferbloat

Exercise 8: Router's Bufferbloat

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance
Lab 16: Random Early Detection

Lab 17: Stochastic Fair Queueing

Lab 18: Controlled Delay (CoDel) Active Queue Management

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Lab 20: Classifying TCP traffic using Hierarchical Token Bucket (HTB)

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 1: Introduction to Mininet

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 1: Introduction to Mininet

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 Introduction tO MININETeiiiiiiiee e e e e s saea e e e 3
2 Invoking Mininet USING the CLL.......cooviiiiiiiiiieccec et s 5
2.1 Invoking Mininet using the default topology.......cccccevviiiiiiviiiiiee e, 5
2.2 TeStiNg CONNECHIVITY cooeeeeeeeee e 8
3 Building and emulating a network in Mininet using the GUIccoeceiiiiieeeiinnnnen. 9
3.1 Building the Network tOpOIOgY......ccovvuiiiiiiiiiiii e 9
3.2 TeStiNg CONNECHIVITY toovveeeieieeecece e s s e 11
3.3 Automatic assignment of IP addressescccoevccuriiiiieeiee e, 13
3.4 Saving and loading a Mininet topologY.....ccccceeeeuviiiiiee i, 15
REFEIENCES ...t e e st e e e s et e e e s bbeeeesareeeessanreeesanns 16

Page 2

Lab 1: Introduction to Mininet

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, students should be able to:

Understand what Mininet is and why it is useful for testing network topologies.
Invoke Mininet from the CLI.

Construct network topologies using the GUI.
Save/load Mininet topologies using the GUI.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoking Mininet using the CLI.
3. Section 3: Building and emulating a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks®. Mininet offers the following features:

e Fast prototyping for new networking protocols.
Page 3

Lab 1: Introduction to Mininet

e Simplified testing for complex topologies without the need of buying expensive
hardware.

e Realistic execution as it runs real code on the Unix and Linux kernels.

e Open source environment backed by a large community contributing extensive
documentation.

Mininet Emulated Network Hardware Network
Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow? and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently few resources that networks of over a thousand nodes have created, running
on a single laptop. A Mininet container is a process (or group of processes) that no longer
has access to all the host system’s native network interfaces. Containers are then assigned
virtual Ethernet interfaces, which are connected to other containers through a virtual
switch®. Mininet connects a host and a switch using a virtual Ethernet (veth) link. The veth
link is analogous to a wire connecting two virtual interfaces, as illustrated below.

Network namespace 1 Network namespace 2
Host 1 Host 2
eth0 | | ethO
vethl | | veth2
Software switch

Root namespace

Figure 2. Network namespaces and virtual Ethernet links.

Each containeris an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.

Mininet provides network emulation opposed to simulation, allowing all network

software at any layer to be simply run as is; i.e. nodes run the native network software of
Page 4

Lab 1: Introduction to Mininet
the physical machine. In a simulator environment on the other hand, applications and

protocol implementations need to be ported to run within the simulator before they can
be used*.

2 Invoking Mininet using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

2.1 Invoking Mininet using the default topology

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

o
Miniedit

Figure 3. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command at the CLI. When
prompted for a password, type and hit enter. Note that the password will not
be visible as you type it.

admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~ (%]

roller found for default
ge

Figure 4. Starting Mininet using the CLI.

Page 5

Lab 1: Introduction to Mininet

The above command starts Mininet with a minimal topology, which consists of a switch

connected to two hosts as shown below.

10.0.01 10.0.0.0/8

s1-eth1
h1-eth0

- /

h1 s1

s1-eth2

10.0.0.2

h2

Figure 5. Mininet’s default minimal topology.

When issuing the command, Mininet initializes the topology and launches its

command line interface which looks like this:

mininet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the

command in the Mininet CLI:

$_
File Actions Edit View Help
admin@admin-pc: ~

mininet=|help

gterm 5 node pingpair

help in noecho pingpairfull

intfs inks pingall ports
iperf net pingallfull px

send a command to a node using:

> h1l ifconfig

The interpreter automatically
for node names when a node is the firs
like
mininets ping h3
should work.

Howeve
mininet

mininet> [

Figure 6. Mininet’s command.

admin@admin-pc: ~

switch
time

Step 4. To display the available nodes, type the command [nodes|:

s
File Actions Edit View Help
admin@admin-pc: ~

mininet> |node
available nodes are:

hi h 1
mininet> [l

Figure 7. Mininet’s command.

admin@admin-pc: ~

Page 6

Lab 1: Introduction to Mininet

The output of this command shows that there are two hosts (host h1 and host h2) and a
switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command in the Mininet CLI to see the available
links.

$- admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

11-eth® sl-eth2:h2

s
mininet> [l

Figure 8. Mininet’s command.
The output of this command shows that:

1. Host hlis connected using its network interface h1-ethO to the switch on
interface s1-ethl.
2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.
3. Switch sl:
a. has aloopback interface lo.
b. connects to h1-ethO through interface s1-ethl.
c. connects to h2-eth0 through interface s1-eth2.

Mininet allows you to execute commands at a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. Issue the command |hl ifconfig]

= admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~

flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::48ab:42ff:fe29:129a prefixlen 64 scopeid 0x20<1link>
ether 4a:ab:42:29:12:9a txqueuelen 1000 (Ethernet)
RX packets 49 bytes 4916 (4.9 KB)
RX errors © dropped O overruns 0 frame 0
TX packets 19 bytes 1482 (1.4 KB)
TX errors © dropped 0 overruns @ carrier © collisions 0

EE: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
ineté6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors O dropped © overruns 0 frame 0
TX packets © bytes 0 (0.0 B)
TX errors © dropped 0 overruns © carrier @ collisions 0

mininet> i

Figure 9. Output of h1 ifconfiglcommand.

Page 7

Lab 1: Introduction to Mininet

This command executes the Linux command on host h1l. The command shows
host hl’s interfaces. The display indicates that host h1 has an interface h1-ethO configured
with IP address 10.0.0.1, and another interface lo configured with IP address 127.0.0.1
(loopback interface).

2.2 Testing connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response. Information
available includes how many responses are returned and how long it takes for them to
return.

Step 1. On the CLI, type h1 ping 10.0.0.2. This command tests the connectivity
between host hl and host h2. To stop the test, press [Ctr1+c| The figure below shows a
successful connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and
successfully received the expected responses.

$_ admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

mininet>|h1 ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10. 2: icmp_seq=1 ttl=64 time=1.15 ms
64 bytes from 10. 2: icmp_seq=2 ttl=64 time=0.073 ms
64 bytes from 10. 2: icmp_seg=3 ttl=64 time=0.072 ms
64 bytes from 10. 2: icmp_seq=4 ttl=64 time=0.074 ms
2@

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 57ms
rtt min/avg/max/mdev = 0.072/0.342/1.150/0.466 ms
mininet> [

0.0.
0.0.
0.0.
0.0.

Figure 10. Connectivity test between host h1l and host h2.

Step 2. Stop the emulation by typing fexit]

$- admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~
Stop 9 controllers
Stopping 2 links

Stopping 1 switches

Stopping 2 hosts

£

Done
completed in S
admin@admin-pc

Figure 11. Stopping the emulation using [exit]

Page 8

Lab 1: Introduction to Mininet

The command is often used on the Linux terminal (not on the Mininet CLI)
to clean a previous instance of Mininet (e.g., after a crash).

3 Building and emulating a network in Mininet using the GUI

In this section, you will use the application MiniEdit> to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

10.0.0.0/8

sl-ethl

10.0.0.2
hl-ethO h2-ethO

Figure 12. Lab topology.

3.1 Building the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

i

Terminal

Miniedit

Figure 13. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

File Edit Run Help

[(1) |

g Select
C)

Host

a‘ (3)

\ Switch

(4)
Link

(5)
l (6)
. L Stop

stop Ji

A

Figure 14. MiniEdit Graphical User Interface (GUI).

Page 9

Lab 1: Introduction to Mininet

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. Switch: allows addition of a new switch to the topology. After clicking this button,
click anywhere in the blank canvas to insert the switch.

4. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

5. Run: starts the emulation. After designing and configuring the topology, click the
run button.

6. Stop: stops the emulation.

Step 2. To build the topology of Figure 12, two hosts and one switch must be deployed.
Deploy these devices in MiniEdit, as shown below.

File Edit Run Help

T
L _—

hl

Figure 15. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses at host hl and host h2. Host hl’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below.

Page 10

Lab 1: Introduction to Mininet

L] MiniEdit = X
File Edit Run Help
X *
] MiniEdit -0 X
Properties" VLAN lnterfaces[External Interfaces‘ Private Directories[
C L= J Hostname: h2
J | P Address:[l0.0.0278] |
E / \ Default Route:
— | Amount CPU: host —
a J VHost Options | Cores:
\ h1 Start Command:
Stop Command: |
” oK H Cancel l
)

Figure 16. Configuration of a host’s properties.

3.2 Testing connectivity

Before testing the connection between host hl and host h2, the emulation must be
started.

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Stop |’.\47
Figure 17. Starting the emulation.

Step 2. Open a terminal on host h1l by holding the right click on host h1l and selecting
Terminal. This opens a terminal on host h1l and allows the execution of commands on the
host hl. Repeat the procedure on host h2.

File Edit Run Help

Host Options h2

Figure 18. Opening a terminal on host h1l.
Page 11

Lab 1: Introduction to Mininet

The network and terminals at host h1l and host h2 will be available for testing.

File Edit Run Help

sadmin-pc:~# []

root@admin-pc:~# []

Figure 19. Terminals at host h1 and host h2.

Step 3. On host hl’s terminal, type the command to display its assigned IP
addresses. The interface h1-ethO at host hl should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

"Host: h1"

root@dmin-pc:~#| ifconfig
| flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::f0d6:67ff:fe0l:6041 prefixlen 64 scopeid 0x20<link>
ether f2:d6:67:01:60:41 txqueuelen 1000 (Ethernet)
RX packets 51 bytes 5112 (5.1 KB)
RX errors © dropped © overruns © frame 0
TX packets 21 bytes 1678 (1.6 KB)
TX errors © dropped © overruns © carrier @ collisions ©

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1O<host>
loop txqueuelen 1000 (Local Loopback)
RX packets @ bytes 0 (0.0 B)
RX errors © dropped © overruns © frame ©
TX packets © bytes 0 (0.0 B)
TX errors © dropped © overruns © carrier © collisions ©

root@admin-

Figure 20. Output of [i fconfig] command on host h1.

Repeat Step 3 on host h2. Its interface h2-ethO should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Page 12

Lab 1: Introduction to Mininet

Step 4. On host h1’s terminal, type the command [ping 10.0.0.2]. This command tests
the connectivity between host h1 and host h2. To stop the test, pressctrl+d. The figure
below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

"Host: h1"

root@admin-pc:~#|ping 10.0.
PING 10.0.0.2 (10.6

from 10.0.

from 10.0.

from 10.

from 10.

from 10.

s from 10.0.

6 packets t re ed, @ 5, time 110ms
rtt min/avg/n

Figure 21. Connectivity test using command.

Step 5. Stop the emulation by clicking on the Stop button.

Run |

I | —

Figure 22. Stopping the emulation.

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1l and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Hold right click on host

h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Page 13

Lab 1: Introduction to Mininet

File Edit Run Help
K - MiniEdit -0 x T
- Properties VLAN Interfaces | External Interfaces Private Directories |
E Hostname: h1
C s1 IP Address: | |
g ; Default Route:
== / \ Amount CPU: host —
@ Host Options ! Cores:
h2 |Start Command:
\ Properties Stop Command:
OK Cancel

Figure 23. Host h1 properties.

Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this
value to 15.0.0.0/8, and then press the OK button.

MiniEdit S Y

-
File Run Help

0 Cut Al

o s e

i 5 IPBase: [15.0.0.0/8 | sFlow Profile for Open vSwitch
inal: — Target:
c 51 ‘ Default Terminal: xterm _ |'gn e
- StartcL: I BmpHNg:
E -) - Header: |128
—f Default Switch: Open vSwitch Kernel Mode — | Polling: 30
Open vSwitch
@ E l " | -NetFlow Profile for Open vSwitch
h1 h2 OpenFlow 1.0: v
Target:
\ OpenFlow 1.1: ;
OberElow 12T Active Timeout: 600
= i o, Add ID to Interface: |
e OpenFlow 1.3: ‘
dpctl port:
OK | Cancel

Figure 24. Modification of the IP Base (network address and prefix length).

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal.

Page 14

Lab 1: Introduction to Mininet

File Edit Run Help

Host Options h2

Terminal

Figure 25. Opening a terminal on host h1.

Step 5. Type the command to display the IP addresses assigned to host h1. The
interface hl-ethO at host h1 now has the IP address 15.0.0.1 and subnet mask 255.0.0.0.

“"Host: h1"

min-pc:~# ifconfig
[flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 15.0.0.1 netmask 255.0.0.0 broadcast 15.255.255.255

inet6 fe80::5c52:56fT:febc:848b prefixlen 64 scopeid 0x20<link>
ether 5e:52:56:bc:84:8b txqueuelen 1000 (Ethernet)

RX packets 24 bytes 2851 (2.8 KB)

RX errors @ dropped © overruns © frame ©

TX packets 7 bytes 586 (586.0 B)

TX errors @ dropped © overruns © carrier @ collisions ©

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1O<host>
loop txqueuelen 1000 (Local Loopback)
RX packets @ bytes © (0.0 B)
RX errors @ dropped © overruns @ frame ©
TX packets 0@ bytes 0 (0.0 B)
TX errors © dropped © overruns © carrier @ collisions ©

root@admin-pc:~# |j

Figure 26. Output of [i fconfig] command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-ethO at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

3.4 Saving and loading a Mininet topology

It is often useful to save the network topology, particularly when its complexity increases.
MiniEdit enables you to save the topology to afile.

Page 15

Lab 1: Introduction to Mininet

Step 1. To save your topology, click on File then Save. Provide a name for the topology
and save on your machine.

Edit Run Help

MiniEdit

New

IOpenI

Save

Export Level 2 Script

Quit [El Lab 2.mn [£] Lab 8.mn [£] Lab 14 mn
st [Lab 3.mn EI TS) Topoiogy.mn |
[E] Lab 4.mn [El Lab 10.mn
[E] Lab 5.mn ElLab 11.mn
[E] Lab 6.mn El Lab 12.mn
|:] |:] [E] Lab 7.mn [l Lab 13.mn
h1 h2 El]

Directory: |!home!admin!lab_topologiesl

~| @]

File name: |myT0p0I0gy,mn

Files of type: Mininet Topology (*.mn) _-|

[open |

Cancel |

Figure 27. Saving the topology.

Step 2. To load the topology, click on File then Open. Locate the topology file and click on

Open. The topology will be loaded again to MiniEdit.

- MiniEdit -0 x
Edit Run Help
New £
gpen] Save the topology as... - X
ISaveI
Export Level 2 Script Directory: |/home/admin/lab_topologies | — ‘ Es
Quit = ‘EI Lab2.mn [] Lab 8.mn [lwbl4mn
sl ‘L‘ Lab 3.mn g Lab 9.mn 8| myTopology.mn
|C] Lab 4.mn [[] Lab 10.mn
|[£] Lab5.mn [] Lab 11.mn
| Lab 6.mn [£] Lab 12.mn
E]] Lab 7.mn [5] Lab 13.mn
\
hl h2 ([D]
i File name: |myTopoIogy| I§ave IJ
e Files of type: Mininet Topology (*.mn) —'I Cancel |
Figure 28. Opening a topology.
The upcoming labs’ topologies are already built and stored in the folder

/home/admin/lab_topologies located in the Client’s home directory. The Open dialog is
used to avoid manually rebuilding each lab’s topology.

This concludes Lab 1. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.

Page 16

Lab 1: Introduction to Mininet

2. N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

3. J. Esch, “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10-13, 2015.

4. P. Dordal, “An Introduction to computer networks,” [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

Page 17

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Exercise 1: Building a Basic Topology

Document Version: 08-25-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 1: Building a Basic Topology

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas
I R O =To 1= o) A =1 KT
N B Y=Y [\ VZ=] =1 o] (=TT

Exercise 1: Building a Basic Topology

1 Exercise description

In this exercise, you will build a topology and run Mininet commands to verify the
configuration. Additionally, you will perform a connectivity test.

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Deliverables

Follow the steps below to complete the exercise.

a) In MiniEdit, build the following topology.

sl s2

b) Before running the emulation click on Edit->Preferences and set the start CLI box.

¢) Inthe Mininet CLI, verify the name of the interfaces, links, and nodes in the
topology.

d) Verify the IP and MAC addresses in the hosts.

e) Perform a connectivity test between host h1 and host h2.

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 2: Introduction to Iperf3

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 2: Introduction to Iperf3

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
O (0] o Yo [0To1 o T I o TN T 2= o PP UPPRRUPPRPR 3
P IF- | o I o] o Yo Lo -1V 2SR PUPRPPPPPR 4
2.1 Starting host h1 and hoSt h2........ooeiiiiiiii e 6
3. UsingiPerf3 (client and server commands)........ccccueeeieeeeieeeniieeecree e sevee e e 6
3.1 Starting ClienNt @Nd SEIVETcii it 7
3.2 Setting transmitting time Period........cueviiviiiiiiiniiiee e 8
3.3 Setting time INterval ..o 9
3.4 Changing the number of bytes to transmit...........ccceeeiiiiiiiiiie e, 10
3.5 Specifying the transport-layer protocol........cccccoeiiieiiiiiiiciiiee e, 11
3.6 Changing POrt NUMDETuuiiiiiiee e e e e e s nrrae e e e e e 13
3.7 EXport results to JSON fileccouiiei i e e e 13
3.8 Handle 0Ne ClIeNt c...eeeieeeeeeeeee e 14
4. Plotting iPerf3 reSUILS......ueieei e e 15
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 17

Page 2

Lab 2: Introduction to Iperf3

Overview

This lab briefly introduces iPerf3 and explains how it can be used to measure and test
network throughput in a designed network topology. It demonstrates how to invoke both
client-side and server-side options from the command line utility.

Objectives
By the end of this lab, students should be able to:

Understand throughput and how it differs from bandwidth in network systems.
Create iPerf3 tests with various settings on a designed network topology.
Understand and analyze iPerf3’s test output.

Visualize iPerf3’s output using a custom plotting script.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to iPerf3.
2. Section 2: Lab topology.
3. Section 3: Using iPerf3 (client and server commands).
4. Section 4: Plotting iPerf3’s results.
1 Introduction to iPerf

Bandwidth is a physical property of a transmission media that depends on factors such as
the construction and length of wire or fiber. To network engineers, bandwidth is the
maximum data rate of a channel, a quantity measured in bits per second (bps)!. Having a
high-bandwidth link does not always guarantee high network performance. In fact,
several factors may affect the performance such as latency, packet loss, jitter, and others.

Page 3

Lab 2: Introduction to Iperf3

In the context of a communication session between two end devices along a network path,
throughput is the rate in bps at which the sending process can deliver bits to the receiving
process. Because other sessions will be sharing the bandwidth along the network path,
and because these other sessions will recur, the available throughput can fluctuate with
time?. Note, however, that sometimes the terms throughput and bandwidth are used
interchangeably.

iPerf3 is a real-time network throughput measurement tool. It is an open source, cross-
platform client-server application that can be used to measure the throughput between
the two end devices. A typical iPerf3 output contains a timestamped report of the amount
of data transferred and the throughput measured.

hy h,

iPerf3 Client iPerf3 Server

Figure 1. Throughput measurement with iPerf3.

Measuring throughput is particularly useful when experiencing network bandwidth issues
such as delay, packet loss, etc. iPerf3 can operate on Transmission Control Protocol (TCP),
User Datagram Protocol (UDP), and Stream Control Transmission Protocol (SCTP).

In iPerf3, the user can set client and server configurations via options and parameters and
can create data flows to measure the throughput between the two end hosts in a
unidirectional or bidirectional way. iPerf3 outputs a timestamped report of the amount
of data transferred and the throughput measured3.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.01 10.0.0.0/8 10.0.02
R s1-eth1 % s1-eth2
E
< h1-eth0 h2-ethO
h1 s1 h2

Figure 2. Mininet’s default minimal topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 4

Lab 2: Introduction to Iperf3

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 2.mn topology file in the default directory, /home/admin/lab_topologies, and
click on Open.

Edit Run Help

MiniEdit

New

rt Level 2 Script
Export Level 2 Scrip Directory: /home/admin/lab_topologies 4| B
Uk CEREEE] [)tabs.mn []labl4mn [Lab20.mn

[El'tab3.mn [E] Lab 9.mn [Z] Lab 15.mn
[£] Lab 4.mn [Z] Lab 10.mn [] Lab 16.mn
[E] Lab5.mn [E] Lab 11.mn [C] Lab 17.mn
[£] Lab 6.mn [Z] Lab 12.mn [Z] Lab 18.mn
[E] Ltab 7.mn [5] Lab 13.mn [] Lab 19.mn

(4] ¥

File name: |Lab 2.mn I Open I

Files of type: Mininet Topology (*.mn) AI Cancel |

-m%

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop l.:]i

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 5

Lab 2: Introduction to Iperf3

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

File Edit Run Help

Host Options h2

—— |Terminal

Figure 6. Opening a terminal on host h1l.

Step 2. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host

hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"
root@admin-pc:~4
PING 10.0.0
from
from

s from 10.0

time 77ms

root@admin-pc:~#

Figure 7. Connectivity test using command.
The figure above indicates that there is connectivity between host hl and host h2. Thus,
we are ready to start the throughput measurement process.
3 Using iPerf3 (client and server commands)
Since the initial setup and configuration are done, it is time to start a simple throughput

measurement. The user interacts with iPerf3 using the command. The basic
syntax used on both the client and the server is as follows:

iperf3 [-s|-c] [options]

Page 6

Lab 2: Introduction to Iperf3

3.1 Starting client and server

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

File Edit Run Help

%

Host Options

Figure 8. Opening a terminal on host h2.

Step 2. To launch iPerf3 in server mode, run the command in host h2’s
terminal as shown in the figure below:

iperf3 -s

"Host: h2"

Figure 9. Host h2 running iPerf3 server.

The parameter[-g|in the command above indicates that the host is configured as a server.
Now, the server is listening on port 5201 waiting for incoming connections.

Step 3. Now to launch iPerf3 in client mode, run the command [iperf3 -c 10.0.0.2/in
host h1’s terminal as shown in the figure below:

iperf3 -c 10.0.0.2

Page 7

Lab 2: Introduction to Iperf3

"Host: hl"
root@admin-pc Z
Connecting to F 0.0 ort 5201
[13] local 10.0.08.1 4 connected to 10.0.08.2 port 5201
ID] Interval Transfer Bitrate Retr Cw
13] B 0O .5 Gbits/se [¢]

1]

™ ®

"
]

™ o

[g]

5 1.
5 1.
5 1.2
5 1.
se 1.
_-].."
5].."
5 1.4
5 1.

m

GBytes

Transfer
52.1 GBytes
52.1 GBytes 44.6 Gb 5 receiver

iperf Done.
root@admin-pc:~# [

Figure 10. Host h1 running iPerf3 as client.

The parameter [-cJin command above indicates that host h1l is configured as a client. The
parameter 10.0.0.2 is the server’s (host h2) IP address. Once the test is completed, a
summary report on both the client and the server is displayed containing the following
data:

e |D: identification number of the connection.

e Interval: time interval to periodically report throughput. By default, the time
interval is 1 second.

e Transfer: how much data was transferred in each time interval.

e Bitrate: the measured throughput in in each time interval.

e Retr: the number of TCP segments retransmitted in each time interval. This field
increases when TCP segments are lost in the network due to congestion or
corruption.

e (Cwnd: indicates the congestion windows size in each time interval. TCP uses this
variable to limit the amount of data the TCP client can send before receiving the
acknowledgement of the sent data.

The summarized data, which starts after the last dashed line, shows the total amount of
transferred data is 52.1 Gbyte and the throughput 44.8 Gbps.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

3.2 Setting transmitting time period

Setting the transmission time period is configured solely on the client. To change the
default transmission time, apply the following steps:

Page 8

Lab 2: Introduction to Iperf3

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

"Host: h2"

Figure 11. Host h2 running iPerf3 as server.

Step 2. Start the iPerf3 client with the [-t] option followed by the number of seconds.
iperf3 -c 10.0.0.2 -t 5

"Host: h1"

10.0.0.2
1 port 594
ID] Interval
13] 0.00-1.00
13] .00-:
13 p.

Interval Transfer Bitrate
0.00-5.00 sec 25.9 GBytes 44.5 Gt
0.00-5.04 = 25.9 GBytes)

root@admin-pc:~# |J

Figure 12. Host h1 transmitting for 5 seconds.

The above command starts an iPerf3 client for a 5-second time period transmitting at an
average rate of 44.5 Gbps.

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3.3 Setting time interval

In this test, the user will configure the client to perform a throughput test with 2-seconds
reporting time interval on both the client and the server. Note the default 1-second

interval period in Figure 12.

The[-i] option allows setting the reporting interval time in seconds. In this case the value
should be set to 2 seconds on both the client and the server.

Step 1. Setting the interval value on the server (host h2’s terminal):

Page 9

Lab 2: Introduction to Iperf3

iperf3 -s -i 2

"Host: h2"

Figure 13. Host h2 running iPerf3 as server.

Step 2. Setting the interval value on the client (host h1’s terminal):

iperf3 -c 10.0.0.2 -i 2

"Host: h1"

root@admin-pc:~# |iperf3 -c 10.0.0.2 -i 2

Connecting to host 10.0.0.2, port 5201

[13] local 10.0.0.1 port 59430 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

131 .00-2.00 sec 8.69 GBytes 37.3 Gbits/sec 0 4.33 MBytes
[13] .00-4.00 sec 10.3 GBytes 44.3 Gbits/sec 4.33 MBytes
[13] .00-6.00 sec 10.3 GBytes 44.3 Gbits/sec .33 MBytes
[
[

GBytes 44.8 Gbits/sec 4.33 MBytes

3
13] .00-8.00 sec 10.4 GBytes 44.8 Gbits/sec .33 MBytes
4

13] .00-10.00 sec 10.

[ID] Interval Transfer Bitrate
[13] 0.00-10.00 50.2 GBytes 43.1 Gbits/sec sender
[13] 0.00-10.05 50.2 GBytes 42.9 Gbits/sec receiver

iperf Done.
root@admin-pc:~# ||

Figure 14. Host h1 and host h2 reporting every 2 seconds.

Note that the option can be specified differently on the client and the server. For
example, if the [-i] option is specified with the value 3 on the client only, then the client
will be reporting every 3 seconds while the server will be reporting every second (the
default [-i] value).

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3.4 Changing the number of bytes to transmit

In this test, the client is configured to send a specific amount of data by setting the
number of bytes to transmit. By default, iPerf3 performs the throughput measurement
for 10 seconds. However, with this configuration, the client will keep sending packets until
all the bytes specified by the user were sent.

Step 1. Type the following command on host h2’s terminal to start the iPerf3 server.
iperf3 -s

Page 10

Lab 2: Introduction to Iperf3

"Host: h2"

Figure 15. Host h2 running iPerf3 as server.

Step 2. This configuration is only set on the client (host h1’s terminal) using the [-n] option
as follows:

iperf3 -c 10.0.0.2 -n 16G

The[-noption in the above command indicates the amount of data to transmit: 16 Gbytes.
The user can specify other scale values, for example, is used to send 16 Mbytes.

"Host: h1"

3 -c 10.0.0.2 -n 166G
p 01
connected to 10.0.0.2

KBytes
.01 MBytes
1.81 MBytes

Bitrate
44.1 Gbits/sec ¢ sender
16.0 GBytes 43.5 Gbits/sec receiver

Figure 16. Host h1 sending 16 Gbps of data.

Note the total time spent for sending the 16 Gbytes of data is 3.11 seconds and not the
default transmitting time used by iPerf3 (10 seconds).

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3.5 Specifying the transport-layer protocol

So far, the throughput measurements were conducted on the TCP protocol, which is the
default configuration protocol. In order to change the protocol to UDP, the user must
invoke the option [-u on the client side. Similarly, the option is used for the SCTP

protocol. iPerf3 automatically detects the transport-layer protocol on the server side.

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

Page 11

Lab 2: Introduction to Iperf3

"Host: h2"

Figure 17. Host h2 running iPerf3 as server.

Step 2. Specify UDP as the transport-layer protocol using the [~y option as follows.
iperf3 -c 10.0.0.2 -u

"Host: h1"

root@admin-pc:~#|iperf3 .0.0
Connecting to .2 rt 01
[13] local 10.8.0.1 port 4 connected to 10.0.8.2 port 5201

ID] Interval er itrate Total Datagrams
13] ! 5 B hi 91
KByt o} 90
KByt . Mbi S 91
KByt b 90
KByt
KByt
KByt

OO0 0 606060600

04 Mbits/s

[
[
[
[
[
[
[
[
[
[.0 5
[.05 Mbits

Transfer Bitrate
1.25 MBytes 1.05 Mbits/sec D6 |
1.25 MBytes 5 € 0.010 ms ©/906 (receiver

root@admin-pc:~# [J

Figure 18. Host h1 sending UDP datagrams.
Once the test is completed, it will show the following summarized data:

e ID, Interval, Transfer, Bitrate: Same as TCP.

e Jjtter: the difference in packet delay.

e Lost/Total: indicates the number of lost datagrams over the total number sent to
the server (and percentage).

After the dashed lines, the summary is displayed, showing the total amount of transferred
data (1.25 Mbytes) and the maximum achieved bandwidth (1.05 Mbps), over a time
period of 10 seconds. The lJitter, which indicates in milliseconds (ms) the variance of time
delay between data packets over a network, has a value of 0.010ms. Finally, the lost
datagrams value is O (zero) and the total datagram which the server has received was 906,
and thus, the loss rate is 0%. These values are reported on the server as well.

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Page 12

Lab 2: Introduction to Iperf3

3.6 Changing port number

If the user wishes to measure throughput on a specific port, the option is used to
configure both the client and the server to send/receive packets or datagrams on the
specified port.

Step 1. Start the iPerf3 server on host h2. Use the [-] option to specify the listening port.

iperf3 -s -p 3250

"Host: h2"

Figure 19. Host h2 running iPerf3 as server on port 3250.

Step 2. Start the iPerf3 client on host h1. Use the [-ploption to specify the server’s listening
port.

iperf3 -c 10.0.0.2 -p 3250

"Host: h1"

root@admin-pc:~# |[iperf3 -

Connecting to host 160. 2, port 0
[13] local 10.0.8.1 port 59676 connected to 10 2 port 32

ID] Interval Transfer Bitrate Retr

13] i -1.00 sec es 44, hits/se [¢]
13] p-2.00 4.4 0
13] c]
13] 0]
13] [¢]
13] [¢]
13] [¢]
13] c]
13] 0]
13] [¢]

.
tunnnnbnunwnwn
A
e e B B = S R =
¢

1D] Transfer Bitrate Retr
13] 0 - PO se 52 £ 44.7 Gbits/sec [¢]
13] 0 -10.04 se 52.1 GBytes €

Figure 20. Host h2 running on port 3250.

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3.7 Export results to JSON file
JSON (JavaScript Object Notation) is a lightweight data-interchange format. iPerf3 allows
exporting the test results to a JSON file, which makes it easy for other applications to

parse the file and interpret the results (e.g. plot the results).

Page 13

Lab 2: Introduction to Iperf3

Step 1. Start the iPerf3 server on host h2.
iperf3 -s

"Host: h2"

root@admin-pc:~# |iperf3 -s

Server listening on 5201

Figure 21. Host h2 running iPerf3 as server.

Step 2. Start the iPerf3 client on host hl. Specify the [-J] option to display the output in
JSON format.

iperf3 -c 10.0.0.2 -J

“Host: h1"

root@admin-pc:~# iperf3 -c

Figure 22. Host h1 using [-J] to output JSON to standard output (stdout).

The [-J option outputs JSON text to the screen through standard output (stdout) after the
test is done (10 seconds by default). It is often useful to export the output to a file that
can be parsed later by other programs. This can be done by redirecting the standard
output to a file using the redirection operator in Linux [>].

iperf3 -c 10.0.0.2 -J > test results.json

"Host: h1"

c 10.0.0.2 -] > test results.json

Figure 23. Host h1 using [-J] to output JSON and redirecting stdout to file.

After creating the JSON file, the [1s] command is used to verify that the file is created. The
command can be used to display the file’s contents.

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3.8 Handle one client

By default, an iPerf3 server keeps listening to incoming connections. To allow the server
to handle one client and then stop, the [-1] option is added to the server.

Step 1. Start the iPerf3 server on host h2. Use the [-1] option to accept only one client.

Page 14

Lab 2: Introduction to Iperf3

iperf3 -s -1

"Host: h2"

Figure 24. Host h2 running a server with one connection only.

Step 2. Start the iPerf3 client on host h1.

iperf3 -c 10.0.0.2

"Host: h1"

Connecting to host 1 2
[13] local 1@ 2 port 5201
ID] Interval Transfer Retr Cwnd
13] 6] -1.00 .05 LA s/se 6] 1.11 M
) - .11 GByt 43. £ [¢] .11 M
.06 GByt 3. hi = 0 .11 M
.34 GByt 45. ol = 0 .35 M
.77 GByt 41.0 Gbi e 0 .35 W
.25 GByt 45. hi € o} .35 I
GByt 44.6 Gbi B 0]
GByt 48.8 Gbi £ 0
80 GByt 4) 0

W owm o wn
O (0 (D D (D D

[4+]
s as s

=
5
5

[4/]

b et e e e e et

13]

ID] Interval
13] 0.00-10.00
13] 0.00-10.04

L8, [SR R R SR R R, R

Transfer
50.5 GByte
50.5 GBytes

43.2 Gbits/sec

? GBytes 44.8 Gbi ec 0]

Retr
0]

iperf Done.
@admin-pc:~# ||

Figure 25. Host h1 running an iPerf3 client.

After this test is finished, the server stops immediately.

4 Plotting iPerf3 results

In section 3.7, iPerf3’s result was exported to a JSON file to be processed by other
applications. A script called [plot iperf.sh|is installed and configured on the Client’s
machine. It accepts a JSON file as input and generates PDF files plotting several variables
produced by iPerf3.

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

Page 15

Lab 2: Introduction to Iperf3

"Host: h2"

Figure 26. Host h2 running iPerf3 as server.
Step 2. Start the iPerf3 client on host h1. Specify the [-J option to produce the output in

JSON format and redirect the output to the file test results.json. Any data previously
stored in this file will be replaced with current output as the [5| operator is being used here.

iperf3 -c 10.0.0.2 -J > test results.json

"Host: h1"

-c 10.0.0.2 -] > test results.json

Figure 27. Host h1 using [-J] to output JSON and redirecting stdout to file.

Step 3. To generate the output for iPerf3’s JSON file run the following command:

plot iperf.sh test results.json

"Host: hl1l"

root@admin-pc:~# |plot iperf.sh test results.json
root@admin-pc:~# |

Figure 28. plot iperf.sh|script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT _Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) which can be used by other applications. These files are stored in a directory
results created in the same directory where the script was executed as shown in the figure
below.

"Host: h1"

-pCc:~#

diff algo

no_pac
concurrent pacing test results.json
concurrent same algo iperf.csv

root@admin-pc:~# ||

Figure 29. Listing the current directory’s contents using the [1s| command.

Step 4. Navigate to the results folder using the [cd command.

cd results/

Page 16

Lab 2: Introduction to Iperf3

"Host: h1"

Figure 30. Entering the results directory using the command.

Step 5. To open any of the generated files, use the command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

"Host: h1"

root@dmin-pc:~/results#|xdg-open throughput.pdf I

Figure 31. Opening the throughput.pdf file using [xdg-open|.

Throughput over time
45000 T T T T T T

—— l.dat
40000 E

30000 , .
25000 [, e

Mbps

20000 |- : : : -
111 S T I S
10000 | , : i

5000 : &

Time (sec)
Figure 32. throughput.pdf output.

Step 6. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. A. Tanenbaum, D. Wetherall, “Computer networks,” 5™ Edition, Prentice Hall,
2011.

2. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7t Edition,
Pearson, 2017.

3. Invoking Iperf3 [Online]. Available: https://software.es.net/iperf/invoking.html.

Page 17

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 3: Emulating WAN with NETEM I. Latency,
Jitter

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

Contents
OVEIVIBW ...ttt ettt ettt e e e et et e e e e et e e e e e e et e e e e e e e e eeeeeees 3
(0] o 1101 4 V7= PUPPP 3
(1Y Y=Y T =P PP P UPPPRUPPPPR 3
(1Y o o - o [g T- T o IO PP UPPPRUPPRPR 3
1 Introduction to network emulators and NETEMccccciviiiiiiieeiniiieee e siieee e 4
000 N V1 I 1 RSP 4
0 V7 N\ R T To e (=] - Y USRI 4
P IF- | o I o] o Yo Lo} -1V 20 USRS SUPRPRRUPTPPR 5
2.1 Starting host h1 and hoSt h2........ooiiiiiiiii e 6
3 Adding/changing delay to emulate @ WANcccoeviieiiieiiiecieceesee e 7
3.1 Identify interface of host hl and host h2........ccccoiiiiiiiiii i 8
3.2 Add delay tointerface connecting to WANc.ovriiiieiiiiiciieee e, 9
3.3 Changing the delay in emulated WANoooomiiiiiee e, 11
4 Restoring original values (deleting the rules)ccccccveeeiriiiei e, 12
5 Adding jitter to emulated WANooo o 13
5.1 Add jitter to interface connecting to WANcccvvmiieiiii e, 13
6 Adding correlation value for jitter and delay........cccovvvireeeeiiiicc e, 14
7 Delay distribULiON.....cciiiii e 16
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 17

Page 2

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

Overview

This lab introduces NETEM and explains how it can be used to emulate real-world
scenarios while having control on parameters that affect the performance of networks.
Network parameters include latency, jitter, packet loss, reordering, and corruption.
Correlation values between network parameters will also be set to provide a more
realistic network environment.

Objectives

By the end of this lab, students should be able to:

uhwWwN e

Understand delay in networks and how to measure it.
Understand Linux queuing disciplines (qdisc) architecture.
Deploy emulated WANSs characterized by large delays using NETEM and Mininet.
Perform measurements after introducing delays to an emulated WAN.

Deploy emulated WANs characterized by delays, jitters, and corresponding

correlation values.
6. Modify the delay distribution of an emulated WAN.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

Nou,srwnNe

Section 1: Introduction to network emulators and NETEM.
Section 2: Lab topology.

Section 3: Adding/changing delay to emulate a WAN.
Section 4: Restoring original values (deleting the rules).
Section 5: Adding jitter to emulated WAN.

Section 6: Adding correlation value for jitter and delay.
Section 7: Delay distribution.

Page 3

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

1 Introduction to network emulators and NETEM

Network emulators play an important role for the research and development of network
protocols and applications. Network emulators provide the ability to perform tests of
realistic scenarios in a controlled manner, which is very difficult on production networks.
This is particularly complex for researchers who develop and test tools for Wide Area
Networks (WANs) and for multi-domain environments.

11 NETEM

One of the most popular network emulators is NETEM*2, a Linux network emulator for
testing the performance of real applications over a virtual network. The virtual network
may reproduce long-distance WANSs in the lab environment. These scenarios facilitate the
test and evaluation of protocols and devices from the application layer to the data-link
layer under a variety of conditions. NETEM allows the user to modify parameters such as
delay, jitter, packet loss, duplication and re-ordering of packets.

NETEM is implemented in Linux and consists of two portions: a small kernel module for a
qgueuing discipline and a command line utility to configure it. Figure 1 shows the basic
architecture of Linux queuing disciplines. The queuing disciplines exist between the IP
protocol output and the network device. The default queuing discipline is a simple packet
first-in first-out (FIFO) queue. A queuing discipline is a simple object with two interfaces.
One interface queues packets to be sent and the other interface releases packets to the
network device. The queuing discipline makes the policy decision of which packets to send,
which packets to delay, and which packets to drop. A classful queueing discipline, such as
NETEM, has configurable internal modules.

Application User
TCP Kernel
IP

Queueing
discipline

| Network device |

Figure 1. Linux queueing discipline.

1.2 WANSs and delay

In networks, there are several processes and devices that contribute to the end-to-end
delay between a sender node and a destination node. Many times, the end-to-end delay
is dominated by the WAN’s propagation delay. Consider two adjacent switches A and B
connected by a WAN. Once a bit is pushed onto the WAN by switch A, it needs to

Page 4

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

propagate to switch B. The time required to propagate from the beginning of the WAN to
switch B is the propagation delay. The bit propagates at the propagation speed of the
WAN’s link. The propagation speed depends on the physical medium (that is, fiber optics,
twisted-pair copper wire, etc) and is in the range of 2x108 meters/sec to 3x10% meters/sec,
which is equal to, or a little less than, the speed of light. The propagation delay is the
distance between two switches divided by the propagation speed. Once the last bit of the
packet propagates to switch B, it and all the preceding bits of the packet are stored in
switch B3.

Network tools usually estimate delay for troubleshooting and performance
measurements. For example, an estimate of end-to-end delay is the Round-Trip Time
(RTT), which is the time it takes for a small packet to travel from sender to receiver and
then back to the sender. The RTT includes packet-propagation delays, packet-queuing
delays in intermediate routers and switches, and packet-processing. As mentioned above,
if the propagation delay dominates other delay components (as in the case of many
WANSs), then RTT is also an estimate of the propagation delay.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.01 10.0.0.0/8 10.0.022

s1-eth1 s1-eth2
h1-ethO h2-ethO
h1 s1 h2

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|

H_

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 3.mn topology file and click on Open.

Page 5

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

= MiniEdit
[Fie]| edit Run Help
New
|0pen|
Sav {8 s

ESpon Livel 2 Sconk Directory: /home/admin/lab_topologies q’ B

Quit

[Cltab2.mn [Jlab8mn [Ltabl4mn [Lab20.mn
l[l [l Lab9.mn [] Lab 15.mn
|[] Lab 4.mn [] Lab 10.mn [-] Lab 16.mn
(£l Ltab 5.mn [£] Lab 11.mn [£] Lab 17.mn
|[C] Lab 6.mn [-] Lab 12.mn [_] Lab 18.mn
] Lab 7.mn [5] Lab 13.mn [£] Lab 19.mn

(]]

File name: |Lab 3.mn ~ [[Spen]

Files of type: Mininet Topology (*.mn) AI Cancel ‘

u@%

Figure 4.
MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network

must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop l"“«l—

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

Page 6

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

File Edit Run Help

Host Options

Figure 6. Opening a terminal on host h1l.

Step 2. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2]. This command tests the connectivity between host

hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

2 hytes of data.
from 10. . icmp =1 tt1=64 time
from 10. 2: icmp 2 ttl=64 ti
from 10. . ic 3 ttl=64 ti

s from 10.0.0.2: icmp 4 tt1=64 time

Figure 7. Connectivity test using command.
The figure above indicates that there is connectivity between host h1l and host h2. Thus,
we are ready to start the throughput measurement process.
3 Adding/changing delay to emulate a WAN
The user invokes NETEM using the command line utility called [* °. With no additional

parameters, NETEM behaves as a basic FIFO queue with no delay, loss, duplication, or
reordering of packets. The basic[td syntax used with NETEM is as follows:

sudo tc gdisc [add|del|replace|change|show] dev dev_id root netem opts

e [sudd]: enable the execution of the command with higher security privileges.
e [t command used to interact with NETEM.

Page 7

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

e [gdisd: aqueuediscipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output (see Figure 1) are served. The queue
discipline is applied to a packet queue to decide when to send each packet.

e [[add | del | replace | change | showl]] thisis the operation on qdisc. For
example, to add delay on a specific interface, the operation will be [add]. To change
or remove delay on the specific interface, the operation will be [change| or [del].

e [dev id}| this parameter indicates the interface to be subject to emulation.

® [opts|: this parameter indicates the amount of delay, packet loss, duplication,
corruption, and others.

3.1 Identify interface of host hl and host h2
According to the previous section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command to display information related to its
network interfaces and their assigned IP addresses.

"Host: h1"

@admin-pc:~# ifconfig
flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 feB80::f0d6:67ff:fe@l:6041 prefixlen 64 scopeid 0x20<link>
ether f2:d6:67:01:60:41 txqueuelen 1000 (Ethernet)
RX packets 51 bytes 5112 (5.1 KB)
RX errors @ dropped © overruns © frame ©
TX packets 21 bytes 1678 (1.6 KB)
TX errors © dropped © overruns © carrier © collisions 0

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
ineté ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors @ dropped © overruns © frame ©
TX packets © bytes 0 (0.0 B)
TX errors © dropped © overruns © carrier ® collisions ©

Figure 8. Output of [i fconfig] command on host h1.

The output of the command indicates that host h1 has two interfaces: h1-eth0
and /o. The interface h1-eth0 at host h1 is configured with IP address 10.0.0.1 and subnet
mask 255.0.0.0. This interface must be used in [tc] when emulating the WAN.

Step 2. In host h2, type the command as well.

Page 8

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

"Host: h2"

root@admin-pc:~# |ifconfig
flags=4163<UP, BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::8a:3dff:feea:blld prefixlen 64 scopeid 0x20<link>
ether 02:8a:3d:ea:bl:1d txqueuelen 1000 (Ethernet)
RX packets 24 bytes 2851 (2.8 KB)
RX errors © dropped © overruns © frame 0
TX packets 7 bytes 586 (586.0 B)
TX errors 0 dropped © overruns @ carrier ® collisions ©

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1l@<host>
loop txqueuelen 1000 (Local Loopback)
RX packets @ bytes © (0.0 B)
RX errors © dropped © overruns © frame 0
TX packets @ bytes 0 (0.0 B)
TX errors © dropped © overruns @ carrier @ collisions ©

root@admin-pc:~# ||

Figure 9. Output of [i fconfig] command on host h2.

The output of the command indicates that host h2 has two interfaces: h2-eth0
and Jo. The interface h2-eth0 at host h1l is configured with IP address 10.0.0.2 and subnet
mask 255.0.0.0. This interface must be used in [cd when emulating the WAN.

3.2 Add delay to interface connecting to WAN

Network emulators emulate delays by introducing them to an interface. For example, the
delay introduced to a switch A’s interface that is connected to a switch B’s interface may
represent the propagation delay of a WAN connecting both switches. In this section, you
will use command to insert delay to a network interface.

Step 1. In host h1, type the following command:

sudo tc gdisc add dev hl-eth0O root netem delay 100ms

This command can be summarized as follows:

e [sudd]: enable the execution of the command with higher security privileges.
e [tc: invoke Linux’s traffic control.

® [gdisd: modify the queuing discipline of the network scheduler.

® [add]: create a new rule.

® [dev hil-ethOf: specify the interface on which the rule will be applied.

e [neten: use the network emulator.
e [delay 100ms]: inject delay of 100ms.

"Host: h1"

root@admin-pc:~# |sudo tc qdisc add dev hl-eth® root netem delay 100ms

root@admin-pc:-

|
Figure 10. Adding 100ms delay to the interface h1-ethO.

Page 9

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter
The above command adds a delay of 100 milliseconds (ms) to the output interface,
exclusively.

Step 2. The user can verify now that the connection from host h1 to host h2 has a delay
of 100 milliseconds by using the command from host h1:

ping 10.0.0.2

"Host: h1"

bytes of data.

from
from
from 10.
from 10. icC . im B ms
s from 10.0.0.2: icmp seq=5 ttl=64 time=100 ms
- 10.0.0.2 ping statistics ---
5 packets transmitted, 5 received, 0% packe 055, time 9ms
rtt min/avg/max/mdev = 100.069/120.180/206@ :
root@admin

Figure 11. Verifying latency after emulating delay using[ping].

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 100.069, 120.180, 200.587, and 40.203 milliseconds respectively.

Note that the above scenario emulates 100 milliseconds latency on the interface of host
h1 connecting to the switch. In order to emulate a WAN where the delay is bidirectional,
a delay of 100 milliseconds must also be added to the corresponding interface on host h2.

Step 3. In host h2’s terminal, type the following command:
sudo tc gdisc add dev h2-eth0 root netem delay 100ms

"Host: h2"

dev h2-eth® root netem delay 1@0ms

Figure 12. Adding 100ms delay to the interface h2-ethO.

Step 4. The user can verify now that the connection between host h1 and host h2 has an
RTT of 200 milliseconds (100ms from host h1 to host h2 plus 100ms from host h2 to host
h1) by retyping the command on host h1l’s terminal:

ping 10.0.0.2

Page 10

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

root@admin-pc:
PING 10.0.0.2
bytes from
bytes from
bytes from

bytes from
bytes from

~#|ping 10.0.0.2

10.
10.
10.
10.
10.

icmp
icmp
icmp

--- 10.0.0.2 ping statistics

5 packets transmitted,
rtt min/avg/max/mdev = 200.078/200.
root@admin-pc:~# |

seq=1
seq=2
seq=3
seq=4
seq=5

5 received,

"Host: h1"

ttl=64
ttl=64
ttl=64
ttl=64
tt1=64

(10.0.0.2) 56(84) bytes of data.
.0.2: icmp
: icmp

time=200
time=200
time=200
time=200
time=200

0% packet loss,
154/200.447/0.511 ms

time 8ms

Figure 13. Verifying latency after emulating delay on both host h1 and host h2 using[ping].

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Time (RTT) were 200.078, 200.154, 204.447, and 0.511 milliseconds respectively.

3.3 Changing the delay in emulated WAN

In this section, the user will change the delay from 100 milliseconds to 50 milliseconds in
both sender and receiver. The RTT will be 100 milliseconds now.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc change dev hl-eth0O root netem delay 50ms

"Host: hl"

Figure 14. Changing delay on the interface h1-ethO.

The new option added here is [change], which changes the previously set delay to 50

milliseconds.

Step 2. Apply also the above step on host h2’s terminal to change the delay to 50ms:

sudo tc gdisc change dev h2-eth0 root netem delay 50ms

"Host: h2"

f|sudo tc gdisc change dev h2-eth® root netem delay 5@ms

Figure 15. Changing delay to the interface h2-ethO.

Step 3. The user can verify now that the connection from host h1l to host h2 has a delay

of 100 milliseconds by using the command from host h1’s terminal:

ping 10.0.0.2

Page 11

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

"Host: h1"

2 |) bytes of data.
from 3. i tt1=64 time=106
from : i 2

from 18

from 10 .
from 10.0.0.2: icmp

--- 10.0.0.2 ping statistics
s transmitted, =

rtt min/avg/ /mdev =

root@admin-pc:~# ||

Figure 16. Verifying latency after emulating 100ms delay using ping].

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 100.079, 100.149, 100.411, and 0.131 milliseconds respectively.

4 Restoring original values (deleting the rules)

In this section, the user will restore the default configuration in both sender and receiver
by deleting all the rules applied to the network scheduler of an interface.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc del dev hl-eth0O root netem

"Host: hl"

|sudo tc qdisc del dev hl-eth® root netem

Figure 17. Deleting all rules on interface h1-ethQ.

The new option added here is [del], which deletes the previously set rules on a given
interface. As a result, the [cd qdisc will restore its default values of the device h1-ethO.

Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type the
following command:

sudo tc gdisc del dev h2-eth0 root netem

"Host: h2"

tlsudo tc qdisc del dev h2-eth® root netem

Figure 18. Deleting all rules on interface h2-ethO.

As a result, the [t] queueing discipline will restore its default values of the device h2-eth0.

Page 12

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

Step 3. The user can now verify that the connection from host h1 to host h2 has no explicit
delay set by using the command from host h1’s terminal:

ping 10.0.0.2

"Host: h1"
root@admin-pc:~#
PING 10.0.0.2
s from
s Trom
es from

s from 10.0.¢ ic eq=4
ytes from 10.0. : icmp seq=5 ttl=64 time

- 10.0.0.2 ping statistics ---
5 packets tran ved, 03 ket loss, time 90ms
rtt min/avg/max/mde 0.044/0.121/0 0.132 ms
root@admin-pc:~# I

Figure 19. Verifying latency after deleting all rules on both devices.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.044, 0.121, 0.386, and 0.132 milliseconds respectively.

5 Adding jitter to emulated WAN

Networks do not exhibit constant delay; the delay may vary based on other traffic flows
contending for the same path. Jitter is the variation of delay time. The delay parameters
are described by the average value (i), standard deviation (c), and correlation. By default,
NETEM uses a uniform distribution, so that the delay is within p t .

5.1 Add jitter to interface connecting to WAN

In this section, the user will add delay of 100 milliseconds with a random variation of £ 10
milliseconds. Before doing so, make sure to restore the default configuration of the
interfaces on host h1l and host h2 by applying the commands of Section 4. Then, apply the
commands below.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc add dev hl-eth0O root netem delay 100ms 10ms

"Host: h1" - 0 X

dev hl-eth® root netem delay 180ms 10ms

R~
Figure 20. Add 100ms delay with + 10 millisecond.

Page 13

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

The new value added here represents jitter which defines the delay variation. Therefore,
all packets leaving host h1 via interface hi-ethO will experience a delay of 100ms, with a
random variation of + 10m:s.

Step 2. The user can now verify that the connection from host h1 to host h2 has 100ms
delay with + 10 millisecond random variation by using the command on host hl’s
terminal:

ping 10.0.0.2

"Host: h1"

Itltltuddﬂlll'l pC:~# r1n| 10.0.0.2
(16 . l- /tes of data.
from 1tEJ. 9.0.2: icmp ttl=64 t1r|n~—1:-:9 ms

from 10.8@ ' icmp 2 tt1=64 time
from 10.8 icmp 3 tt1=64 time

from 10.0. icmp 4 tt1=64 ti
s from 10.0.0.2: icmp s tt1=64 time

rtt min/avg/m
root@admin-pc

Figure 21. Verlfymg RTT after adding 100 millisecond delay and 10 millisecond jitter on interface
h1-eth0.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 93.603, 101.386, 109.494, and 6.303 milliseconds respectively. Note that
we are only adding jitter to the interface of host h1 at this point.

Step 3. In host hl’s terminal, type the following command to delete previous
configurations:

sudo tc gdisc del dev hl-eth0 root netem

"Host: h1"

:~#|sudo tc qdisc del dev hl-eth@ root netem
root@admin-pc:~#

Figure 22. Deleting all rules on interface h1-ethO.

6 Adding correlation value for jitter and delay

The correlation parameter controls the relationship between successive pseudo-random
values. In this section, the user will add a delay of 100 milliseconds with a variation of
10 milliseconds while adding a correlation value. Before doing so, make sure to restore
the default configuration of the interfaces on host hl and host h2 by applying the
commands of Section 4. Then, apply the commands below.

Page 14

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter
Step 1. In host h1 terminal, type the following command:

sudo tc gdisc add dev hl-eth0O root netem delay 100ms 10ms 25%

"Host: h1"

dev hl-eth® root netem delay 1060ms 10ms 25%

Figure 23. Adding a correlation value of 25%.

The new value added here represents the correlation value for jitter and delay. Therefore,
all packets leaving the device host hl on the interface hi-ethO will experience a 100ms
delay time, with a random variation of £ 10 millisecond with the next random packet
depending 25% on the previous one.

Step 2. Now, the user can test the connection from host h1 to host h2 by using the
command on host h1’s terminal:

ping 10.0.0.2
"Host: h1"

(
from =)6
from . . ic 7 ' 99.10 ms
from i '
from
s from

time 9ms
rtt min/avg/max/mdev 90.8 01.007/109.2 6 ms
root@admin-pc:~# I

Figure 24. Verifying latency after setting the correlation value.
The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Time (RTT) were 90.891, 101.007, 109.215, and 6.328 milliseconds respectively.

Step 3. In host hl’s terminal, type the following command to delete previous
configurations:

sudo tc gdisc del dev hl-eth0O root netem

"Host: h1"

udo tc qdisc del dev hl-eth® root netem

Figure 25. Deleting all rules on interface h1-ethO.

Page 15

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

7 Delay distribution

NETEM permits user to specify a distribution that describes how delays vary in the
network. Usually delays are not uniform, so it may be convenient to use a non-uniform
distribution such as normal, pareto, or pareto-normal. For this test, the user will specify
a normal distribution for the delay in the emulated network. Before doing so, make sure
to restore the default configuration of the interfaces on host hl and host h2 by applying
the commands of Section 4. Then, apply the commands below.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc add dev hl-eth0O root netem delay 100ms 20ms distribution normal

The new option added here (distribution]) represents the delay distribution type. We
define the delay to have a normal distribution, which provides a more realistic emulation
of WAN networks. As a result, all packets leaving the host hl on the interface h1-ethO will
experience delay time which is normally distributed between the range of 100ms + 20ms.

"Host: h1" N

root@admin-pc:~# |sudo tc gqdisc add dev hl-eth® root netem delay 100ms 20ms distribution normal
root@admin-pc:~# |Jj

Figure 26. Adding normal distribution of delay.

Step 2. The user can now verify if the configuration was successfully done in the previous
step (Step 1) by using the command on host hl’s terminal:

ping 10.0.0.2

"Host: h1"

from
from . i 2 tt1=64 tim
from . . i tt1=64 tim

from . : i 4 tt1=64 time=84.2 ms
f 8 2 e tt1=64 tim 5.3 ms

Figure 27. Verifying latency after using normal distribution.
The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Time (RTT) were 66.347, 89.405, 117.906, and 16.749 milliseconds respectively.

This concludes Lab 3. Stop the emulation and then exit out of MiniEdit.

Page 16

Lab 3: Emulating WAN with NETEM Part | - Latency, Jitter

References

1. Linux foundation. [Online]. Available:
https://wiki.linuxfoundation.org/networking/netem.

2. S. Hemminger, “Network emulation with NETEM,” Linux conf au. 2005, pp. 18-23.
2005.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

5. M. Brown, F. Bolelli, N. Patriciello, “Traffic control howto,” Guide to IP Layer
Network, 2006.

Page 17

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

§
0

[l

80\ ®

A\

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 4. Emulating WAN with NETEM II: Packet
Loss, Duplication, Reordering, and Corruption

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 Introduction to network emulators and NETEMcccccieiiiiiiiieeiiiiieee e eiieee e 3
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 5
2.1 Testing connectivity between two hostscooccieeiiiiiiiiiiii e, 6
3 Adding/changing Packet [0SScccviiiuiiiiieiiecie ettt 7
3.1 Identify interface of host hl and host h2........ccccoiieiiiiiiiiii e 8
3.2 Add packet loss to the interface connecting to the WANcccooviiviiiiiieeinnee. 9
3.3 Restore default Values........cooiiiiiiiiiiiieeeeee e s 12
3.4 Add correlation value for packet loss to interface connecting to WAN 13
4 Adding packet COrrUPLION ...ccoii i e 14
4.1 Add packet corruption to an interface connected to the WAN...........cccceeenee 14
5 Add packet re0rderiNg ..o e 16
6 Add packet dUPlCAtioncceeeiiiieeie e 17
REFEIENCES ...ttt e e e sttt e e s st e e s s bt e e e e sareeeeseneeeesanns 18

Page 2

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

Overview

This lab continues the description of NETEM and how to use it to emulate Wide Area
Networks (WANs). Besides delay, this lab focuses on other parameters such as packet loss,
packet duplication, reordering, and packet corruption. These parameters affect the
performance of protocols and networks.

Objectives

By the end of this lab, students should be able to:

1. Deploy emulated WANSs characterized by parameters such as delay, packet loss,

packet corruption, packet reordering, and packet duplication.

2. Measure the performance of WANs characterized by different parameter values.
3. Visualize WAN performance measures.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

AN A

Section 1: Introduction to network emulators and NETEM.
Section 2: Lab topology.

Section 3: Adding/changing packet loss.
Section 4: Adding packet corruption.
Section 5: Adding packet reordering.
Section 6: Adding packet duplication.

1 Introduction to network emulators and NETEM

Part | of Emulating WAN with NETEM described how to use NETEM to emulate WANs
characterized by long delays. Part | also explained how the end-to-end delay can be

Page 3

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

dominated by the WAN’s propagation delay and how the Round-Trip Time (RTT)
estimates this delay.

In addition to delay, many WANs and LANs are subject to packet loss, reordering,
corruption, and duplication.

Delay, Loss, Reordering, Duplication, Corruption

s@}

Figure 1. Parameters affecting throughput in a WAN.

h2

The above situations are described follows:

1. Packet loss: a condition that occurs when a packet travelling across a network fails
to reach its destination. Packet loss may have a large impact on high-throughput
high-latency networks. A common cause of packet loss is the inability of routers
to hold packets arriving at a rate higher than the departure rate. Even in cases
where the high packet arrival rate is only temporary (e.g., short-term traffic
bursts), the router is limited by the amount of buffer memory used to momentarily
store packets. When packet loss occurs, TCP reduces the congestion window and
consequently the throughput by half. Packet loss must be mitigated by using best-
practice network designs, such as Science DMZ.

2. Packet reordering: a condition that occurs when packets are received in a different
order from which they were sent. Packet reordering, also known as out-of-order
packet delivery, is typically the result of packets following different routes to reach
their destination. Packet reordering may deteriorate the throughput of TCP
connections in high-throughput high-latency networks. For each segment
received out of order, a TCP receiver sends an acknowledgement (ACK) for the last
correctly received segment. Once the TCP sender receives three
acknowledgements for the same segment (triple duplicate ACK), the sender
considers that the receiver did not correctly receive the packet following the
packet that is being acknowledged three times. It then proceeds to reduce the
congestion window and throughput by half.

3. Packet corruption: corruption of bits comprising a packet may (mostly) occur at
the physical layer. Two adjacent devices are connected by a physical channel (e.g.,
fiber, twisted-pair copper wire, etc). The physical layer accepts a raw bit stream
and delivers it to the data-link layer. If corruption occurs, some bits may have
different values than those originally sent by the sender node. The receiver node
then simply discards the packet. As a result, the TCP sender process will not

Page 4

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

receive an acknowledgement for the corresponding segment and will consider it
as a lost segment. The TCP sender process will subsequently decrease the
congestion window and throughput by half.

4. Packet duplication: a condition where multiple copies of a packet are present in
the network and received by the destination. Packet duplication is the result of
retransmissions, where a sender node retransmits unacknowledged (NACK)
packets.

Packet loss, reordering, and corruption (the last two are interpreted as packet loss also
by the TCP sender) lead to a drastic reduction of throughput. In this lab, we will use the
NETEM tool to emulate these situations affecting end-to-end performance.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

10.0.01 10.0.0.0/8 10.0.02

s1-eth1 s1-eth2
h1-ethO h2-ethO
h1 s1 h2

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 4.mn topology file and click on Open.

Page 5

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

- MiniEdit
’ Edit Run Help

New

Open
= m open - x|

Export Level 2 Script

Directory: /home/admin/lab_topologies »J’ m‘

Quit [[Jlab2.mn []lab8mn []Llabl4.mn [Lab20.mn

(] Lab 3.mn [] Lab 9.mn [] Lab 15.mn

E E[l [£] Lab 10.mn 5] Lab 16.mn
% |E]'Ltab 5.mn [£] Lab 11.mn] Lab 17.mn
\[E] Lab 6.mn [£] Lab 12.mn [£] Lab 18.mn

‘f[l Lab 7.mn [Z] Lab 13.mn [Z] Lab 19.mn

N\ (& 7]
File name: |Lab 4.mn '

Files of type: Mininet Topology (*.mn) 4] Cancel ’

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop |’.~J7
Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Testing connectivity between two hosts

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

Page 6

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

File Edit Run Help

. [
Host Options h2

[Terminal

Figure 6. Opening a terminal on host h1l.

Step 2. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

bytes of data.
=1 ttl=64 ti
=2 tt1=64 time=0.0
3 ttl=64 time=0.
ttl=64 time=

acket loss, time 77ms

Figure 7. Connectivity test using command.

The figure above indicates that there is connectivity between host hl and host h2. Thus,
we are ready to start the throughput measurement process.

3 Adding/changing packet loss

The user invokes NETEM using the command line utility called [tq % °. With no additional
parameters, NETEM behaves as a basic FIFO queue with no delay, loss, duplication, or
reordering of packets. The basic [t syntax used with NETEM is as follows:

sudo tc gdisc [add|del|replace|change|show] dev dev_id root netem opts

e [sudd: enable the execution of the command with higher security privileges.

e [td: command used to interact with NETEM.

e [gdisd: aqueuediscipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

Page 7

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

e [[add | del | replace | change | showl]] thisis the operation on qdisc. For
example, to add delay on a specific interface, the operation will be [add]. To change
or remove delay on the specific interface, the operation will be [change| or [del].

e [dev id}| this parameter indicates the interface to be subject to emulation.

® [opts|: this parameter indicates the amount of delay, packet loss, duplication,
corruption, and others.

3.1 Identify interface of host hl and host h2
In this section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command to display information related to its
network interfaces and their assigned IP addresses.

"Host: h1"

foog@admin—pc:~# ifconfig
ot flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::f0d6:67ff:fe01:6041 prefixlen 64 scopeid Ox20<link>
ether f2:d6:67:01:60:41 txqueuelen 1000 (Ethernet)
RX packets 51 bytes 5112 (5.1 KB)
RX errors @ dropped © overruns @ frame ©
TX packets 21 bytes 1678 (1.6 KB)
TX errors @ dropped © overruns © carrier © collisions ©

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns © frame 0
TX packets © bytes 0 (0.0 B)
TX errors © dropped © overruns © carrier ® collisions ©

root@admin-pc:~#

Figure 8. Output of [i fconfig] command on host h1.

The output of the command indicates that host h1 has two interfaces: h1-eth0
and /o. The interface h1-ethO at host h2 is configured with IP address 10.0.0.1 and subnet
mask 255.0.0.0. This interface must be used in [cd when emulating the WAN.

Step 2. In host h2, type the command as well.

Page 8

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: h2"

root@admin-pc:~# ifconfig
1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::8a:3dff:feea:blld prefixlen 64 scopeid 0x20<link>
ether 02:8a:3d:ea:bl:1d txqueuelen 1000 (Ethernet)
RX packets 24 bytes 2851 (2.8 KB)
RX errors © dropped © overruns © frame 0
TX packets 7 bytes 586 (586.0 B)
TX errors © dropped © overruns © carrier ® collisions ©

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1l@<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets ® bytes 0 (0.0 B)
TX errors © dropped © overruns © carrier @ collisions ©

root@admin-pc:~# ||

Figure 9. Output of [i Econfig| command on host h2.

The output of the command indicates that host h2 has two interfaces: h2-eth0
and Jo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet
mask 255.0.0.0. This interface must be used in [cc when emulating the WAN.

3.2 Add packet loss to the interface connecting to the WAN

In a network, packets may be lost during transmission due to factors such as bit errors
and network congestion. The rate of packets that are lost is often measured as a
percentage of lost packets with respect to the number of sent packets. In this section, you
will use command to insert packet loss on a network interface.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc add dev hl-eth0O root netem loss 10%

“Host: h1"

c qdisc add dev hl-eth® root netem Lloss 10%

Figure 10. Adding 10% packet loss to host hl’s interface h1-ethO.
The above command adds a 10% packet loss to host h1’s interface h1-ethO.
Step 2. The user can verify now that the connection from host h1 to host h2 has packet

losses by using the command from host h1’s terminal. The [-d option specifies the
total number of packets to send.

ping 10.0.0.2 -c 200

Page 9

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: h1"

root@admin-pc:~# jping 10.0.0.2 -c 200
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
bytes from 10. : icmp seq=1 ttl=64 time=0.
bytes from 10. icmp seq=3 ttl=64 time=0.
bytes from 10. icmp seq=4 ttl=64 time=0.
bytes from 10. icmp seq=5 ttl=64 time=0.
bytes from 10. icmp seq=7 ttl=64 time=0.
bytes from 10. icmp seq=8 ttl=64 time=0.
bytes from 10. icmp seq=9 ttl=64 time=0.
bytes from 10. icmp seq=11 ttl1=64 time=0.
bytes from 10. icmp seq=12 ttl=64 time=0.
bytes from 10. icmp seq=13 ttl=64 time=0.
bytes from 10. icmp seq=14 ttl=64 time=0.
bytes from 10. icmp seq=15 ttl=64 time=0.
bytes from 10. icmp seq=16 ttl=64 time=0.
bytes from 10. icmp seq=18 ttl=64 time=0.
bytes from 10. icmp seq=19 ttl=64 time=0.
bytes from 16. icmp seq=20 ttl=64 time=0.
bytes from 10. icmp seq=21 ttl=64 time=0.
bytes from 10. icmp seq=22 ttl=64 time=0.
bytes from 10. icmp seq=23 tt1=64 time=0.
bytes from 10. icmp seq=24 ttl=64 time=0.
bytes from 10. icmp seq=25 ttl=64 time=0.
bytes from 10.0 icmp seq=26 ttl=64 time=0.

Figure 11. command after introducing packet loss.

[cNol

[cMoNol
NNNNNNNNNNNRNNNNNNNNNNN

In the figure 11, host hl sends 200 ping packets to host h2. Note the icmp_seq values
demonstrated in the figure above.

You can see that icmp_seqg=2, 6, 10 and 17 are missing due to packet losses. Resulting
packet loss will likely vary in each emulation.

Figure 12 shows the summary report of the previous command. By default, reports
the percentage of packet loss after finishing the transmission. In our test, ping reported a
packet loss rate of 10%. The measured packet loss rate will tend to become closer to the
configured loss rate as more trials are performed.

received acket loss), time 1154ms

31/0. 1135;5,“1! .

Figure 12. [ping summary report showing 10% packet loss.
Note that the above scenario emulates 10% packet loss on the unidirectional link from
host h1l to host h2. If we want to emulate packet loss on both directions, a packet loss of

10% must also be added to host h2.

Step 3. In host h2’s terminal, type the following command:

sudo tc gdisc add dev h2-eth0 root netem loss 10%

Page 10

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: h2"

udo tc gdisc add dev h2-eth® root netem loss 10%

Figure 13. Adding 10% packet loss to host h2’s interface h2-ethO.

Step 4. The user can verify now that the connection between host hl and host h2 has
more packets losses (10% from host hl + 10% from host h2) by retyping the
command on host h1l’s terminal:

ping 10.0.0.2 -c 200

"Host: h1"

~#i/ping 10.0.0.2 -c 200
(10.0.0. 2) 56(84) bytes of data.

root@admin-pc:
PING 10.0.0.2

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

F|gure 14. [ping command after introducing packet loss.

(o]
(o]

[cNol

[cloNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol

NNNNNNNNNNNNNNI\JNNNNNI\)N

icmp
icmp
icmp
icmp

icmp

icmp
icmp
icmp

icmp
icmp
icmp

icmp

icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp

seq=1
seq=2
seq=4
seq=>5
seq=7

seq=8

seq=9

seq=10
icmp
seq=12

seq=11

seq=13
seq=16
seq=17

seq=18

seq=19
seq=20
seq=21
seq=22
seq=24
seq=25
seq=26
seq=28

tt1=64
tt1=64
ttl=64
ttl=64
tt1=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
tt1=64
tt1l=64
tt1=64
tt1l=64
tt1=64

time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.
time=0.

In the figure 14, host hl sends 200 ping packets to host h2. Note the icmp_seq values
demonstrated in the figure above.

You can see that icmp_seq=3, 6, 10, 14, 23 and 27 are missing due to packet losses.
Resulting packet loss will likely vary in each emulation.

Figure 14 shows the summary report of the previous command. By default, reports
the percentage of packet loss after finishing the transmission. In our test, ping reported a
packet loss rate of 10%. The measured packet loss rate will tend to become closer to the
configured loss rate as more trials are performed.

Page 11

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

- 10.0.0.2 ping statistics ---
200 packets transmitted, 159 received

rtt min/avg/ dev = 0.
root@admin-pc:~4
Figure 15. summary report showing 20.5% packet loss.

The result above indicates that 159 out of 200 packets were received successfully (20.5%
packet loss).

3.3 Restore default values

To remove the packet loss added in Section 3.2 and restore the default configuration, you
must delete the rules of the interfaces on host h1 and host h2.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc del dev hl-eth0O root netem

"Host: hl1l"

Figure 16. Deleting all rules on interface h1-ethO.

Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type the
following command:

sudo tc gdisc del dev h2-eth0 root netem

"Host: h2"

root@admin-pc:~# |sudo tc qdisc del dev h2-eth® root netem
—

root@admin-pc:

|
Figure 17. Deleting all rules on interface h2-ethO.

As a result, the [t] queueing discipline will restore its default values of the device h2-eth0.
Step 3. Now, the user can verify that the connection from host hl to host h2 has no

explicit packet loss configured by using the command from host h1’s terminal, press
to stop the test:

ping 10.0.0.2

Page 12

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: hl"

from 10 icmp se ime=0.3 ms
from 18 2 4 time 64 ms

from 10 Cmp se ime ms

from 18 icmp seq=4 4 time=(4 ms
s from 10 }: icmp seq=5 ttl=64 time=0.045 ms

5 pac "8 C - ived, € cket loss, time 107ms
rtt min/avg/ma]
root@admin-pc

Figure 18. Verifying latency after deleting all rules on both devices.
The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.043, 0.112, 0.357, and 0.122 milliseconds respectively.

3.4 Add correlation value for packet loss to interface connecting to WAN

An optional correlation may be added. Adding correlation causes the random number
generator to be less random and can be used to emulate packet burst losses?.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc add dev hl-eth0O root netem loss 50% 50%

"Host: h1"

root@admin-pc:~# sudo tc gdisc add dev hl-eth@ root netem loss 50% 50%

root@admin-pc:~4

Figure 19. Verifying latency after deleting all rules on both devices.

The above command introduces a packet loss rate of 50%, and each successive probability
depends 50% on the last one®. Note that a packet loss rate this high is unlikely.

Step 2. The user can verify now that the connection from host h1 to host h2 has packet
losses by using the command from host h1’s terminal.

ping 10.0.0.2 -c 50

Page 13

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: h1"

root@admin-pc:~#|ping 10.0.0.2 -c 50
0.0.0.2 0.0.0.: ' '

from
fram :
from 10.6 : |icmp

5 from 10.@ 2: 1cmp
from § i
from
from
from
from
from
from
from
fram :
from 10.6 : lcmp 6
from 10.0.0.2: icmp seq=27 ttl=64 time=0.058

Figure 20. in progress showing successive packet loss.

The result above shows an example where successive packets were dropped: [3, 4, 6, 10,],
[13, 14, 16, 17, 20, 21], etc.

Step 3. In host hl’s terminal, type the following command to delete previous
configurations:

sudo tc gdisc del dev hl-eth0O root netem

"Host: h1"

c gqdisc del dev hl-eth® root netem

Figure 21. Deleting all rules on interface h1-ethQ.

4 Adding packet corruption

Besides packet loss, packet corruption can be introduced with NETEM.

4.1 Add packet corruption to an interface connected to the WAN
Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc add dev hl-eth0O root netem corrupt 0.01%
The new value added here represents packet corruption percentage (0.01%).

"Host: h1"

udo tc qdisc add dev hl-eth® root netem corrupt 0.01%

Page 14

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

Figure 22. Adding packets corruption (0.01%) to interface h1-ethO.

Step 2. The user can now verify the previous configuration by using the tool to
check the retransmissions. To launch iPerf3 in server mode, run the command
in host h2’s terminal.

iperf3 -s

"Host: h2"

Figure 23. Host h2 running iPerf3 as server.

Step 3. To launch iPerf3 in client mode, run the command [iperf3 -c 10.0.0.2]in host
h1’s terminal.

iperf3 -c 10.0.0.2

"Host: hl"
root@admin-pc:~#|iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
[13] local 10.0.0.1 port 4 8 connected to 10.0.0.2 port 5201
ID] Interval ransfer Bitrate Retr| Cwnd
0.00-1.00 3 GBytes 42.7 Gbits/sec 43 178
0 3 GBytes hits/sec 266
GBy bits/s 230 199
6 GBy ; 291

™
3]

Ld L L
T
[a]

]
(@]

]
(@]

m
(@]

L
m
(g}
[n]
m
e
-+
D

[]
m m
bl
=+
D
wvow

276
194
335

[P Y]
T
[a]

Y
sl

J
W

)
(]

H o e e e e
W L
LT I IV BT BT BT BT T T
D
3]
(]
m
e
-t
i
wowo

Interval Trans
0.00-10.00 e 49.8
0.00-10.04 se 49.8

iperf Done.
gadmin-pc:~# |J

Figure 24. Retransmissions after packets corruption.
The figure above shows the retransmission values on each time interval (1 second). The
total number of retransmitted packets, due to packet corruption, is 3710. This verifies

that packet corruption was indeed, applied to the interface on host h1.

Step 4. In host hl’s terminal, type the following command to delete previous
configurations:

sudo tc gdisc del dev hl-eth0O root netem

Page 15

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: h1"

Figure 25. Deleting all rules on interface h1-ethO.

Step 5. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

5 Add packet reordering

Packets are sometimes not delivered in the same order they were sent. In order to
emulate reordering in NETEM, the option is used. Proceed with the steps below.

Step 1. In host h1’s terminal, type the following command:
sudo tc gdisc add dev hl-ethO root netem delay 10ms reorder 25% 50%

"Host: h1"

sudo tc qdisc add dev hl-eth® root netem delay 10ms reorder 25%

Figure 26. Adding packet reordering.

In this command, 25% of the packets (with a correlation value of 50%) will be sent
immediately, while the remainder 75% will be delayed by 10ms.

Step 2. The user can verify the effect of packet reorder by using the command on
host h1’s terminal, press to stop the test:

ping 10.0.0.2

"Host: h1"

root@admin-pc:~#|ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

bytes from 10.0.0.2: icmp seq=1 tt1=64 [time=0.060 ms|
bytes from 10.0.0.2: icmp seq=2 ttl=64 |time=0.055 ms
bytes from 10.0.0.2: icmp_seq=3 ttl=64 |time=10.1 ms
bytes from 10.0.0.2: icmp seq=4 ttl=64 |time=10.1 ms
bytes from 10.0.0.2: icmp seq=5 ttl=64 [time=10.1 ms |

Figure 27. test illustrating the effect of packet reordering.

Consider the first four packets of the figure above. The first and second packets did not
experience delay (one out of four, or 25%), while the next three packets experienced a
delay of ~10 milliseconds (three out of four, or 75%). The measured reordering rate will
tend to become closer to the configured reordering rate as more trials are performed.

Page 16

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

It is possible that your first packet will experience delay, but this effect will eventually
occur in future tests.

Step 3. In host hl’s terminal, type the following command to delete previous
configurations:

sudo tc gdisc del dev hl-eth0 root netem

"Host: h1l"

do tc gdisc del dev hl-eth® root netem

Figure 28. Deleting all rules on interface h1-ethO.

6 Add packet duplication

Duplicate packets may be present in networks as a result of retransmissions. NETEM
provides the option to inject duplicate packets. Before introducing packet
corruption, make sure to restore the default configuration of the interfaces on host hl
and host h2 by applying the commands of Section 3.3. Then, proceeds with the following
steps.

Step 1. In host h1’s terminal, type the following command:

sudo tc gdisc change dev hl-eth0O root netem duplicate 50%

"Host: h1"

lsudo tc gdisc add dev hl-eth® root netem duplicate 50%

Figure 29. Adding packet duplication.

The above command will produce a duplication of 50% (i.e., 50% of the packets will be
received twice at the destination).

Step 2. The user can verify the effect of packet duplication by using the command
on host h1’s terminal, press to stop the test:

ping 10.0.0.2

Page 17

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

"Host: hl"

s from 10.0. : |licmp ttl=64 time=0.¢€ ms

from 10.0. : |icmp ttl=64 time=C s (DUP!)
from 10.0. : 1Cmp 2 ttl=64

from 10.0. icmp ttl=64

from .0. icmp seg=3 ttl=64

from .0. 1LCm 4 ttl=64

from .0.0 icmp s tt1=64

from 0.0 ic 6 tt1=64

from .0. : |[icmp 6 ttl=64

from .0. : 1cmp ttl=64

from .0. icmp 8 ttl=64

from .0. : licmp 9 tt1=64 k

from 10.0.0.2: |icmp seg=9 ttl=64 time=0.075 ms (DUP!)

[]

m

D D D
won

T
wowmown

t
t
t
t
-t.
t
-t.
t
t
t
t

- 10.0. --
9 packets ed, 9 4 duplicates, 0% packet loss, time 197ms
rtt min/avg/m
root@admin-pc

Figure 30. test illustrating the effect of packet duplication.

The result above indicates that five duplicate packets were received. Duplicate packets
are also marked with (DUP!). The measured rate of duplicate packets will tend to become
closer to the configured rate as more trials are performed.

Step 3. In host hl’s terminal, type the following command to delete previous
configurations:

sudo tc gdisc del dev hl-eth0O root netem

"Host: hl1l"

udo tc gqdisc del dev hl-eth® root netem

Figure 31. Deleting all rules on interface h1-ethQ.

This concludes Lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. Linux foundation. [Online]. Available:
https://wiki.linuxfoundation.org/networking/netem.

2. S. Hemminger, “Network emulation with NETEM,” Linux conf au. 2005, pp. 18-
23. 2005.

3. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

4. M. Brown, F. Bolelli, N. Patriciello, “Traffic control howto,” Guide to IP Layer
Network, 2006.

Page 18

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 5: Setting WAN Bandwidth with Token Bucket
Filter (TBF)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 Introduction to Token Bucket algorithmccovvvieiiiiiii e, 3
P2 - o B o o To] Uo Y =AY 2SR UPPPR 5
2.1 Startinghost h1 and hoSt h2 ... 7
3 Rate limiting 0N @Nd-NOStS......uviiiiei e 8
3.1 Identify interface of host hl and host h2cccccvieiiiiiii i, 8
3.2 Emulating 10 Gbps high-latency WANccooi i, 9
4 Rate limiting 0N SWILCHES ...ceciii i 11
5 Combining NETEM and TBFouviiiiiei ittt e et e e e e e ee e e e 15
REFEIENCES ..t s e e e st e e s st e e s s be e e e e sareeeesenneeeeanns 18

Page 2

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Overview

This lab explains the Token Bucket Filter (TBF) queuing discipline which shapes
incoming/outgoing traffic to limit the bandwidth. Throughput measurements are also
conducted in this lab to verify the bandwidth-limiting configuration with TBF.

Objectives

By the end of this lab, students should be able to:

N

Understand the Token Bucket algorithm.
Use Token Bucket Filter (tbf), which is a Linux implementation of the Token Bucket

algorithm on network interfaces.

ouvsAw

Lab settings

Understand how to combine queueing disciplines in Linux Traffic Control (tc).
Combine tbf and NETEM.

Emulate WAN properties in Mininet.
Visualize iPerf3’s output after modifying the network’s parameters.

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Token Bucket algorithm.
2. Section 2: Lab Topology.
3. Section 3: Rate limiting on end-hosts.
4. Section 4: Rate limiting on switches.
5. Section 5: Combining NETEM and TBF.
1 Introduction to Token Bucket algorithm

Page 3

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

When simulating a Wide Area Network (WAN), it is sometimes necessary to limit the
bandwidth of devices (end hosts and networking devices) to observe the network’s
behavior in different conditions.

The Token Bucket is an algorithm used in packet-switching networks to limit the
bandwidth and the burstiness of the traffic. In summary, token bucket consists of adding
tokens (represented as packets or packets’ bytes) at a fixed rate to a fixed-capacity bucket.
When a new packet arrives, the bucket is inspected to check the number of available
tokens; if at least n tokens are available, n tokens are removed from the bucket, and the
packet is sent to the network. Else, no tokens are removed, and the packet is considered
non-conformant. In such case, the packet might be dropped, enqueued, or transmitted
but marked as non-conformant. This algorithm is illustrated in Figure 1.

Incoming Packet

Maximum
Burst Size

Outgoing
Packet

Figure 1. Token bucket filter.

The rate, which is the transmission speed, is determined by the frequency at which tokens
are added to the bucket.

Another important property of the token bucket algorithm is burstiness; when the bucket
becomes completely occupied (i.e. no packets are consuming tokens), new packets will
consume tokens right away, without being limited. Burstiness is defined as the number of
tokens that can fit in the bucket, or the bucket size.

To provide limits and control over the bursts, token bucket implementations often create
another smaller bucket with a size equal to the Maximum Transmission Unit (MTU), and
a rate much faster than the original bucket (the peak rate). Its rate defines the maximum
speed of bursts.

The token bucket algorithm implemented in Linux is the Token Bucket Filter (tbf), which
is a queuing discipline used in conjunction with the Linux Traffic Control (tc) to shape

traffic.

Figure 2 depicts the main parameters used by [tbf].

Page 4

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Incoming
Packet

D

!
]
irate
]
]
|

Bucket 2

Ipeakrate

Figure 2. parameters and architecture.

burst

The basic syntax used with [cd]is as follows:

tc gdisc [add | ...] dev [dev_id] root tbf limit [BYTES] burst [BYTES] rate
[BPS] [mtu BYTES] [peakrate BPS] [latency TIME]

e [tk Linux traffic control tool.

e [gdisd:aqueuediscipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

e [[add | del | replace | change | show]] thisis the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change| or [del],
respectively.

e [dev [dev id]]:this parameterindicates theinterface is to be subject to emulation.

e [tbf]: this parameter specifies the Token Bucket Filter algorithm.

e [limit [BYTES]]: size of the packet queue in bytes.

e [urst [BYTES]|: number of bytes that can fit in the bucket.

e [rate [BPS]|: transmission speed, determined by the frequency at which tokens
are added to the bucket.

e [mtu [BYTES]]: maximum transmission unit in bytes.

e [peakrate [BPS]|:the maximum speed of a burst.

e [latency [TIME]]: the maximum time a packet can wait in the queue.

In this lab, we will use the gueueing discipline to emulate the aforementioned
parameters affecting the network behavior.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 5

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

hl sl s2 h2
10 Gbps

h1-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-ethO

10.0.0.1 10.0.0.2
Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 5.mn topology file and click on Open.

MiniEdit

Edit Run Help

New

IOpenl

Expor Level 2 Sciip: Directory: /home/admin/lab_topologies —'l @|
Quit [[JLab2.mn [[] Lab8.mn [£] Lab14.mn [Lab 20.mn

[] tab3.mn [] Lab9.mn [] Lab 15.mn
[£] Lab 4.mn [Z] Lab 10.mn [£] Lab 16.mn
El [£] Lab 11.mn [£] Lab 17.mn
[[]'tab 6.mn [5] Lab 12.mn [£] Lab 18.mn
[[] tab 7.mn [] Lab 13.mn [C] Lab 19.mn

[]

File name: |Lab 5.mn Igpenl

Files of type: Mininet Topology (*.mn) _.| Cancel |

. k i %

Figure 5. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window

to start the emulation.

Page 6

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Stop |EJ_____

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

L.} MiniEdit

File Edit Run Help

sl 52
Host Options EI
Terminal h2

Figure 7. Opening a terminal on host h1.

w o

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press [ctrl+cd The figure below shows a successful
connectivity test.

Page 7

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

"Host: h1"

root@admin-pc:~# |pi
0 2 (10.

from 10.

from 10.

from 10.

s from 10.

from 10. .
from 10.0.0.2:

2 ping statistic

transmitted, 6 received packet loss, time 91ms
rtt min/avg/max/mdev = 0.042/0.: .327/0.477 ms
root@admin-pc:

Figure 8. Connectivity test using command.

Figure 8 indicates that there is connectivity between host h1 and host h2.

3 Rate limiting on end-hosts

The command can be applied on the network interface of a device to shape egress
traffic. In this section, the user will limit the sending rate of an end-host using the Token
Bucket Filter (tbf]), which is an implementation of the Token bucket algorithm.

3.1 Identify interface of host hl and host h2

According to the previous section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command to display information related to its
network interfaces and their assigned IP addresses.

"Host: h1"

root@admin-pc:~# ifconfig
flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 feB80::f0d6:67ff:fe01:6041 prefixlen 64 scopeid 0x20<link>
ether f2:d6:67:01:60:41 txqueuelen 1000 (Ethernet)
RX packets 51 bytes 5112 (5.1 KB)
RX errors © dropped © overruns @ frame 0
TX packets 21 bytes 1678 (1.6 KB)
TX errors © dropped © overruns @ carrier © collisions 0

Lo} flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1O<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame 0
TX packets © bytes 06 (0.0 B)
TX errors © dropped © overruns © carrier @ collisions ©

Figure 9. Output of [L fconfig] command on host h1.

Page 8

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

The output of the command indicates that host h1 has two interfaces: h1-eth0
and /o. The interface h1-eth0 at host h1 is configured with IP address 10.0.0.1 and subnet
mask 255.0.0.0. This interface must be used in [tc when emulating the network.

Step 2. In host h2’s command line, type the command as well.

"Host: h2"

min-pc:~# |ifconfig
l flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::8a:3dff:feea:blld prefixlen 64 scopeid 0x20<link>
ether 02:8a:3d:ea:bl:1d txqueuelen 1000 (Ethernet)
RX packets 24 bytes 2851 (2.8 KB)
RX errors © dropped © overruns 0 frame ©
TX packets 7 bytes 586 (586.0 B)
TX errors © dropped © overruns @ carrier © collisions ©

flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns @ frame ©
TX packets © bytes © (0.0 B)
TX errors © dropped © overruns @ carrier © collisions ©

root@admin-pc:~# |

Figure 10. Output of [i fconfig] command on host h2.

The output of the command indicates that host h2 has two interfaces: h2-eth0
and Jo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet
mask 255.0.0.0. This interface must be used in [t when emulating the network.

3.2 Emulating 10 Gbps high-latency WAN

In this section, you will use command on a network interface to control the egress
rate.

Step 1. Modify the bandwidth of host h1 typing the command below. This command sets
the bandwidth to 10 Gbps on host h1’s hi-ethO interface. The parameters are the
following:

e [rate]: 10gbit
e [burst]: 5,000,000
e [limit]: 15,000,000

sudo tc gdisc add dev hl-ethO root tbf rate 10gbit burst 5000000 limit 15000000

"Host: h1" N

root@admin-pc:-
root@admin-pc:~#]

Figure 10. Limiting rate with TBF to 10 Gbps.

Page 9

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

This command can be summarized as follows:

e [sudod]: enable the execution of the command with higher security privileges.
e [tc: invoke Linux’s traffic control.

® [gdisd: modify the queuing discipline of the network scheduler.

e [add: create a new rule.

e [dev hl-ethO root]: specify the interface on which the rule will be applied.
e [tbf]: use the token bucket filter algorithm.

e [rate] specify the transmission rate (10 Gbps).

e purst]: number of bytes that can fit in the bucket (5,000,000).

e [Limit]: queue size in bytes (15,000,000).

Burst calculation: requires setting a burst value when limiting the rate. This value
must be high enough to allow your configured rate. Specifically, it must be at least the
specified rate / HZ, where HZ is clock rate, configured as a kernel parameter, and can be
extracted using the command shown below.

egrep '~CONFIG HZ [0-9]+' /boot/config-$ (uname -r)

"Host: hl"

root@admin-pc:~# legrep '“CONFIG HZ [©-9]+' /boot/config-$(uname -r)

.,.f
root@admin-pc:~# I

Figure 11. Retrieving system’s HZ.
The HZ on Client1 is 250. Thus, to calculate the burst, we divide 10 Gbps by 250:

10 Gbps =10,000,000,000 bps

_10,000,000,000

= 40,000,000 bits
250

Burst

Burst = 40,000,000 bits = 5,000,000 bytes

The resulting value is to be used in the command as the burst value.

Step 2. The user can now verify the previous configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in

host h2’s terminal as shown in the figure below:

iperf3 -s

"Host: h2"

Figure 12. Host h2 running iPerf3 as server.

Page 10

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Step 3. Now to launch iPerf3 in client mode, run the command [iperf3 -c 10.0.0.2]in
host h1’s terminal as shown below:

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~# iperf3 -c 10.0.0.2

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 34924 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

[:15] 0.00-1.00 sec 1.12 GBytes 9.62 Gbits/sec 0 564 KBytes
[15] .00-2.00 sec .11 GBytes .57 Gbits/sec 701 KBytes
[715] .00-3.00 sec .11 GBytes .56 Gbits/sec 740 KBytes
[15] .00-4.00 sec .11 GBytes .56 Gbits/sec 775 KBytes
151 .00-5.00 sec .11 GBytes .57 Gbits/sec 854 KBytes
[15] .00-6.00 sec .11 GBytes .56 Gbits/sec .01 MBytes
[15] .00-7.00 sec .11 GBytes .56 Gbits/sec .01 MBytes
[15] .00-8.00 sec .11 GBytes .56 Gbits/sec .01 MBytes
[:15] .00-9.00 sec .11 GBytes .56 Gbits/sec .01 MBytes
[15] .00-10.00 sec .11 GBytes .57 Gbits/sec .01 MBytes

OO NOU S WN
L e I e I e S e e
U e IR Ve Vo I Ve B Ve B Vo B Vo Ve Bl Vo)
[cloNoNoNoNoNoNoNol

[ID] Interval Transfer Bitrate
[15] 0.00-10.00 11.1 GBytes 9.57 Gbits/sec sender
[15] 0.00-10.04 11.1 GBytes 9.53 Gbits/sec receiver

2
(1]
D rt

iperf Done.
root@admin-pc:~# |

Figure 13. iPerf3’s report after limiting the rate on host hl to 10 Gbps.

The figure above shows the iPerf3 report after limiting the rate on host h1 using [tb£|. The
average achieved throughputs are 9.57 Gbps (sender) and 9.53 Gbps (receiver). Since we
executed the command on host hl’s terminal, the rule was applied to host h1’s network
interface. However, it is also possible to limit the rate on the switch interfaces as
explained next.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Rate limiting on switches

The previous section explained how to use the token bucket filter on end-hosts’ network
interfaces. In this section, we will explain how to apply the filter on switch interfaces. By
limiting the rate on switch S1’s s1-eth2 interface, all communication sessions between
switch S1 and switch S2 will be filtered by the applied rule(s).

In previous tests, we applied the command on host h1’s terminal; switches, however, we
do not have terminals where commands can be set and applied. Recall that we are using
Mininet for this emulation, which creates virtual interfaces emulating the switch
functionality. Therefore, these virtual interfaces can be identified using the
command, but this time, it should be issued on the client’s terminal (e.g., the terminal
located on the Desktop) and not on end-hosts (host hl or host h2).

Page 11

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Miniedit

Figure 14. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. Type in the terminal the command to display information related to its
network interfaces.

$_ admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (%)

admin@admin-pc:~$
ens33: flag 163< A 5T ,RUNNING,MULTI > mtu 1500
: cd txqueuelen 1) (Ethernet)
ckets 0) (0.0 B)

errors 0 drog i overruns 0 fr

packets 198 32455 (32.4 KB)

errors 0 v overruns @ carrier 0@ collision

base 0x2000

P,LOOPBACK,RUN \
127.0.0.1 LMmas 0.0.0
:1 prefi) 3 scopeid 0x
txqueuelen 1000 (Local Loopb
ckets 4484 byt 29753
0 ped ,
packets 4484 bytes 297536 (297.

X errors @ dropped O overruns 0 al O collisions 0

mtu 1500
scopeid
(Ethernet)
packets 216964
errors 0 drop Verruns
packets 21310°¢ / 140683)
{ errors 0@ dropped overruns ¢ a er © collis

mtu 1500
L scopeid 0x20<link>
txqueuelen 0 (Ethernet)
14064944 ({
error
X packets 216993

Page 12

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

s2-ethlf f

) pref
176 ueuelen 10
3 k- D S 1510
rop
217
collisions 0

mtu 1500

oy) C-1[0|_j|j16'1

{ pack 075
TX errors O dropped

admin@admin-pc:~$ I

Figure 15. Output of command on the client’s terminal.

Figure 15 shows the network interfaces of the client:

e sl-ethlisthe interface connecting switch S1 to host hl.

e sl-eth2is the interface connecting switch S1 to switch S2.
e s2-ethl is interface connecting switch S2 to host h2.

e s2-eth2is interface connecting switch S2 to switch S1.

Step 3. Remove the previous configuration on host h1l. Write the following command on
host h1’s terminal:

sudo tc gdisc del dev hl-eth0O root

"Host: h1"
'sudo tc gdisc del dev hl-eth® root

Figure 16. Deleting all rules on host h1’s network scheduler.

Step 4. Apply rate limiting rule on switch S1’s interface which connects it to switch
S2 (s1-eth2). In the Clientl’s terminal, type the command below. When prompted for a

password, type and hit enter. The parameters are the following:

e [rate]: 10gbit
e [purst]: 5,000,000
e [limit] 15,000,000

sudo tc gdisc add dev sl-eth2 root tbf rate 10gbit burst 5000000 limit 15000000
il admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 root tbf rate 10gbit burst 5000000 limit 15000000

[sudo] password for admin:
admin@admin-pc:~$ I

Figure 17. Limiting rate with TBF to 10 Gbps on switch S1’s interface.

Page 13

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

Step 5. The user can now verify the previous configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
host h2’s terminal as shown in Figure 18:

iperf3 -s

"Host: h2"

Figure 18. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode, run the command [iperf3 -c 10.0.0.2/in
host h1’s terminal as shown in the figure below:

iperf3 -c 10.0.0.2

"Host: hl"

root@admin-pc:~#|iperf3 -c 10.0.0.2
Connecting to ho 0.0.0.2 rt 5201
15] local 10.0.0.1 port 3 c::l]l‘lt—’ct:—'d to 10.0.0.2 port 5201
ID] Interval sfe itrate Retr Cwnd
15] ©0.00-1.0¢ : .13 £ .6 hits/se 0 B8.27 MB;te
15] . i ; . e . hits/se 0 MByte
15] : i . es .56 Gbits/s¢ § B MBytes
15] 3.00-4.0@ : es 9, bits/se 0 MBytes
15] - 0-5.00 . .56 Gbits/s¢ § 3. MBytes
15] . 6. 00 . £5 .56 Gbits/s¢ ! MByte
15] ol0 : 27 MByte
15] r-ua;t
15] ! 0-9.00
15] 9.00-10.00

wowown
M M
sl lla]
i M M M M M D
LT T I TR T ' B s I l"|

w
44}
e}

ID] Interval Transfer Bltrate
15] P.00-10.00 s¢ 11.1 GByte 3 Gbits
15] 0.00-10.05 : 11.1 GBytes 9 5. Gbits

iperf Done.
root@admin-pc:~# ||

Figure 19. iPerf3’s report after limiting the rate on switch S1 to 10 Gbps.
Again, the reported values match the desired throughput (10 Gbps). In practice, the
reported throughput will not achieve the target (10 Gbps) but will achieve a throughput
slightly less than the target.

Step 7. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Page 14

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

5 Combining NETEM and TBF

NETEM is used to introduce delay, jitter, packet corruption, etc. TBF on the other hand
can be used to limit the rate. However, this is not enough for emulating real networks,
particularly WANs. Therefore, it is also possible to combine multiple impairments and
activate them at the same time.

root

n:
qdisc,

Figure 20. Chaining gdiscs hierarchy.

As shown in Figure 20, the first gdisc (qdisci) is attached to the root label. Then,
subsequent gdiscs can be attached to their parents by specifying the correct label. In this
section, we will look at how to combine NETEM and TBF in order to have more properties
emulated in our network. Specifically, we will introduce delay, jitter, and packet
corruption, while specifying the rate on switch S1’s interface.

Step 1. In the Client’s terminal, type the following command to remove the previous
configuration on switch S1.

sudo tc gdisc del dev sl-eth2 root

File Actions Edit View Help
admin@admin-pc: ~ (3]

admin@admin-pc:~S$ |sudo tc gdisc del dev sl-ethZ root

admin@admin-pc:~$ I

Figure 21. Deleting all rules on switch S1’s s1-eth2.

Step 2. In the client’s terminal, type the command below. When prompted for a password,

type and hit Enter.

sudo tc gdisc add dev sl-eth2 root handle 1: netem delay 10ms

Page 15

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

$_ admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~ X

admin@admin-pc:~S |sudo tc gdisc add dev sl-eth2 root handle 1: netem delay 10ms

admin@admin-pc:~$ |

Figure 22. Adding delay of 10ms to switch S1’s s1-eth2 interface.

The new keyword in this command is handle and its value reflects the number shown in
Figure 22 above each gdisc. This means that our NETEM qdisc is attached to the root with

the fhandle 1:]

Step 3. The user can now verify the previous configuration by using the tool to
measure the Round-Trip Time (RTT). On the terminal of host h1, typeping 10.0.0.2]. To
stop the test, press [Ctrl+d. The figure below shows a successful connectivity test. Host
h1(10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses back.

ping 10.0.0.2

"Host: h1"

root@admin-pc:~# ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seqg=1 ttl=64 time=10.6
64 bytes from .0.0.2: icmp seq=2 ttl=64 time=10.1
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=10.1

64 bytes from .0.0.2: icmp seq=4 ttl=64 time=10.1
ok

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 10.083/10.210/10.575/0.222 ms
root@admin-pc:~# |j

Figure 23. Output of ping 10.0.0.2]command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 10.083, 10.210, 10.575, and 0.222 milliseconds, respectively. Essentially,
the standard deviation is an average of how far each ping RTT is from the average RTT.
The higher the standard deviation, the more variable the RTT is.

Step 4. Now to add the second rule which applies rate limiting using tbf, issue the
command shown below on the client’s terminal. The parameters are the following:

o [rate]: 2gbit
e [burst]: 1,000,000
e [Limit]: 2,500,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 2gbit burst 1000000
limit 2500000

Page 16

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc:~$ |sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 2gbit

burst 1000000 Limit 2500000
admin@admin-pc:~S i

Figure 24. Adding a new rule while combining it with the previous.

Step 5. The user can now verify the previous configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
host h2’s terminal as shown in Figure 25:

iperf3 -s

"Host: h2"

Figure 25. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode again by running the command
in host h1’s terminal as shown in Figure 26:

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~# |iperf3 -c 10.0.0.2

Connecting to host 10.0.0.2, port 5201
15] local 10.0.0.1 port 34940 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 222 MBytes 1.86 Gbits/sec 426 .41 MBytes
15] .00-2.00 sec 228 MBytes 1.91 Gbits/sec] .66 MBytes
15] .00-3.00 sec 225 MBytes .89 Gbits/sec 450 .70 MBytes
15] .00-4.00 sec 231 MBytes .94 Gbits/sec 0 .86 MBytes
15] .00-5.00 sec 229 MBytes .92 Gbits/sec .98 MBytes
15] .00-6.00 sec 228 MBytes .91 Gbits/sec .08 MBytes
15] .00-7.00 sec 228 MBytes .91 Gbits/sec .15 MBytes
15] .00-8. sec 229 MBytes .92 Gbits/sec .21 MBytes
15] .00-9. sec 228 MBytes .91 Gbits/sec .24 MBytes

MBytes Gbits/sec .26 MBytes

w

L OONOWULE WN -
el e
WwwwwNNNw

Interval Transfer Bitrate
0.00-10.00 2.22 GBytes 1.91 Gbits/sec sender
0.00-10.04 2.21 GBytes 1.89 Gbits/sec receiver

root@admin-pc:~# [J

Figure 26. iPerf3 throughput test after combining gdiscs.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 1.86 Gbps (sender) and 1.84 Gbps (receiver).

Step 7. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Page 17

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

This concludes Lab 5. Stop the emulation and then exit out of MiniEdit.

References

1. Journey to the center of the linux kernel: traffic Control, shaping and QoS.

[Online]. Available: http://wiki.linuxwall.info/doku.php/en:ressources:dossiers:n
etworking:traffic_control.

2. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

Page 18

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Exercise 2: Emulating a Wide Area Network (WAN)

Document Version: 08-25-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 2: Emulating a Wide Area Network (WAN)

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas

1.1 Credentials coueiii e e e e e araee s
2 Setting the eNVIFONMENT.......iiiiiiiiee e e e e s e e e s seaaaeeeenes
3 DlIVEIADIES. .ot e s e e e s e araeeeea

Exercise 2: Emulating a Wide Area Network (WAN)

1 Exercise description

In this exercise, you emulate a WAN. This task requires setting the bottleneck link
bandwidth and delay. Additionally, you will emulate packet losses and run a throughput
test to verify the performance.

hl

Vi

Gh 1-eth0

(4

50ms

1.1 Credentials

h2

sl s2
sl-ethl 2\- sl-eth2 s2-ethl 2‘& s2-eth2 h2-eth0
100 Mbps

i - 1

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type jpassword|.

Terminal

Step 2. Load the topology located at /home/admin/NTP_Exercises/Exercise2/.

Exercise 2: Emulating a Wide Area Network (WAN)

MiniEdit

Edit Run Help

New

o= | m open - o]
Save

Export Level 2 Script Directory: I,‘home,.fadmin!NTP_Exercises,-‘ExerciseZI 4| @‘
Quit topology.mn

File name: |t0p0|0gy.mn |gpen|

Files of type: Mininet Topology (*.mn) 4| Cancel ‘

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

| Riini

Stop Mi

3 Deliverables

Follow the steps below to complete the exercise.

a) Set the bottleneck link to 100 Mbps and add a 25ms latency to the interfaces s1-
eth2 and s2-eth1.

b) Run an iPerf3 test for 120 seconds and explain the results. What is the
throughput?

c¢) Add a 2% packet loss rate to the interface s1-eth2 and repeat part b).

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Problem 1: Troubleshooting a Wide Area Network
(WAN)

Document Version: 09-02-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Problem 1: Troubleshooting a Wide Area Network (WAN)

Contents

1 Problem desCription. ... s e e e s e e e s raaaee e e
1.1 CredeNtialS ..oveee e e e e e e e e e areeeens
2 Setting the eNVIFONMENT.......iiiiiiee e e e e e s bae e e s ssaaeeeenes

Problem 1: Troubleshooting a Wide Area Network (WAN)

1 Problem description

Find and troubleshoot the issue that is causing low throughput from host h1 to host h2.
Verify that the interfaces are correctly configured to set the bottleneck bandwidth to 1
Gbps and the latency to 50ms. Once the problem is found, apply the changes that will
guarantee the bottleneck link is fully utilized.

hl

72
(2

Gh 1-ethO

(4

50ms

1.1 Credentials

h2

sl s2
sl-ethl €S N9)sl-eth2 s2-ethl ‘§>. s2-eth2 h2-eth0
1 Gbps

> 1

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type fpassword|.

Step 2. Load the topology located at ~/NTP_Problems/Problem1/.

Terminal

Miniedit

Problem 1: Troubleshooting a Wide Area Network (WAN)

| MiniEdit

File Edit Run Help

New
Export Level 2 Script ; -
Directory: |fhome{admln(NTPVPrubIems{Prohleml| — ‘ @

Quit

Mot
\ ‘] |
:-f-' File name: Itopology.mn

Files of type: Mininet Topology (*.mn)] ‘ Cancel

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

| Riini

stop [E]_

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

B MiniEdit

Step 5. Navigate into the following directory ~/NTP_Problems/Problem1/ by issuing the

following command:

admin@admin-pc: ~/NTP_Problems/Problem1

File Actions Edit View Help
admin@admin-pc: ~/NTP_Problems/Problem1 (%]

admin@admin-pc: NTP_Problems/Problem1/

ladmin@admin-pc: i S B

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

Problem 1: Troubleshooting a Wide Area Network (WAN)

admin@admin-pc: ~/NTP_Problems/Problem1
File Actions Edit WView Help

admin@admin-pc: ~/NTP_Problems/Problem1
pc:

ra

The script sets the bottleneck link to 1 Gbps and the latency to 50ms. Now, you can start
solving the problem.

Hint. To see the configuration of each interface (e.g., end hosts and switches), consider
the following command:

sudo tc -s gdisc show dev <interface name>

§
0

[l

®
780\
AN

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 6: Understanding Traditional TCP Congestion
Control (HTCP, Cubic, Reno)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 6: Understanding Traditional TCP Congestion Control

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
R (01 Yo [0 Tt o o I e T I 6 PP UPPRRUPPPPR 3
L.l TP FEVIBW .ttt s sssssssssssssssasssnsnsnne 4
0 1 O o o o1 o YU ={ o' TV | PSPPI 4
1.3 TCP PacKet 0SS @VENT.......uiiiiiiiiee ittt e e s e s st e e e e saaaee s 5
1.4 Impact of packet loss in high-latency Nnetworks........ccccceevviieeeiviiiii e, 6
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 7
2.1 Startinghost h1 and hoSt h2ooooooeieee e 8
2.2 Emulating 10 Gbps high-latency WAN with packet 0SScccccvveveeiiiicciiinenenen. 9
P20S TR =Y1] o T olo T o | =Tt { o] o [N 10
3 INtroduction tO SYSCL.ceeeii i e 11
3.1 Read sysctl PAarameters e 11
3.2 Write sySCtl PArameEters i 12
3.3 Configuring sysctl.cONf filecuvereieiiiiee e 12
4 Congestion control algorithms and SysCtl.........cccveeieiieiiiiiieee e, 14
4.1 Inspect and install/load congestion control algorithmsccccceevvieeiieeinnennn, 15
4.2 Inspect the default (current) congestion control algorithm............cccceeennnn. 16
4.3 Modify the default (current) congestion control algorithmccccveeennnnee. 17
5 iPerf3 throughput teSt ..o 17
5.1 Throughput test without delayccccuviiiieeiii e, 18
700 00 R 01 (= Vo TP 18
5.1.2 Hamilton TCP (HTCP) ..ueuiteeeieeee ettt ettt e e e etnrre e e e e e e e s nnrneneee e 19
5.1.3 TCP CUDIC ceeiueiieiiiee ettt ettt et e s e s 21
5.2 Throughput test with 30ms delayccccveeeeeieiicciiiiieeee e 22
5,21 TCP RENO ..ttt e e e e e e s e e e e e e e e s nnreeneeeeens 23
5.2.2 Hamilton TCP (HTCP) ..ttt eecttrtree e e e e trrre e e e e e e e s ennrreneeeeees 24
5.2.3 TCP CUDIC cetiutiieiiiee ettt sttt s e e e s 26
RETEIENCES ...ttt st e st e s bt e s bt e e sneeesanee 27

Page 2

Lab 6: Understanding Traditional TCP Congestion Control

Overview

This lab reviews key features and behavior of Transmission Control Protocol (TCP) that
have a large impact on data transfers over high-throughput, high-latency networks. The
lab describes the behavior of TCP’s congestion control algorithm, its impact on
throughput, and how to modify the congestion control algorithm in a Linux machine.

Objectives
By the end of this lab, students should be able to:

1. Describe the basic operation of TCP congestion control algorithm and its impact
on high-throughput networks.

2. Explain the concepts of congestion window, bandwidth probing, and Additive-

Increase Multiplicative-Decrease (AIMD).

Understand TCP throughput calculation.

Understand the impact of packet loss on high-latency networks.

Deploy emulated WANSs in Mininet.

Modify the TCP congestion control algorithm in Linux using sysct/ tool.

Compare TCP Reno, HTCP, and Cubic with injected packet loss.

Compare TCP Reno, HTCP, and Cubic with both injected delay and packet loss.

O NOUL AW

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab topology.
3. Section 3: Introduction to sysctl.
4. Section 4: Congestion control algorithms and sysctl.
5. Section 5: iPerf3 throughput test.
1 Introduction to TCP

Page 3

Lab 6: Understanding Traditional TCP Congestion Control

1.1 TCP review

Big data applications require the transmission of large amounts of data between end
devices. Data must be correctly delivered from one device to another; e.g., from an
instrument to a Data Transfer Node (DTN). Reliability is one of the services provided by
TCP and a reason why TCP is the protocol used by most data transfer tools. Thus,
understanding the behavior of TCP is essential for the design and operation of networks
used to transmit big data.

TCP receives data from the application layer and places it in the TCP send buffer, as shown
in Figure 1(a). Data is typically broken into Maximum Segment Size (MSS) units. Note that
“segment” here refers to the Protocol Data Unit (PDU) at the transport layer, and
sometimes the terms packet and segment are interchangeably used. The MSS is simply
the Maximum Transmission Unit (MTU) minus the combined lengths of the TCP and IP
headers (typically 40 bytes). Ethernet’s normal MTU is 1,500 bytes. Thus, MSS’s typical
value is 1,460. The TCP header is shown in Figure 1(b).

Source port ‘ Destination port
Application Application 8 Sequence number
Segments s
| g T 2- Acknowledgment number
v TCP &
TCP send ; S oo | R ctibits| window
buffer receive :
buffer Checksum Urgent pointer

Options Padding

(@ (b)
Figure 1. (a) TCP Connection. (b) TCP header.

For reliability, TCP uses two fields of the TCP header to convey information to the sender:
sequence number and acknowledgement (ACK) number. The sequence number is the
byte-stream number of the first byte in the segment. The acknowledgement number that
the receiver puts in its segment is the sequence number of the next byte the receiver is
expecting from the sender. In the example of Figure 2(a), after receiving the first two
segments containing sequence number 90 (which contains bytes 90-99) and 100 (bytes
100-109), the receiver sends a segment with acknowledge number 110. This segment is
called cumulative acknowledgement.

1.2 TCP throughput

The TCP rate limitation is defined by the receive buffer shown in Figure 1(a). If this buffer
size is too small, TCP must constantly wait until an acknowledgement arrives before
sending more segments. This limitation is removed by setting a large receive buffer size.

A second limitation is imposed by the congestion control mechanism operating at the
sender side, which keeps track of a variable called congestion window. The congestion

Page 4

Lab 6: Understanding Traditional TCP Congestion Control

window, referred to as cwnd (in bytes), imposes a constraint on the rate at which a TCP
sender can send traffic. The cwnd value is the amount of unacknowledged data at the
sender. To see this, note that at the beginning of every Round-Trip Time (RTT), the sender
can send cwnd bytes of data into the connection; at the end of the RTT the sender receives
acknowledgments for the data. Thus, the sender’s send rate is roughly cwnd/RTT
bytes/sec. By adjusting the value of cwnd, the sender can therefore adjust the rate at
which it sends data into the connection.

cwnd

TCP Throughput ~ ——— [bytes/second]
S Sender Receiver@
S s S
eq: 0,
N
A
o
o
= o
o
2 o
=
c
K]
@
()
D
C
o
o
5 Time
< »
-]
_S O Triple duplicate ACK (packet loss)
§' Additive increase
% Multiplicative decrease
S 5
=
v v

(@) (b)
Figure 2. (a) TCP operation. (b) Adaptation of TCP’s congestion window.

1.3 TCP packet loss event

TCP is a reliable transport protocol that requires each segment be acknowledged. If an
acknowledgement for an outstanding segment is not received, TCP retransmits that
segment. Alternatively, instead of waiting for a timeout-triggered retransmission, the
sender can also detect a packet loss before the timeout by detecting duplicate ACKs. A
duplicate ACK is an ACK that re-acknowledges a segment for which the sender has already
received. If the TCP sender receives three duplicate ACKs for the same segment, TCP
interprets this event as packet loss due to congestion and reduces the congestion window
cwnd by half. This congestion window reduction is known as multiplicative decrease.

In steady state (ignoring the initial TCP period when a connection begins), a packet loss
will be detected by a triple duplicate ACK. After decreasing cwnd by half, and as long as
no other packet loss is detected, TCP will slowly increase cwnd again by 1 MSS per RTT.
This congestion control phase essentially produces an additive increase in the congestion
window. For this reason, TCP congestion control is referred to as an Additive-Increase

Multiplicative-Decrease (AIMD) form of congestion control. AIMD gives rise to the “saw
Page 5

Lab 6: Understanding Traditional TCP Congestion Control

tooth” behavior shown in Figure 2(b), which also illustrates the idea of TCP “probing” for
bandwidth—TCP linearly increases its congestion window size (and hence its transmission
rate) until a triple duplicate-ACK event occurs. It then decreases its congestion window
size by a factor of two but then again begins increasing it linearly, probing to see if there
is additional available bandwidth.

14 Impact of packet loss in high-latency networks

During the additive increase phase, TCP only increases cwnd by 1 MSS every RTT period.
This feature makes TCP very sensitive to packet loss on high-latency networks, where the
RTT is large.

Consider Figure 3, which shows the TCP throughput of a data transfer across a 10 Gbps
path. The packet loss rate is 1/22,000, or 0.0046%. The purple curve is the throughput in
a loss-free environment; the green curve is the theoretical throughput computed
according to the equation below, where L is the packet loss rate.

Throughput vs RTT, 0.0046% Packet Loss

10— T
8\<— LAN \\
[\

m
Q.
QO
O 6\
5 \ +—— Metro
Q. \
= \
= Regional Continental
’_
2 / l
O P e e 3 ﬂ
0 10 20 30 40 50 60 70 80 90
RTT (milliseconds)
e \leasured TCP HTCP = \leasured no loss
=== Measured TCP Reno Theoretical TCP Reno

Figure 3. Throughput vs Round-Trip Time (RTT), for two devices connected via a 10 Gbps path.
The performance of two TCP implementations are provided: Reno! (blue) and Hamilton TCP?
(HTCP) (red). The theoretical performance with packet losses (green) and the measured
throughput without packet losses (purple) are also shown?3.

MSS
RTT VL

TCP Throughput = [bytes / second]

The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the Round-Trip Time (RTT) and the square root of the packet loss rate (L). The red and
blue curves are real throughput measurements of two popular implementations of TCP:
Reno?! and Hamilton TCP (HTCP)?. Because TCP interprets losses as network congestion, it
reacts by decreasing the rate at which packets are sent. This problem is exacerbated as
the latency increases between the communicating hosts. Beyond LAN transfers, the
throughput decreases rapidly to less than 1 Gbps. This is often the case when research
collaborators sharing data are geographically distributed.

Page 6

Lab 6: Understanding Traditional TCP Congestion Control

TCP Reno is an early congestion control algorithm. TCP Cubic?, HTCP®, and BBR® are more
recent congestion control algorithms, which have demonstrated improvements with
respect to TCP Reno.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl s2 h2
10 Gbps

h1-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-ethO

10.0.0.1 10.0.0.2
Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

H_

Tenminal

Miniedit

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 6.mn topology file and click on Open.

Edit Run Help

New
Export Level 2 Script

et Directory: /home/admin/lab_topologies = ’ ml
Quit [ltab2.mn []Llab8mn []Llabl4.mn [Lab20.mn

Eltab3.mn [E] Lab9.mn [] Lab 15.mn
[[] Lab4.mn [] Lab 10.mn] Lab 16.mn
[El Lab5.mn [£] Lab 11.mn [C] Lab 17.mn
CI[EEEEEE [tab 12.mn [Lab 18.mn
[Lab 7.mn [5] Lab 13.mn] Lab 19.mn

K | ¥

File name: |Lab 6.mn I Open I

Files of type: Mininet Topology (*.mn) —'| Cancel ’

ﬂ%

Figure 6. MiniEdit shortcut.
Page 7

Lab 6: Understanding Traditional TCP Congestion Control

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop |EJ__

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

- MiniEdit

File Edit Run Help

sl 52

Host Options B

h2

Terminal

Figure 8. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the [pingl command. On host h1,
type the command [ping 10.0.0.2]. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

Page 8

Lab 6: Understanding Traditional TCP Congestion Control

"Host: hl"

, time 91ms

Figure 9. Connectivity test using command.

Figure 9 indicates that there is connectivity between host hl and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN with packet loss

This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1l and host h2 to 10 Gbps. Then

we will emulate packet losses between switch S1 and switch S2 and measure the
throughput.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Terminal

Miniedit

Figure 10. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard

and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter.

sudo tc gdisc add dev sl-eth2 root handle 1: netem loss 0.01%

Page 9

Lab 6: Understanding Traditional TCP Congestion Control

$_ admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc:~S |sudo tc qdisc add dev sl-eth2 root handle 1: netem loss 0.01%

[SLIdG] |'1j__|.‘(”d for admin:

admin@admin-pc:~$ I
Figure 11. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2; on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [ate: 10gbit
. -sooo 000

. : 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc: sud qdisc add dev sl1-eth2 parent 1: handle 2: tbf rate 10gbit
burst 5 0
admin@admin-pc:

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type [ping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seg=1 ttl=64 time=0.869
64 bytes from .0.0.2: icmp seqg=2 ttl=64 time=0.075
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=0.064

64 bytes from .0.0.2: icmp seg=4 ttl=64 time=0.068
5

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 64ms
rtt min/avg/max/mdev = 0.064/0.269/0.869/0.346 ms
root@admin-pc:~#

Figure 13. Output of ping 10.0.0.2]command.

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Page 10

Lab 6: Understanding Traditional TCP Congestion Control

Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type [ping 10.0.0.1]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

3 Introduction to sysctl

sysctl is a tool for dynamically changing parameters in the Linux operating system’. It
allows users to modify kernel parameters dynamically without rebuilding the Linux kernel.

Step 1. Run the command below on the Clientl’s terminal. When prompted for a

password, type and hit enter.

sudo sysctl -a

$_ admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

CD-ROM information, Id: cdrom.c 3.20

drive name: srd

Figure 14. Listing all system parameters in Linux.

This command produces a large output containing the kernel parameters and their values.
This is represented in a key-value pair. For instance, net.ipv4.ip forward = 0|implies
that the key [net.ipv4.ip forward has the value [0].

3.1 Read sysctl parameters

It is often useful to search for specific keys without having to manually locate the needed
key. This can be achieved using the following command:

sysctl <key>

Where <key> is replaced by the needed key. For example, the command
|net.ipv4.ip forward| returnslnet.ipv4.ip forward = O].

Step 1. Run the following command on the host h1’s terminal:
Page 11

Lab 6: Understanding Traditional TCP Congestion Control

sysctl net.ipv4.ip forward

"Host: h1"

root@admin-pc:~#|sysctl net.ipv4.ip forward

net.ipv4.ip forward = @
root@admin-pc:~# [

Figure 15. Reading the value of a given key.

3.2 Write sysctl parameters

It is also very useful to modify kernel parameters on the fly. The [-w] switch is added to
the sysctl to “write” a value for a specific key.

sysctl -w <key>=<value>

Step 1. For example, if the user decides to enable IP forwarding (i.e., to configure a device
as a router), then the following command is used:

sudo sysctl -w net.ipv4.ip forward=1
Run the above command on the host h1l’s terminal:

"Host: hl1"

sysctl -w net.ipv4.ip forward=1

Figure 16. Modifying a system parameter.
The changes made to a parameter using this command are temporary. Therefore, a new
boot resets the value of a key to its default value. Also, when stopping MiniEdit’s
emulation, the configured parameters are reset.

3.3 Configuring sysctl.conf file

If the user wishes to permanently modify the value of a specific key, then the key-value
pair must be stored within the file /etc/sysctl.conf.

Step 1. In the Linux terminal, open the /etc/sysctl.conf file using your favorite text editor.
Run the following command on the Client1’s terminal. When prompted for a password,

type and hit enter.

sudo featherpad /etc/sysctl.conf

This is a text file that can be edited in any text editor (vin, hand], etc.). For simplicity, we
use a Graphical User Interface (GUI)-based text editor (featherpad)).

Page 12

Lab 6: Understanding Traditional TCP Congestion Control

File Actions Edit View Help

admin@admin-pc: ~ "]

ctl.conf
faulting to '/tmp

/runtime-root
aulting to '/tm time-root'

File Edit Options Search Help

REBRARIS e C|IA XD

s to enable S

1cation 1n

Figure 17. Opening the /etc/sysctl.conf file.

Step 2. Keys and values are appended to this file. Enable IP forwarding permanently on
the system by append net.ipva.ip forward=1|to the /etc/sysctl.conf file and save it.
Once you have saved the file, close the text editor.

net.ipvéd.ip forward=1l

Page 13

Lab 6: Understanding Traditional TCP Congestion Control

4 */etc/ -0 x
File Edit Options Search Help

DE@ElS e QXD

rsysctl.conf lSave the current tabl

or gateways listed in our default

4 /k’L,‘L”4,(0.’?".‘7_L.:~CLUI.'E redirects = 1

E
Do not send ICMP redirects (we are not a router)
#net.ipv4.conf.all.send redirects = 0
#
Do not accept IP source route packets (we are not a router)
#net.ipv4. .all.accept source ro =0
#net.ipv6.conf.all.accept source route = @
#
Log Packets
#net.ipv4.conf.all.log martians = 1
#
s
ystem r t .‘\!.:\
e, l=e e all, >1 bitmask of sysrq functions
3 https //www. ke/r.el orl/doc/html/latest/admlnjulde sysrq.html
for what other values do

#kernel.sysrq=438

Inet .ipv4.ip forward=1 I

vl N~ A A° 2]

Figure 18. Appending key+value to the /etc/sysctl.conf file and saving.

Step 3. To refresh the system with the new parameters, the switch is passed to the
command as follows:

sudo sysctl -p

When prompted for a password, type and hit enter.

s admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~]

Figure 19. Loading new sysctl.conf parameters.
Now, even after a new system boot (or reboot), the system will have IP forwarding
enabled.
4 Congestion control algorithms and sysctl

Congestion control algorithms can be inspected and modified using the command
and the /etc/sysctl.conf file. Specifically, the following operations are possible:

1. Check the installed congestion control algorithms on the system.

Page 14

Lab 6: Understanding Traditional TCP Congestion Control

2. Inspect the default congestion control algorithm (i.e., the current algorithm used
by the system).
3. Modify the congestion control algorithm.

4.1 Inspect and install/load congestion control algorithms

In Linux, it is possible to check the available TCP congestion control algorithms installed
on the system with the command below.

Step 1. Execute the command below on the Client1’s terminal.

sysctl net.ipv4.tcp available congestion control

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ 3

Lon control
c bbr htcp

pc

Figure 20. Displaying the system’s available congestion control algorithms.

Usually, the default congestion control algorithm is CUBIC or Reno, depending on the
installed operating system. A list of some of the possible output is:

e [rend]: Traditional TCP used by almost all other Operating Systems. Characterized
by slow start, congestion avoidance, and fast retransmission via triple duplicate
ACKs.

® [cubidl: CUBIC-TCP. Optimized congestion control algorithm for high bandwidth
networks with high latency. Operates in a similar but more systematic fashion than
BIC-TCP, in which its congestion window is a cubic function of time since the last
packet loss, with the inflection point set to the window prior to the congestion
event.

e pid: BIC-TCP. Congestion window utilizes a binary search algorithm to find the
largest congestion window that will last the maximum amount of time.

e htcp: Hamilton TCP. A loss-based algorithm using additive-increase and
multiplicative-decrease to control TCP’s congestion window.

e [vegas|: TCP Vegas. Emphasizes packet delay, rather than packet loss, as a signal to
help determine the rate at which to send packets.

® [pbr]: a new algorithm, discussed in future labs. Measures bottleneck bandwidth
and Round-Trip Propagation (RTP) time in its execution of congestion control.

If the above command does not return a specific congestion control algorithm, it means
that it is not loaded on the distribution.

Step 2. The command used in Step 1 listed three algorithms: [reno cubic bbr]. To install
a new algorithm, its corresponding kernel module must be loaded. This can be done using

Page 15

Lab 6: Understanding Traditional TCP Congestion Control

[insmod or modprobe] commands. For example, to load the BIC-TCP module, use the
following command on the Client1’s terminal:

sudo modprobe tcp bic

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$ |sudo modprobe tcp_bic
[sudo] password for admin:

admin@admin-pc:~$ I

Figure 21. Loading [tcp_bic] module into the Linux kernel.

lmodprobe] and [insmod commands require high privileges to insert kernel modules.
When prompted for a password, type and hit enter.

Step 3. To verify that the BIC-TCP algorithm is loaded, execute the below command on
the Clientl’s terminal.

sysctl net.ipv4.tcp available congestion control

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ 1

admin@admin-pc:~$ |sysctl net.ipv4d.tcp available congestion control
net.ipv4.tcp available congestion control = reno cubic bbr bic

admin@admin-pc:~$ [}

Figure 22. Displaying the system’s available congestion control algorithms after loading TCP-BIC.

4.2 Inspect the default (current) congestion control algorithm
To check which TCP congestion control is currently being used by the Linux kernel, the
net.ipv4.tcp_congestion_control sysctl key is read. This key can be read on an end-host’s

terminal (host hl or host h2) or on the Clientl’s terminal.

Step 1. Execute the following command on the Clientl’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp congestion control

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (X%

admin@admin-pc:~$|sysctl net.ipv4.tcp _congestion_cont
net.ipv4.tcp_congestion_control = cubic
admin@admin-pc:~$ |

rol

Figure 23. Current TCP congestion control algorithm.

Page 16

Lab 6: Understanding Traditional TCP Congestion Control

The output shows that the default congestion control algorithm is Cubic. Note that
applications can set this value (congestion control algorithm) for individual connections.

4.3 Modify the default (current) congestion control algorithm

To temporarily change the TCP congestion control algorithm, the command is
used with the [-w| switch on the net.ipv4.tcp_congestion_control key.

Step 1. To modify the current algorithm to TCP Reno, the following command is used.
Execute the command below on the Client1’s terminal. When prompted for a password,

type and hit enter.

sudo sysctl -w net.ipv4.tcp congestion control=reno

. admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ X

admin@admin-pc:~$ |sudo sysctl -w net.ipv4.tcp_congestion_control=reno
[sudo] password for admin:

net.ipvd.tcp_congestion_control reno
admin@admin-pc:~$ i

Figure 24. Modifying the congestion control algorithm to [rend].

If no error occurred in the assignment (e.g., the module is not installed on the system),

the output echoes back the new key-value pair, i.e.:
lnet.ipv4.tcp congestion control=reno

Step 2. Execute the following command on the Clientl’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp congestion control

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ £

admin@admin-pc:~$ |sysctl net.ipv4.tcp _congestion_control
net.ipv4.tcp_congestion_control = reno

admin@admin-pc:~$ |

Figure 25. Current TCP congestion control algorithm after modifying to [renod].

The output shows that the default congestion control algorithm is now Reno instead of
Cubic.

5 IPerf3 throughput test

In this section, the throughput between host h1 and host h2 is measured using different
congestion control algorithms, namely Reno, HTCP, and Cubic. Moreover, the test is

Page 17

Lab 6: Understanding Traditional TCP Congestion Control

repeated using various injected delays to observe the throughput variations depending
on each congestion control algorithm and the selected RTT.

5.1 Throughput test without delay

In this test, we measure the throughput between host hl and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

5.1.1 TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

“Host: h1"

root@admin-pc:- 5 -w net.ipv4.tcp congestion control=reno

ion control = reno

Figure 26. Changing TCP congestion control algorithm to on host h1.
Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

root@admin-pc:~#|iperf3 -s

Serv

Figure 27. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host hl ’s terminal. The option is used to
specify the number of seconds to omit in the resulting report. Note that this option is a
capitalized ‘O’, not a zero.

iperf3 -c 10.0.0.2 -t 20 -0 10

Page 18

Lab 6: Understanding Traditional TCP Congestion Control

root@admin-pc:~

[15] local 10.0.0.1 port 34490 connected to 10.0.0.2

ID] Interval

15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
ID]
15]
15]

0.

1
P
3
4
)
6
7
8
1
1
2
3
4
5
6
7
8

(Y]

10.
11
12.
13
14.
15.
16.
172
18.

19

Interval

00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
00-
00-
00-
00-
00-
00-
00-
00-
00-
.00-

1)

O NOOUVESE WNMHOUONOWUL S WN

o

20

0.00-20
0.00-20.04

iperf Done.

root@admin-pc:~# |J

00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
10.
1 B S
12.
13.
14.
457
16.
L7
18.
49
.00

00
00
00
00
00
00
00
00
00
00

.00

sec
sec
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
SecC
SecC
secC
sec
secC
Sec
sec
sec
secC
sec
SecC

'
el el e el e el i el e el el el e e e el
'

Transfer

13
L
g b |
.11
A |
1
aidd:
211
.11
1A
add:
.11
b |
A
AL
i b
S
~1
Al
o1l
b K
~Ad
A
«11
Ralik
A
A
«11
¥ b &

GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes

GBytes

Transfer

22:3
22.3

GBytes
GBytes

|

"Host: h1"

#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.0.2, port 5201

Bitrate

g.
.56
=57
.56
.56
<27
.56
<7
.56
.79
.56
.56
.56
+95
274
.56
.56
.56
D7
.56
.56
.56
.56
.56
ST
.56
.56
.56
.56

O WOWWWWWOWWWWOWOLWYWOWOLOLOWOHOWOWOWWOOOO

9.56 Gbits/sec

69

Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec

Bitrate
9.56 Gbits/sec

port 5201

Retr

315
45
0
135
0
90
0

45
45
90

90
0

90
45

Cwnd
1.29
1.72
2.47
703
.90
15
12
.20
B b
.83
.27
730
782
1.93
824
735
1.65
724
1.08
878
321
1.80
2.:53
3.09
1004
1022
1.09
1.49
1014

MBytes
MBytes
MBytes
KBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
KBytes
KBytes
MBytes
KBytes
KBytes
MBytes
KBytes
MBytes
KBytes
KBytes
MBytes
MBytes
MBytes
KBytes
KBytes
MBytes
MBytes
KBytes

sender
receiver

Figure 28. Running iPerf3 client on host h1.

(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1890

(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

5.1.2 Hamilton TCP (HTCP)

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=htcp

Page 19

Lab 6: Understanding Traditional TCP Congestion Control

"Host: h1"

min-pc:~ sctl -w net.ipv4.tcp congestion control=htcp

.tcp _congestion control = htcp
min-pc:

Figure 29. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

Figure 30. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:
iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: h1"

root@dmin-pc:~# iperf3 -c 10.0.0.2 -t 20 -0 10

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 34494 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec .13 GBytes 9.69 Gbits/sec 158 4.16 MBytes
15] .00-2.00 sec .11 GBytes .57 Gbits/sec 45 2.49 MBytes
15] .00-3.00 sec .11 GBytes .56 Gbits/sec 90 1.45 MBytes omitted
15] .00-4.00 sec .11 GBytes .56 Gbits/sec 225 956 KBytes omitted

(omitted)
()
()
()
15] .00-5.00 sec .11 GBytes .57 Gbits/sec 135 713 KBytes (omitted)
()
()
()
()
()

omitted

[

[

[

[

[

[15] .00-6.00 sec .11 GBytes .56 Gbits/sec 0 .85 MBytes omitted
[-15] .00-7.00 sec .11 GBytes .56 Gbits/sec 0 .54 MBytes omitted
[215] .00-8.00 sec .11 GBytes .57 Gbits/sec 90 .27 MBytes omitted
[=15] .00-9.00 sec .11 GBytes .56 Gbits/sec 90 .44 MBytes omitted
[15] .00-10.00 sec .11 GBytes .56 Gbits/sec 45 .68 MBytes omitted
[-15] .00-1.00 sec .11 GBytes .56 Gbits/sec 45 .38 MBytes

[5] .00-2.00 sec .11 GBytes .56 Gbits/sec 90 .61 MBytes

[15] .00-3.00 sec .11 GBytes .56 Gbits/sec 45 .43 MBytes

[15] .00-4.00 sec .11 GBytes .56 Gbits/sec 45 .40 MBytes

[:15] .00-5.00 sec .11 GBytes .56 Gbits/sec 45 .77 MBytes

[A5] .00-6.00 sec .11 GBytes .56 Gbits/sec 781 KBytes

[15] .00-7.00 sec .11 GBytes .56 Gbits/sec 1.51 MBytes
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

o e e e e e e N

15] .00-8.00 sec .11 GBytes 56 Gbits/sec 2.30 MBytes
.57 Gbits/sec 2.89 MBytes
.56 Gbits/sec 1.14 MBytes
.56 Gbits/sec 1.03 MBytes
56 Gbits/sec - 696 KBytes
.55 Gbits/sec 1.26 MBytes
.56 Gbits/sec 621 KBytes
56 Gbits/sec 1.81 MBytes
56 Gbits/sec 1.90 MBytes
.56 Gbits/sec 622 KBytes
.56 Gbits/sec 1.81 MBytes
15] .00-19.00 sec .11 GBytes 56 Gbits/sec 1.14 MBytes
15] .00-20.00 sec .11 GBytes .56 Gbits/sec 1.51 MBytes

ONOUVAEWNFHFOOUONOU LS WN -

15] .00-9.00 sec
15] .00-10.00 sec
15] .00-11.00 sec
15] .00-12.00 sec
15] .00-13.00 sec
15] .00-14.00 sec
15] .00-15.00 sec
15] .00-16.00 sec
15] .00-17.00 sec
15] .00-18.00 sec

.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes

e e e e e e I e S S = S S S S S S S S S S S S
OO OLOWOUWLWOLOWOLOWODOWPYWOOVOWOWWOWWOUWLWWOWWWLWWLWLWWLWWWWW

—

ID] Interval Transfer Bfirate
15] 0.00-20.00 22.3 GBytes |9.56 Gbits/sec sender
15] 0.00-20.04 22.3 GBytes |9.56 Gbits/sec receiver
iperf Done.
root@admin-pc:~# |J

Figure 31. Running iPerf3 client on host h1l.

Page 20

Lab 6: Understanding Traditional TCP Congestion Control

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1789
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.
5.1.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipvé4.tcp congestion control=cubic

"Host: h1"

root@admin-pc ctl -w net.ipv4.tcp congestion control=cubic

net. 4.1tc 1on control = cubic
root@admin-pc:~3

Figure 32. Changing TCP congestion control algorithm to on host h1l.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

“Host: h2"

Figure 33. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host hl’s terminal:

iperf3 -c 10.0.0.2 -t 20 -0 10

Page 21

Lab 6: Understanding Traditional TCP Congestion Control

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.0.2, port 5201
[15] local 10.0.0.1 port 34498 connected to 10.0.0.2 port 5201

ID] Interval Transfer Bitrate Retr Cwnd

0.00-1.00 sec 1.13 GBytes 9.69 Gbits/sec 135 5.90 MBytes

.00-2.00 sec .11 GBytes .56 Gbits/sec 45 4.42 MBytes
.00-3.00 sec .11 GBytes .56 Gbits/sec 135 1.76 MBytes omitted
.00-4.00 sec .11 GBytes .56 Gbits/sec 180 1.15 MBytes omitted

(omitted)
()
()
()
.00-5.00 sec .11 GBytes .56 Gbits/sec 45 1.43 MBytes (omitted)
()
()
()
()

omitted

.00-6.00 sec .11 GBytes 56 Gbits/sec 135 776 KBytes omitted
.00-7.00 sec .11 GBytes .56 Gbits/sec 0 1.48 MBytes omitted
.00-8.00 sec .11 GBytes 56 Gbits/sec 135 1.08 MBytes omitted
.00-9.00 sec .11 GBytes .57 Gbits/sec 90 1024 KBytes omitted
.00-1.00 sec .11 GBytes 78 Gbits/sec 0 1.84 MBytes
.00-2.00 sec .11 GBytes .56 Gbits/sec 180 1.07 MBytes
.00-3.00 sec .11 GBytes 56 Gbits/sec 135 970 KBytes
.00-4.00 sec .11 GBytes .57 Gbits/sec 135 1.05 MBytes
.00-5.00 sec .11 GBytes 56 Gbits/sec 180 1012 KBytes
.00-6.00 sec .11 GBytes .56 Gbits/sec 45 1.25 MBytes
.00-7.00 sec .11 GBytes .57 Gbits/sec 90 1.13 MBytes
.00-8.00 sec .11 GBytes .56 Gbits/sec 1.22 MBytes
.00-9.00 sec .11 GBytes .56 Gbits/sec 962 KBytes
.00-10.00 sec .11 GBytes .56 Gbits/sec .15 MBytes
10.00-11.00 sec .11 GBytes .57 Gbits/sec .06 MBytes
11.00-12.00 sec .11 GBytes .56 Gbits/sec .22 MBytes
12.00-13.00 sec .11 GBytes .56 Gbits/sec .40 MBytes
13.00-14.00 sec 11 GBytes 56 Gbits/sec .08 MBytes
14.00-15.00 sec .11 GBytes .56 Gbits/sec .30 MBytes
15.00-16.00 sec .11 GBytes .56 Gbits/sec .46 MBytes
16.00-17.00 sec .11 GBytes .56 Gbits/sec .17 MBytes
17.00-18.00 sec .11 GBytes .56 Gbits/sec 984 KBytes
18.00-19.00 sec .11 GBytes .56 Gbits/sec - 1.33 MBytes
19.00-20.00 sec .11 GBytes .56 Gbits/sec 1.87 MBytes

1
2
3
4
5
6
7
8
1
1
2
3
4
5
6
7
8

o

)
el i T I R e e R e S R e e e i s I = I SR =S R SRy =)
= b e e

OV VOWOWOVOVOVOVOWOWOOOWOWWOWWOWWOWOHROOLOLOOOOWY

Interval Transfer [Bitrate
0.00-20.00 22.3 GBytes |9.56 Gbits/secI sender
0.00-20.04 22.3 GBytes |9.56 Gbits/sec| receiver

root@admin-pc:~# ||
Figure 34. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1845
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1l and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. On the client’s terminal, run the following command to modify the previous rule
to include 30ms delay. When prompted for a password, type and hit enter.

sudo tc gdisc change dev sl-eth2 root handle 1: netem loss 0.01% delay 30ms

Page 22

Lab 6: Understanding Traditional TCP Congestion Control

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ [
admin@admin-pc:~$|sudo tc qdisc ch

delay 30ms

admin@admin-pc:~$

Figure 35. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host hl’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem="10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem="10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipvé4.tcp rmem=’10240 87380 150000000"

sysctl -w net.ipvé4.tcp wmem='10240 87380 150000000’

"Host: hl1"

cp rmem='10240 3
00

Figure 36. Modifying the TCP buffer size on host h1.
Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following

commands: sysctl -w net.ipv4.tcp_rmem="10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem="10,240 87,380 150,000,000’

"Host: h2"

Figure 37. Modifying the TCP buffer size on host h2.

521 TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

"Host: h1"

tl -w net.ipv4.tcp congestion control=reno
tion control = reno

Figure 38. Changing TCP congestion control algorithm to on host h1.

Page 23

Lab 6: Understanding Traditional TCP Congestion Control
Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

"Host: h2"

Figure 39. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The [-0 option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: hl1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 47044 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

[5] 0.00-1.00 sec 527 MBytes 4.42 Gbits/sec 5134 19.5 MBytes (omitted)
[:15] .00-2.00 sec 352 MBytes .96 Gbits/sec ® 10.0 MBytes (omitted)
[15] .00-3.00 sec 335 MBytes .81 Gbits/sec 10.1 MBytes (omitted)
[15] .00-4.00 sec 336 MBytes .82 Gbits/sec 10.1 MBytes (omitted
[15] .00-5.00 sec 314 MBytes .63 Gbits/sec 5.08 MBytes (omitted
[15] .00-6.00 sec 145 MBytes .22 Gbits/sec .12 MBytes (omitted
[15] .00-7.00 sec 134 MBytes .12 Gbits/sec .16 MBytes (omitted
[15] .00-8.00 sec 56.2 MBytes 472 Mbits/sec .74 MBytes

5] .00-9.00 sec 57.5 MBytes 482 Mbits/sec .78 MBytes

[::15:] .00-10.00 sec 58.8 MBytes 493 Mbits/sec .83 MBytes
[
[
[
[
[
[
[
[
[
[

O ~NO WL B WN
o
(<]

[Xe]

15] 10.00-11.00 sec 61.2 MBytes 514 Mbits/sec .87 MBytes
MBytes 514 Mbits/sec .92 MBytes
MBytes 535 Mbits/sec .96 MBytes
.01 MBytes
.05 MBytes
.10 MBytes
.14 MBytes
.19 MBytes
.14 MBytes
.18 MBytes

15] 11.00-12.00 sec 61.
15] 12.00-13.00 sec 63.

15] 14.00-15.00 sec 66.
15] 15.00-16.00 sec 67.
15] 16.00-17.00 sec 70.
15] 17.00-18.00 sec 71.
15] 18.00-19.00 sec 40.
19.00-20.00 sec 37.

MBytes 556 Mbits/sec
MBytes 566 Mbits/sec
MBytes 587 Mbits/sec
MBytes 598 Mbits/sec
MBytes 335 Mbits/sec
MBytes 315 Mbits/sec

o
[l NN oo NoNoNoNoNo oMo RNo Moo RS ol

o N NNNNRF -0 W,

5
8
2
2
8
15] 13.00-14.00 sec 65.0 MBytes 545 Mbits/sec
2
5
0
2
0
5

Interval Transfer Bitrate l Retr
0.00-20.00 1.10 GBytes | 472 Mbits/sec| 45 sender
0.00-20.04 1.10 GBytes | 472 Mbits/sec| receiver
iperf Done.
root@admin-pc:~# |j

Figure 40. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 472 Mbps (sender) and 472 Mbps (receiver), and the number of retransmissions is 45.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see

the throughput results in the server side too.

5.2.2 Hamilton TCP (HTCP)

Page 24

Lab 6: Understanding Traditional TCP Congestion Control

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=htcp

"Host: h1"

root@admin-pc:~#|sysctl -w net.ipv4.tcp congestion control=htcp

net.ipv4.tcp congestion control = htcp

Figure 41. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

"Host: h2"

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.6.2, port 5201
0.0.1 port 47052 connected to 10.0.0.2 port 5201

[

15] local 10.
ID] Interval
15] 0.00-1.
15] .00-
15] .00-
15] .00-
15] .00-
15] 00-
15] .00-
15] 00-
15] .00-
15] 00-
15] .00-
15] .00-
15] .00-
15] .00-
151 00-
15] .00-
15] .00-
15] .00-
15] .00-
15] 10.00-
15] 11.00-
15] 12.00-
15] 13.00-
15] 14.00-
15] 15.00-
15] 16.00-
15] 17.00-
15] 18.00-
15] 19.00-
ID] Interval
15]
15]

ONOUVHEWNRMEFEMFEONOU S WN M
WCONOULREWNEMROODNOOUSE WN

w0
el
NH® -

-
w

N b e e
O WoONO WU,

0.00-20.
0.00-20.

00

.00
.00
.00
.00
.00
.00

00

.00

00

.00
.00
.00
.00

00

.00
.00

00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

00
04

sec
sec
secC
sec
Sec
sec
sec
sec
SecC
sec
sec
sec
sec
sec
SecC
sec
sec
Sec
sec
sec
SecC
SecC
sec
sec
SecC
sec
secC
SecC
sec

Bitrate
4.63 Gbits/sec
1.42 Gbits/sec
923 Mbits/sec
514 Mbits/sec
336 Mbits/sec
252 Mbits/sec
262 Mbits/sec
304 Mbits/sec
210 Mbits/sec
94.4 Mbits/sec
210 Mbits/sec
252 Mbits/sec
294 Mbits/sec
357 Mbits/sec
346 Mbits/sec
199 Mbits/sec
377 Mbits/sec
514 Mbits/sec
619 Mbits/sec
703 Mbits/sec
398 Mbits/sec
409 Mbits/sec
409 Mbits/sec
304 Mbits/sec
220 Mbits/sec
241 Mbits/sec
252 Mbits/sec
33.8 MBytes 283 Mbits/sec
36.2 MBytes 304 Mbits/sec
[Bitrate
344 Mbits/sec

Transfer
552 MBytes
169 MBytes
110 MBytes

61.2 MBytes

40.0 MBytes

30.0 MBytes

31.2 MBytes

36.2 MBytes

25.0 MBytes

22.5 MBytes

25.0 MBytes

30.0 MBytes

35.0 MBytes

42.5 MBytes

41.2 MBytes

23.8 MBytes

45.0 MBytes

61.2 MBytes

73.8 MBytes

83.8 MBytes

47.5 MBytes

48.8 MBytes

48.8 MBytes

36.2 MBytes

26.2 MBytes

28.8 MBytes

30.0 MBytes

N

0
0
2
P
0
)
0
0
0
5
P
8
0
2
8
8
5
8
8
p
P
8
0
8
P

Transfer
820 MBytes
821 MBytes

Retr

344 Mbits/sec

Cwnd
10335 13.1 MBytes
90 3.31 MBytes
® 3.35 MBytes
45 1.71 MBytes
45 909 KBytes
0 950 KBytes (omitted
1.03 MBytes (omitted)
1.17 MBytes (omitted)
642 KBytes (omitted)
731 KBytes
829 KBytes
.01 MBytes
.20 MBytes
.40 MBytes
.50 MBytes
.59 MBytes
.71 MBytes
.07 MBytes
.39 MBytes
.44 MBytes
.47 MBytes
.51 MBytes
.55 MBytes
826 KBytes
864 KBytes
909 KBytes
988 KBytes
1.06 MBytes
1.21 MBytes

(omitted)
(omitted)
(omitted)
(omitted)
(omitted)

)

()

[cNoNoNoNoNVNoNoNoNoNoNoNoNoNoNoNoNoNoNo RV
o b e NN R R e e e e

sender
receiver

Figure 43. Running iPerf3 client on host h1l.

Page 25

Lab 6: Understanding Traditional TCP Congestion Control

The figure above shows the iPerf3 test output report. The average achieved throughput
is 344 Mbps (sender) and 344 Mbps (receiver), and the number of retransmissions is 93.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=cubic

"Host: h1"

tl -w net.ipv4.tcp congestion control=cubic

on control = cubic

Figure 44. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

Figure 45. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -0 10

Page 26

Lab 6: Understanding Traditional TCP Congestion Control

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.0.2, port 5201
[15] local 10.0.0.1 port 47040 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15 0.00-1.00 sec 655 MBytes .49 Gbits/sec 24574 23.4 MBytes (omitted)
15 .00-2.00 sec 705 MBytes .91 Gbits/sec 45 16.9 MBytes (omitted)
15 .00-3.00 sec 564 MBytes .73 Gbits/sec 0 17.4 MBytes (omitted)
15 .00-4.00 sec 450 MBytes .78 Gbits/sec 45 12.6 MBytes (omitted)
15 .00-5.00 sec 348 MBytes .92 Gbits/sec 45 9.13 MBytes (omitted)
15 .00-6.00 sec 296 MBytes .49 Gbits/sec 45 .63 MBytes (omitted)
(
(
(

w

]
]
]
]
]
]
]
15] .00-7.00 sec 224 MBytes .88 Gbits/sec 0 .91 MBytes omitted)
15] .00-8.00 sec 229 MBytes .92 Gbits/sec] .15 MBytes omitted)
15] .00-9.00 sec 176 MBytes .48 Gbits/sec .24 MBytes omitted)

]

]

]

]

]

]

]

]

]

NN WS WD

15 .00-1.00 sec 182 MBytes 765 Mbits/sec .61 MBytes
.00-2.00 sec 172 MBytes .45 Gbits/sec
.00-3.00 sec 136 MBytes .14 Gbits/sec
.00-4.00 sec 145 MBytes .22 Gbits/sec
.00-5.00 sec 146 MBytes .23 Gbits/sec
.00-6.00 sec 146 MBytes .23 Gbits/sec
.00-7.00 sec 110 MBytes 923 Mbits/sec
.00-8.00 sec 116 MBytes 975 Mbits/sec
.00-9.00 sec 119 MBytes 996 Mbits/sec
.00-10.00 sec 122 MBytes 1.03 Gbits/sec
.00-11.00 sec 125 MBytes 1.05 Gbits/sec
.00-12.00 sec 96.2 MBytes 807 Mbits/sec
.00-11.00 sec 125 MBytes 1.05 Gbits/sec
.00-12.00 sec 96.2 MBytes 807 Mbits/sec
.00-13.00 sec 82.5 MBytes 692 Mbits/sec
.00-14.00 sec 70.0 MBytes 587 Mbits/sec
.00-15.00 sec 72.5 MBytes 608 Mbits/sec
.00-16.00 sec 76.2 MBytes 640 Mbits/sec
.00-17.00 sec 77.5 MBytes 650 Mbits/sec
.00-18.00 sec 80.0 MBytes 671 Mbits/sec
.00-19.00 sec 80.0 MBytes 671 Mbits/sec
.00-20.00 sec 81.2 MBytes 681 Mbits/sec

15
15
15
15
15

.05 MBytes
.24 MBytes
.40 MBytes
.53 MBytes
.25 MBytes
.42 MBytes
.57 MBytes
.68 MBytes
.76 MBytes
.83 MBytes
.82 MBytes
.83 MBytes
.82 MBytes
.08 MBytes
.19 MBytes
.28 MBytes
.35 MBytes
.40 MBytes
.43 MBytes
.45 MBytes
.45 MBytes

O NOOUVEWNEHERMEONOUESE WN =

N
NNNNNNNNNWNWDWODWDWDWWSAAAERPULLLIO O

[oloNoNoNoNoNCRY R NORENoNCRo NN o

NeOoULNULOo WM

Interval Transfer Bitrate
0.00-20.00 sec 2.19 GBytes 938 Mbits/sec sender
0.00-20.04 sec 2.19 GBytes 939 Mbits/sec receiver
iperf Done.
root@admin-pc:~# ||

Figure 46. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 938 Mbps (sender) and 939 Mbps (receiver), and the number of retransmissions is 180.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux
terminal.
References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

Page 27

Lab 6: Understanding Traditional TCP Congestion Control

2. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

3. E.Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

4. S. Ha, ., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

5. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

6. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

7. System information variables — sysctl (7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

Page 28

§
0

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 7: Understanding Rate-based TCP
Congestion Control (BBR)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTrodUCTION tO TCPeiiiiieiiee ettt e e s e e s s e e s s bre e e e seanneeeeeans 3
1.1 Traditional TCP congestion control reViewccccceevveiccciiieeeee e 3
1.2 Traditional congestion control limitations.........ccccceeiieiicciieeeee e, 4
1.3 TCP BBR ooeeeitiee ettt ettt sttt ettt e st e e ettt e e e bt e e e s b a e e e s b e e e e e nnneeeas 5
P2 - o 8 o o To] Uo Y =AY 2SS PPPPRR 8
2.1 Startinghost h1 and hoSt h2ooeoooeeee e 9
2.2 Emulating 1 Gbps high-latency WAN with packet 0SSccccvvveeeviiiicciiieeen, 10
P2 TR =Y1 d{ o T=Aolo T o | =Tt { o] o [N 11
3 iPerf3 throughput teSt .o e 12
3.1 Throughput test without delayccccvriiiieiiiii e, 12
0t 0t R 61 (=T o o T T T PP P PP 12
3,12 TCP BBRuieeiee ettt ettt e e e e et e e et e e s nbae e e e s e e e e e nnees 13
3.2 Throughput test with 30ms delayc.cceeveiiieeiiiieee e 15
0 R 6 o (=T oo O T T PP TP PTTT 16
3.2.2 TCP BBRuiteiee ettt ettt e e e et e et e e e s nnbae e e e s raaeeeennnees 19
2] =T =Y g Tl PP 22

Page 2

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Overview

This lab describes a new type of TCP congestion control algorithm called Bottleneck
Bandwidth and Round-Trip Time (BBR). The lab conducts experimental results using TCP
BBR and contrasts these results with those obtained using traditional congestion control
algorithms such as a Reno and HTCP.

Objectives

By the end of this lab, students should be able to:

1. Describe the basic operation of TCP BBR.

2. Describe differences between rate-based congestion control and window-based
loss-based congestion control.

3. Modify the TCP congestion control algorithm in Linux using sysctl tool.

4. Compare the throughput performance of TCP Reno and BBR in high-throughput
high-latency networks.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab Topology.
3. Section 3:iPerf3 Throughput Test.

1 Introduction to TCP

1.1 Traditional TCP congestion control review

Page 3

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

TCP congestion control was introduced in the late 1980s. For many years, the main
algorithm of congestion control was TCP Reno?. Subsequently, multiple algorithms were
proposed based on Reno’s enhancements. The goal of congestion control is to determine
how much capacity is available in the network, so that a source knows how many packets
it can safely have in transit (inflight). Once a source has these packets in transit, it uses
the arrival of an acknowledgement (ACK) as a signal that one of its packets has left the
network and that it is therefore safe to insert a new packet into the network without
adding to the level of congestion. By using ACKs to pace the transmission of packets, TCP
is said to be self-clocking?.

A major task of the congestion control algorithm is to determine the available capacity.
In steady state, TCP Reno maintains an estimate of the Round-Trip Time (RTT) -the time
to send a packet and receive the corresponding ACK-. If the ACK stream shows that no
packets are lost in transit, Reno increases the sending rate by one additional segment
each RTT interval. This period is known as the additive increase. Note that “segment” here
refers to the protocol data unit (PDU) at the transport layer, and that sometimes the
terms packet and segment are interchangeably used. Eventually, the increasing flow rate
saturates the bottleneck link at a router, which drops a packet. The TCP receiver signals
the missing packet by sending an ACK in response to an out-of-order received segment,
as illustrated in Figure 1(a). Once the TCP sender receives three duplicate ACKs for the
same out-of-order segment, it interprets this event as packet loss due to congestion and
reduces the sending rate by half. This reduction is known as multiplicative decrease. Once
the loss is repaired, Reno resumes the additive increase phase. This iteration of additive
increase multiplicative decrease (AIMD) periods is shown in Figure 1(b).

Sender Receiver@
=
Seq S
» 10

-1

Congestion Window

Time

»

QOut-of-order
segments

O Triple duplicate ACK (packet loss)
Additive increase

€q = 110, 10 b Multiplicative decrease
S

(a) (b)
Figure 1. (a) TCP operation. (b) Evolution of TCP’s congestion window.

Triple duplicate ACK

Time

1.2 Traditional congestion control limitations

Page 4

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

While Reno has proven to perform adequately in the past, when the bulk of the TCP
connections carried trivial applications such as web browsing and email, it faces severe
limitations in high-throughput connections that are needed for grid computing and big
science data transfers. Reno’s average TCP throughput can be approximated by the
following equation?:

MSS
RIT VL [bytes / second]

TCP Throughput =
The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the product of Round-Trip Time (RTT) and the square root of the packet loss rate (L).
Essentially, the equation above indicates that the TCP throughput is very sensitive to
packet loss. In such environments Reno cannot achieve high throughput, especially in
high-latency scenarios. Figure 2 validates the above equation. It shows the throughput as
a function of RTT, for two devices connected by a 10 Gbps path. The performance of two
TCP AIMD-based implementations are provided: Reno?! (blue) and Hamilton TCP3, better
known as HTCP (red). The theoretical performance (using the above equation) with
packet losses (green) and the measured throughput without packet losses (purple) are
also shown. Figure 2 is reproduced from®.

Throughput vs RTT, 0.0046% Packet Loss

10\
. \ «———LAN —
@
Q
0 6\ »
5 \ +«—— Metro
Q. A
= \
%’ 4 | |
= Regional Continental
|_
2 / l
O v P — 3 3 "1
0 10 20 30 40 50 60 70 80 90
RTT (milliseconds)
e |\leasured TCP HTCP = \leasured no loss
=== Measured TCP Reno Theoretical TCP Reno

Figure 2. Throughput vs Round-Trip Time (RTT) for two devices connected via a 10 Gbps path. The
performance of two TCP implementations are provided: Reno® (blue) and HTCP (red). The
theoretical performance with packet losses (green) and the measured throughput without packet
losses (purple) are also shown.

1.3 TCP BBR

The main issue surrounding traditional congestion control algorithms in high-speed high-
latency networks is that the sender cannot recover from the packet loss and multiplicative
decrease, even when the packet losses are sporadic. When the RTT is large, increasing the
congestion window (and thus the sending rate) by only 1 MSS every RTT is too slow.

Page 5

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

BBR® is a new congestion control algorithm that does not adhere to the AIMD rule and
the above equation. BBRis a rate-based algorithm, meaning that at any given time it sends
data at a rate that is independent of current packet losses. Note that this feature is a
drastic departure from traditional congestion control algorithms, which operate by
reducing the sending rate by half each time a packet loss is detected.

The behavior of BBR can be described using Figure 3, which shows a TCP’s viewpoint of
an end-to-end connection. At any time, the connection has exactly one slowest link, or
bottleneck bandwidth (bt/bw), that determines the location where queues are formed.
When router buffers are large, traditional congestion control keeps them full (i.e., they
keep increasing the rate during the additive increase phase). When buffers are small,
traditional congestion control misinterprets a loss as a signal of congestion, leading to low
throughput. The output port queue increases when the input link arrival rate exceeds
btlbw. The throughput of loss-based congestion control is less than bt/bw because of the
frequent packet losses.

Sender Router Receiver
O 0O g0
@ ‘ Bottleneck
4 (btlbw)

Output port buffer
@

App. limited Bandwidth limited Buffer limited
3 RTT increases at Packet loss
router’s queue

'
|_
'_
14

RTTmin ' ________________

A
btlbw

® @---eennnneeeees
5
Q.
ey
(=]
=}
o
ey
'_

¥ v Inflight data

BDP = RTT, - btlbw BDP + buffer size

@ Optimal operating point
@ Operating point of traditional congestion control algorithms

(b)
Figure 3. TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified
TCP interpretation of the connection. (b) Throughput and RTT, as a function of in-flight data.

Figure 3(b) illustrates the RTT and throughput with the amount of data inflight>. RTTmin is
the propagation time with no queueing component (the network is not congested). In the

Page 6

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

application limited region, the delivery rate/throughput increases as the amount of data
generated by the application layer increases, while the RTT remains constant. The
pipeline between sender and receiver becomes full when the inflight number of bits is
equal to the bandwidth multiplied by the RTT. This number is also called bandwidth-delay
product (BDP) and quantifies the number of bits that can be inflight if the sender
continuously sends segments. In the bandwidth limited region, the queue size at the
router of Figure 3(a) starts increasing, resulting in an increase of the RTT. The throughput
remains constant, as the bottleneck link is fully utilized. Finally, when no buffer is available
at the router to store arriving packets (the number of inflight bits is equal to BDP plus the
buffer size of the router), these are dropped.

It is important to understand that packets to be sent are paced at the estimated
bottleneck rate, which is intended to avoid network queuing that would otherwise be
encountered when the network performs rate adaptation at the bottleneck point. The
intended operational model here is that the sender is passing packets into the network at
a rate that is not anticipated to encounter queuing at any point within the entire path.
This is a significant contrast to protocols such as Reno, which tends to send packet bursts
at the epoch of the RTT and relies on the network’s queues to perform rate adaptation in
the interior of the network if the burst sending rate is higher than the bottleneck capacity.

BBR also periodically probes for additional bandwidth. It spends one RTT interval
deliberately sending at a rate that is higher than the current estimate bottleneck
bandwidth. Specifically, it sends data at 125% the bottleneck bandwidth. If the available
bottleneck bandwidth has not changed, then the increased sending rate will cause a
gueue to form at the bottleneck. This will cause the ACK signaling to reveal an increased
RTT, but the bottleneck bandwidth estimate will be unaltered. If this is the case, then the
sender will subsequently send at a compensating reduced sending rate for an RTT interval.
The reduced rate is set to 75% the bottleneck bandwidth, allowing the bottleneck queue
to drain. On the other hand, if the available bottleneck bandwidth estimate has increased
because of this probe, then the sender will operate according to this new bottleneck
bandwidth estimate. The entire cycle duration lasts eight RTTs and is repeated indefinitely
in steady state.

A
Q probe
©
o 125
£ btlbw
5 100
c N
2 75
o drain
cycle 1 cycle 2 .. Time
\—Y—J
8 RTTs

Figure 4. The rate used by the sender is the estimate bottleneck bandwidth (bt/bw). During the
probe period (1 RTT duration), the sender probes for additional bandwidth, sending at a rate of
125% of the bottleneck bandwidth. During the subsequent period, drain (1 RTT duration), the
sender reduces the rate to 75% of the bottleneck bandwidth, thus allowing any bottleneck queue
to drain.

Page 7

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hi s s2
1Gbps

h1-ethO s1-eth1 s1-eth2 s2-eth2 s2-eth1 h2-eth0

10.0.0.1 10.0.0.2
Figure 5. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|,

H_

Terminal

Miniedit

Figure 6. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 7.mn topology file and click on Open.

Edit Run Help

New

|Open|

Export Level 2 Script

Directory: /home/admin/lab_topologies = ’ @ ‘

Quit [lLab2.mn [JLab8mn [l Lab14.mn [Lab 20.mn
[l ab3.mn []Lab9.mn [Z] Lab 15.mn
[E] Lab4.mn [C] Lab 10.mn [C] Lab 16.mn
] tabs.mn [C] Lab 11.mn [C] Lab 17.mn
[] Lab 6.mn [] Lab 12.mn [] Lab 18.mn

EIEEEERY [Lab 13.mn [Lab 19.mn
0]

[[¥]

File name: |Lab 7.mn I Open I

Files of type: Mininet Topology (*.mn) 4’ Cancel |

M%

Figure 7. MiniEdit’s Open dialog.

Page 8

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop |Hi

Figure 8. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

| MiniEdit

File Edit Run Help

== N ==
s2

sl
Host Options @
h2

Terminal

Figure 9. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2 This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

Page 9

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

"Host: h1"

from
from
from

from
5 from

Figure 10. Connectivity test using command.
Figure 10 indicates that there is connectivity between host hl and host h2. Thus, we are
ready to start the throughput measurement process.
2.2 Emulating 1 Gbps high-latency WAN with packet loss
This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 1 Gbps. Then

we will emulate packet losses between switch S1 and switch S2, and measure the
throughput.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Terminal

o
Miniedit
Figure 11. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the below command. When prompted for a password, type

password and hit enter. This command basically introduces a 0.01% packet loss rate on
switch S1’s s1-eth2 interface.

sudo tc gdisc add dev sl-eth2 root handle 1: netem loss 0.01%

Page 10

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

= admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 root handle 1: netem loss 0.01%

[sudo] password for admin:

admin@admin-pc:~$ l

Figure 12. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 1 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

o [ate: 1gbit
e [ourst} 500,000
e [Limit} 2,500,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate lgbit burst 500000
limit 2500000

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc: sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 1gbit
burst 500000 L1
admin@admin-pc:

Figure 13. Limiting the bandwidth to 1 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1l"

root@admin-pc:~#|ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seq=1 ttl=64 time=0.869
64 bytes from .0.0.2: icmp seq=2 ttl=64 time=0.075
64 bytes from .0.0.2: icmp seg=3 ttl=64 time=0.064

64 bytes from .0.0.2: icmp seq=4 tt1l=64 time=0.068
G

-- 10.0.0.2 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 64ms
rtt min/avg/max/mdev = 0.064/0.269/0.869/0.346 ms
root@admin-pc:~# |

Figure 14. Output of [ping 10.0.0.2/command.

Page 11

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type jping 10.0.0.1]. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

3 IPerf3 throughput test

In this section, the throughput between host hl and host h2 is measured using two
congestion control algorithms: Reno and BBR. Moreover, the test is repeated using
various injected delays to observe the throughput variations depending on each
congestion control algorithm and the selected RTT.

3.1 Throughput test without delay

In this test, we measure the throughput between host hl and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

3.1.1 TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

"Host: h1"

root@admin-pc ctl -w net.ipv4.tcp congestion control=reno

ion control = reno

Figure 15. Changing TCP congestion control algorithm to on host h1.
Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

root@admin-pc:~#|iperf3 -s

Server listening on 5201

Figure 16. Starting iPerf3 server on host h2.

Page 12

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The [-0 option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: h1"

root@admin-pc:~# jiperf3 -c 10.0.0.2 -t 20 -0 10

Connecting to host 10.0.0.2, port 5201
15] local 10.0.0.1 port 48756 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15] .006-1.00 sec 126 MBytes 1.05 Gbits/sec 1077 913 KBytes (omitted)
15] .00-2.00 sec 114 MBytes 954 Mbits/sec 0 1.05 MBytes (omitted)
15] .00-3.00 sec 114 MBytes 954 Mbits/sec 1.19 MBytes (omitted)
15] .00-4.08 sec 80.0 MBytes 623 Mbits/sec 1.28 MBytes (omitted)
15] .08-5.00 S 106 MBytes 966 Mbits/sec : 782 KBytes (omitted)
15] .00-6.00 114 MBytes 954 Mbits/sec 682 KBytes (omitted)
15] .00-7.00 114 MBytes 954 Mbits/sec 891 KBytes (omitted)
15] .00-8.00 114 MBytes 954 Mbits/sec 1.04 MBytes (omitted)
15] .00-9.00 114 MBytes 954 Mbits/sec 1.18 MBytes (omitted)
15] .00-10.00 115 MBytes 965 Mbits/sec 1.30 MBytes (omitted)
15] .00-1.00 114 MBytes 954 Mbits/sec 790 KBytes
15] .00-2.00 114 MBytes 954 Mbits/sec 512 KBytes
15] .00-3.00 114 MBytes 954 Mbits/ C 769 KBytes
15] .00-4.00 114 MBytes 954 Mbits/sec 960 KBytes
15] .00-5.00 115 MBytes 965 Mbits/sec 609 KBytes
15] .00-6.00 114 MBytes 954 Mbits/sec 837 KBytes
15] .00-7.00 114 MBytes 954 Mbits/sec 669 KBytes
15] .00-8.00 114 MBytes 954 Mbits/sec 881 KBytes
15] .00-9.00 C 114 MBytes 954 Mbits/sec 1.03 MBytes
15] .00-10.00 115 MBytes 965 Mbits/sec 1.17 MBytes
15] .00-11.00 114 MBytes 954 Mbits/sec 1.30 MBytes
15] .00-12.00 114 MBytes 954 Mbits/sec 779 KBytes
15] .00-13.00 114 MBytes 954 Mbits/sec 967 KBytes
15] .00-14.00 114 MBytes 954 Mbits/sec 1.10 MBytes
15] .00-15.00 115 MBytes 965 Mbits/sec 1.23 MBytes
15] .00-16.00 114 MBytes 954 Mbits/sec 1.36 MBytes
15] .00-17.00 114 MBytes 954 Mbits/sec 868 KBytes
15] .00-18.00 114 MBytes 954 Mbits/sec 1.02 MBytes
15] .00-19.00 115 MBytes 965 Mbits/sec 745 KBytes
15] 19.00-20.00 se 114 MBytes 954 Mbits/sec 940 KBytes

&

b
HOVONOULEWNMFHODODOUONOULLAEWNMHOD
&

Pt e et et e e e
ONOOWUMBWN

4
QOUOUVWOOOOOL,DODODOODVLOUVUOOULLALOOD O

ID] Interval Transfer fET??Bte >W Retr
15] 0.00-20.00 2.23 GBytes ‘ 956 Mbits/sec| 161 sender
15] 0.00-20.05 2.23 GBytes | 956 Mbits/sec]| receiver

|

Figure 17. Running iPerf3 client on host h1.
The figure above shows the iPerf3 test output report. The average achieved throughputs
are 956 Mbps (sender) and 956 Mbps (receiver), and the number of retransmissions is
161 (due to the injected packet loss - 0.01%).
Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3.1.2 TCPBBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

Page 13

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

sysctl -w net.ipv4.tcp congestion control=bbr

root@admin-pc:~#|sysctl -w net.ipv4.tcp congestion control=b

net.ipv4.tcp coi
root@admin-pc:~# JJ

Figure 18. Changing TCP congestion control algorithm to on host h1l.

estion control

"Host: h1"

= bbr

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

"Host: h2"

Figure 19. Starting iPerf3 server on host h2.

iperf3 -c 10.0.0.2 -t 20 -0 10

root@admin-pc:-~
Connecting to host 10.0.0.2, port 5201
local 10.0.0.1 port 48760 connected to 10.0.0.2 port 5201
Interval

[

15]
ID]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]

15]
15]

0.
.00-2.
.00-3.
.00-4.

ONOUVLEWNHODOUONOUSE WN

00-1.

00-5.

.00-6.
.00-7.

00-8.

.00-9.
.00-10.00
.00-1.

00-2.

.00-3.
.00-4.

00-5.

.00-6.
.00-7.
.00-8.
.00-9.

00
00
00
00
00
00
0e
00
00

00
00
00
00

.00-10.
.00-11.
.00-12.
.86-13.
.00-14.
.00-15.
.00-16.
6.00-17.
.00-18.
.00-19.
.00-20.

Interval
0.00-20.
0.00-20.

iperf3

sec
sec
sec
sec
sec
SecC
SecC

-¢c 10.0.0.2

Transfer
117 MBytes
115 MBytes
114 MBytes
113 MBytes
115 MBytes
114 MBytes
115 MBytes
114 MBytes
115 MBytes
114 MBytes
114 MBytes
115 MBytes
113 MBytes
115 MBytes
113 MBytes
115 MBytes
114 MBytes
114 MBytes
115 MBytes
113 MBytes
115 MBytes
114 MBytes
113 MBytes
115 MBytes

91.2 MBytes

91.2 MBytes
113 MBytes
115 MBytes
113 MBytes
115 MBytes

Transfer

2.18 GBytes

2.19 GBytes

"Host: h1"

C 40 -

Bitra
983
961
953
952
961
952
962
952
962
953
952
962
952
962
952
962
953
954
963
951
962
952
952
962
765
765
952
962
952
962

VBirra

0 10

te

Mbits/sec
Mbits/sec
Mbi sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec

Mbits/sec
Mbits/sec
Mbits/sec
Mbi sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec

Retr

[cNoNoNoRoNoNoR SRRV NoNoRNoNo RNz oRNol

(o]

[l o oo R R R oo R o)

Cwnd
198
198
198
198
198
198
198
198
198
198
195
195
195
195
195
195

KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes

sender

receliver

Figure 20. Running iPerf3 client on host h1.

(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)

Page 14

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Figure 20 shows the iPerf3 test output report. The average achieved throughputs are 937
Mbps (sender) and 937 Mbps (receiver), and the number of retransmissions is 92 (due to
the injected packet loss - 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.
3.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1l and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. In order to add delay to the switch 1 or interface s1-eth2, go back to the Client’s
terminal, run the following command to modify the previous rule to include 30ms delay:

sudo tc gdisc change dev sl-eth2 root handle 1: netem loss 0.01% delay 30ms

L admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~ %]

Figure 21. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host hl’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem="10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem="10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipv4.tcp rmem=’10240 87380 150000000"
sysctl -w net.ipv4.tcp wmem=’10240 87380 150000000"

“Host: h1"

t.ipvd.tcp rmem='10240 8

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem="10,240 87,380 150,000,000’ and sysct/ -w
net.ipv4.tcp_wmem="10,240 87,380 150,000,000’.

sysctl -w net.ipvé4.tcp rmem=’10240 87380 150000000"

Page 15

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

sysctl -w net.ipvéd.tcp wmem=’10240 87380 150000000"

"Host: h2"

rmem="10240

Figure 23. Modifying the TCP buffer size on host h2.

3.2.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipvé4.tcp congestion control=reno

"Host: h1"

tl -w net.ipv4.tcp congestion control=reno

stion control = reno

Figure 24. Changing TCP congestion control algorithm to on host h1.
Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

Figure 25. Starting iPerf3 server on host h2.

Step 3. Create and enter to a new directory reno on host h1’s terminal:

mkdir reno && cd reno

"Host: h1"

#|/mkdir reno && cd reno

Figure 26. Creating and entering a new directory reno.
Step 4. Launch iPerf3 in client mode on host hl’s terminal. The [-J] option is used to

produce a JSON output and the redirection operator [> to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -J > reno.json

Page 16

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

"Host: h1"

root@admin-pc:~/reno# |iperf3 -c 10.0.0,2
admin-pc:~/reno# |j

Figure 27. Running iPerf3 client on host h1 and redirecting the output to reno.json.

Step 5. Once the test is finished, type the following command to generate the output
plots for iPerf3’s JSON file:

plot iperf.sh reno.json

"Host: h1"

flplot iperf.sh reno.json

Figure 28. plot iperf.sh|script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT _Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) to be used by applicable programs. These files are stored in a directory results
created in the same directory where the script was executed as shown in the figure below.

Step 6. Navigate to the results folder using the [cd command.

cd results/

"Host: h1l"

root@admin-pc:~/reno# |cd results/
root@admin-pc:~/reno/results# |j

Figure 29. Entering the results directory using the [cdl command.

Step 7. To open any of the generated files, use the command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

"Host: h1"

root@admin-pc:~/reno/results#|xdg-open throughput.pdf
QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

Figure 30. Opening the throughput.pdf file using [xdg-open).

Page 17

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

1000
900
800
700
600
500
400
300
200
100

Mbps

Throughput over time

T T T T I

1.dat

5 10 15 20 25

Time (sec)
Figure 31. Reno’s throughput.

30

Step 8. Close the throughput.pdf file and open the cwnd.pdf file using the following

command:

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/reno/results#|xdg-open cwnd.pdf
QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

QStandardPaths: XDG RUNTIME DIR not set, defaulting to

'/tmp/runtime-root'

Cwnd

6000

5000

4000

3000

2000

1000

Figure 32. Opening the throughput.pdf file using [xdg-open).

Sent Cwnd over time

0 5 10 15 20 25

Time (sec)
Figure 33. Reno’s congestion window.

30

1.dat

Page 18

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Step 9. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 10. Exit the /reno/results directory by using the following command on host hl’s
terminal:

cd ../..

"Host: h1"

root@admin-pc:~/reno/results#|cd ../..
root@admin-pc:~# |}

Figure 34. Exiting the /reno/results directory.

3.2.2 TCPBBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=bbr

"Host: h1"

@admin-pc:~# tl -w net.ipv4.tcp congestion control=bbr

N tion control = bbr
root@admin-pc

Figure 35. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

Figure 36. Starting iPerf3 server on host h2.
Step 3. Create and enter to a new directory bbr host h1’s terminal:
mkdir bbr && cd bbr

"Host: h1"

- && cd bbr

Figure 37. Creating and entering a new directory bbr

Page 19

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Step 4. Launch iPerf3 in client mode on host hl’s terminal. The [-J] option is used to
produce a JSON output and the redirection operator [> to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -J > bbr.json

"Host: h1"

3 -c 10.0.8.2 -t 30 -J = bbr.json

Figure 38. Running iPerf3 client on host h1 and redirecting the output to bbr.json.
Step 5. To generate the output plots for iPerf3’s JSON file run the following command:

plot iperf.sh bbr.json

"Host: h1"

Lot iperf.sh bbr.json

Figure 39. plot iperf.sh|script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) to be used by applicable programs. These files are stored in a directory results
created in the same directory where the script was executed as shown in the figure below.

Step 6. Navigate to the results folder using the [cd command.

cd results/

"Host: h1"

root@admin-pc:~/bbr# |cd results/
ot@admin-pc:~/bbr/results# |j

Figure 40. Entering the results directory using the [cd command.

Step 7. To open any of the generated files, use the command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

"Host: hl1"
root@admin-pc:~/bbr/results#|xdg-open throughput.pdf

QStandardPaths: XDG RUNTIME DIR not set, detaulting to '/tmp/runtime-root'
QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

Figure 41. Opening the throughput.pdf file using [xdg-open|.

Page 20

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Throughput over time
1000 : ! ! ;
900 f e ".\ .f e 5\ ;—f\/&;ﬂ -
700 | _
4G | e LT RERI,
1111 [POV WURPRI SUVIINE SO NUHP: SR
200 - U A SUR. S

0 I i i |
0 5 10 15 20 25 30
Time (sec)
Figure 42. BBR’s throughput.

Mbps

Step 8. Figure 42 shows that in steady state, BBR has already attained the maximum
throughput, which is over 900 Mbps (the bottleneck bandwidth is 1 Gbps, with an
observed effective bandwidth of ¥937 Gbps). Note also the periodic (short) drain intervals,
where the throughput decreases to ~75% of maximum throughput, as discussed in
Section 1.3. To proceed, close the throughput.pdf file and open the cwnd.pdf file using
the following command:

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/bbr/results# xdg-open cwnd.pdf

QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'
QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

Figure 43. Opening the cwnd.pdf file using [xdg—open|.

Page 21

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Sent Cwnd over time
8000 T T

1.dat
7000

6000

5000

4000

Cwnd

3000

2000

1000

i \ i
0 5 10 15 20 25 30
Time (sec)
Figure 44. BBR’s congestion window.

Step 9. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 10. Exit the /bbr/results directory by using the following command on host hl’s
terminal:

cd ../..

"Host: h1"

root@admin-pc:~/bbr/results#|cd ../..

root@admin-pc:~# |}

Figure 45. Exiting the /bbr/results directory.

It is clear from the above test that when introducing delay, BBR preforms significantly
better than Reno.

This concludes Lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

2. J. Kurose, K. Ross, “Computer networking, a top down approach,” Pearson, 6%
Edition, 2017.

3. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

4. E.Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International

Page 22

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

5. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

6. S. Ha, I, Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

7. Leith D, Shorten R. H-TCP: TCP congestion control for high bandwidth-delay
product paths. draft-leith-tcp-htcp-06 (work in progress). 2008 Apr.

8. System information variables — sysctl(7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

Page 23

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 8: Bandwidth-delay Product and
TCP Buffer Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 8: BDP and Setting TCP Buffer Size

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 Introduction to TCP buffers, BDP, and TCP WiNAOW..........uuuuvvreverrrerererererererernnenennnanns 3
00 R 1 01 o o 10§ =T PRSP 3
1.2 Bandwidth-delay product..........cccooriiiiiiiiiiiee e 4
1.3 Practical observations on setting TCP buffer sizeccccovvvveiiviiiieiiniiieeecniee, 5
1.4 TCP window size calculated vValue........coocuviiiiiciiiiiiniieecceee e 7
I 4 =1 ¢ o VYT o [0 1V PSPPI 8
2 - o B o o To] Lo =AY 2P PPPPR 8
2.1 Startinghost h1 and hoSt h2....cooooieeee e 9
2.2 Emulating 10 Gbps high-latency WANcccooiiiiieeee e, 10
I 101 - T o l o TU i {1 oY 2 SR 13
3.1 WiIindow Size iN SYSCEL.co e 13
4 Modifying buffer size and throughput test..........ccoooiiiiiiiii e, 15
REFEIENCES ...ttt e e e sttt e e s st e e s s bt e e e e sareeeeseneeeesanns 17

Page 2

Lab 8: BDP and Setting TCP Buffer Size

Overview

This lab explains the bandwidth-delay product (BDP) and how to modify the TCP buffer
size in Linux systems. Throughput measurements are also conducted to test and verify

TCP buffer configurations based on the BDP.

Objectives

By the end of this lab, students should be able to:

uhwWwNPE

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Understand BDP.

Define and calculate TCP window size.
Modify the TCP buffer size with sysctl, based on BDP calculations.
Emulate WAN properties in Mininet.
Achieve full throughput in WANs by modifying the size of TCP buffers.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP buffers, BDP, and TCP window.
2. Section 2: Lab topology.
3. Section 3: BDP and buffer size experiments.
4. Section 4: Modifying buffer size and throughput test.
1 Introduction to TCP buffers, BDP, and TCP window

1.1 TCP buffers

The TCP send and receive buffers may impact the performance of Wide Area Networks
(WAN) data transfers. Consider Figure 1. At the sender side, TCP receives data from the

Lab 8: BDP and Setting TCP Buffer Size

application layer and places it in the TCP send buffer. Typically, TCP fragments the data in
the buffer into maximum segment size (MSS) units. In this example, the MSS is 100 bytes.
Each segment carries a sequence number, which is the byte-stream number of the first
byte in the segment. The corresponding acknowledgement (Ack) carries the number of
the next expected byte (e.g., Ack-101 acknowledges bytes 1-100, carried by the first
segment). At the receiver, TCP receives data from the network layer and places it into the
TCP receive buffer. TCP delivers the data in order to the application. E.g., bytes contained
in a segment, say segment 2 (bytes 101-200), cannot be delivered to the application layer
before the bytes contained in segment 1 (bytes 1-100) are delivered to the application.
At any given time, the TCP receiver indicates the TCP sender how many bytes the latter
can send, based on how much free buffer space is available at the receiver.

To Application

From Application (in-order delivery)
l TCP send buffer TCP receive buffer

[801-900 |[701-800 | .. [201-300 |[201-200 |[1-100]
Seq. number

[201-300 |[101200 |[1-100 | (first byte in segment)

I — f
To Network .. | 501-600 | [401-500] From Network
‘_
[Ack-101] [Ack-201 |

Ack number (next expected byte)

Figure 1. TCP send and receive buffers.

1.2 Bandwidth-delay product

In many WANSs, the round-trip time (RTT) is dominated by the propagation delay. Long
RTTs along and TCP buffer size have throughput implications. Consider a 10 Gbps WAN
with a 50-millisecond RTT. Assume that the TCP send and receive buffer sizes are set to 1
Mbyte (1 Mbyte = 10242 bytes = 1,048,576 bytes = 1,048,576 - 8 bits = 8,388,608 bits).
With a bandwidth (Bw) of 10 Gbps, this number of bits is approximately transmitted in

_ #bits 8,388,608
~ Bw 10-10°

tx = 0.84 milliseconds.

l.e., after 0.84 milliseconds, the content of the TCP send buffer will be completely sent.
At this point, TCP must wait for the corresponding acknowledgements, which will only
start arriving at t = 50 milliseconds. This means that the sender only uses 0.84/50 or 1.68%
of the available bandwidth.

The solution to that above problem lies in allowing the sender to continuously transmit
segments until the corresponding acknowledgments arrive back. Note that the first
acknowledgement arrives after an RTT. The number of bits that can be transmitted in a
RTT period is given by the bandwidth of the channel in bits per second multiplied by the

Page 4

Lab 8: BDP and Setting TCP Buffer Size

RTT. This quantity is referred to as the bandwidth-delay product (BDP). For the above
example, the buffer size must be greater than or equal to the BDP:

TCP buffer size > BDP = (10 - 10°)(50 - 1073) = 500,000,000 bits = 62,500,000 bytes.

The first factor (10 - 10°) is the bandwidth; the second factor (50 - 1073) is the RTT. For
practical purposes, the TCP buffer can be also expressed in Mbytes (1 Mbyte = 10242
bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression, in Mbytes, is

TCP buffer size = 62,500,000 bytes = 59.6 Mbytes =~ 60 Mbytes.

1.3 Practical observations on setting TCP buffer size

Linux systems configuration. Linux assumes that half of the send/receive TCP buffers are
used for internal structures. Thus, only half of the buffer size is used to store segments.
This implies that if a TCP connection requires certain buffer size, then the administrator
must configure the buffer size equals to twice that size. For the previous example, the
TCP buffer size must be:

TCP buffer size > 2 - 60 Mbytes = 120 Mbytes.

Packet loss scenarios and TCP BBR!. TCP provides a reliable, in-order delivery service.
Reliability means that bytes successfully received must be acknowledged. In-order
delivery means that the receiver only delivers bytes to the application layer in sequential
order. The memory occupied by those bytes will be deallocated from the receive buffer
after passing the bytes to the application layer. This process has some performance
implications, as illustrated next. Consider Figure 2, which shows a TCP receive buffer.
Assume that the segment carrying bytes 101-200 is lost. Although the receiver has
successfully received bytes 201-900, it cannot deliver to the application layer until bytes
101-200 are received. Note that the receive buffer may become full, which would block
the sender from utilizing the channel.

To Application
(in-order delivery)

[CP receive buffer T
[501-600][401-500 |[301-400 |
| 801-900 || 701-800 || 601-700 |

3

From Network

Figure 2. TCP receive buffer. Although bytes 301-900 have been received, they cannot be
delivered to the application until the segment carrying bytes 201-300 are received.

While setting the buffer size equal to the BDP is acceptable when traditional congestion
control algorithms are used (e.g., Reno?, Cubic3, HTCP?), this size may not allow the full

Page 5

Lab 8: BDP and Setting TCP Buffer Size

utilization of the channel with BBR!. In contrast to other algorithms, BBR does not reduce
the transmission rate after a packet loss. For example, suppose that a packet sentatt=0
is lost, as shown in Figure 3. At t = RTT, the acknowledgement identifying the packet to
retransmit is received. By then, the sender has sent BDP bits, which will be stored in the
receive buffer. This data cannot be delivered yet to the application, because of the in-
order delivery requirement. Since the receive buffer has a capacity of BDP only, the
sender is temporarily blocked until the acknowledgement for the retransmitted data is
received at t = 2-RTT. Thus, the throughput over the period t =0 to t = 2-RTT is reduced
by half:

bits transmitted B Bw - RTT _ Bw

throughput =

period ~ 2-RTT 2~
Recei
Sender eceiver oo
t=0 1]
TCP receive buffer
Q@ (BDP capacity)
Ack identifying packet
to retransmit T~ e
\ """"""""""""""""""""" Missing data. Buffered data
T=RTT [can’t be released to
[— application
Sender is blocked (TCP Missing data arrives. Ready
receive bufferfay |] s 4— for in-order delivery
----------------------------- l:| ¥ Data delivered to application.
t=2RTT! o Buffer is drained
Sender resumes |
transmission
Legend:
(] Packet loss R ACK / SACK
Data segment Retransmission

Figure 3. A scenario where a TCP receive buffer size of BDP cannot prevent throughput
degradation.

With BBR, to fully utilize the available bandwidth, the TCP send and receive buffers must
be large enough to prevent such situation. Figure 4 shows an example on how a TCP buffer
size of 2-BDP mitigates packet loss.

High to moderate packet loss scenarios, using TCP BBR:

TCP send/receive buffer > several BDPs (e.g., 4 - BDP)

Continuing with the example of Section 1.2, in a Linux system using TCP BBR, the
send/receive buffers for a BDP of 60 Mbytes in a high to moderate packet loss scenario
should be:

TCP buffer size = (2 - 60 Mbytes) -4 = 480 Mbytes.

Page 6

Lab 8: BDP and Setting TCP Buffer Size

The factor 2 is because of the Linux systems configuration, and the factor 4 is because of
the use of TCP BBR in a high to moderate packet loss scenario.

Sender Receiver 2BDP

t=0 \

ACK / SACK identifying
packet to retransmit 1-\ __________________

------------ Missing data. Still ~BDP

t=RTT [f buffer capacity available
............ | | | ¢—
--------------------- \ | Missing data
---------------------- arrives. Ready for
t=2RTT [X in-order delivery

Data delivered to application.
Buffer is drained

Figure 4. A scenario where a TCP buffer size of 2:BDP mitigates packet loss.

1.4 TCP window size calculated value

The receiver must constantly communicate with the sender to indicate how much free
buffer space is available in the TCP receive buffer. This information is carried in a TCP
header field called window size. The window size has a maximum value of 65,535 bytes,
as the header value allocated for the window size is two bytes long (16 bits; 2%6-1 = 65,535).
However, this value is not large enough for high-bandwidth high-latency networks.
Therefore, TCP window scale option was standardized in RFC 1323°. By using this option,
the calculated window size may be increased up to a maximum value of 1,073,725,440
bytes. When advertising its window, a device also advertises the scale factor (multiplier)
that will be used throughout the session. The TCP window size is calculated as follows:

Scaled TCPy;, = TCPy;p, - Scaling Factor

As an example, consider the following example. For an advertised TCP window of 2,049
and a scale factor of 512, then the final window size is 1,049,088 bytes. Figure 5 displays
a packet inspected in Wireshark protocol analyzer for this numerical example.

» Flags: 0x018 (ACK)
Window size value: 2049
[Calculated window size: 1049088]
[Window size scaling factor: 512]

Figure 5. Window Scaling in Wireshark.

Page 7

Lab 8: BDP and Setting TCP Buffer Size

1.5 Zero window

When the TCP buffer is full, a window size of zero is advertised to inform the other end
that it cannot receive any more data. When a client sends a TCP window of zero, the
server will pause its data transmission, and waits for the client to recover. Once the client
is recovered, it digests data, and inform the server to resume the transmission again by
setting again the TCP window.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1 s1 s2 h2

10 Gbps
h1l-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-ethO

10.0.0.1 10.0.0.2
Figure 6. Lab topology.

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 7. Miniedit shortcut.

Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate
the lab8.mn topology file and click on Open.

Page 8

Lab 8: BDP and Setting TCP Buffer Size

l Edit Run Help

New
|Open|

ok e 2 Sciet Directory: /home/admin/lab_topologies 4‘ @

Quit

) tab2.mn [C][ECENENY [Lab 14.mn [Lab 20.mn
[[]ab3.mn [E]Lab9.mn [-] Lab 15.mn
[£] Lab 4.mn [C] Lab 10.mn [£] Lab 16.mn
[l ab5.mn [E] Lab 11.mn [5] Lab 17.mn
[l Ltab 6.mn [5] Lab 12.mn [£] Lab 18.mn
[£] Ltab 7.mn [5] Lab 13.mn [5] Lab 19.mn

(4] | ¥

File name: [Lab 8.mn

Files of type: Mininet Topology (*.mn) gl Cancel ‘

:

\i
\

i/

Figure 8. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of Miniedit’s window
to start the emulation.

Stop l.,__Ji

Figure 9. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1l and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Page 9

Lab 8: BDP and Setting TCP Buffer Size

- MiniEdit

File Edit Run Help

h2

Host Options | @

Terminal

Figure 10. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2]. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"
root@admin-pc:~#
.0.08.2
from
from
s Trom
from

from
s from

Figure 11. Connectivity test using command.

Figure 11 indicates that there is connectivity between host hl and host h2.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN by introducing delays to the network. We will
first set the bandwidth between hosts 1 and 2 to 10 Gbps. Then, we will emulate a 20 ms
delay and measure the throughput.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 10

Lab 8: BDP and Setting TCP Buffer Size

Terminal

Miniedit

Figure 12. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
and hit enter. This command introduces 20ms delay on S1’s s1-eth2 interface.

sudo tc gdisc add dev sl-eth2 root handle 1: netem delay 20ms

L5 admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ (%]

ladmin@admin-pc

passworad Ttor

admin@admin-pc:~$

Figure 13. Adding 20ms delay to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switches S1 and S2: on the same
terminal, type the command below. This command sets the bandwidth to 10 Gbps on S1’s
sl-eth2 interface. The parameters are the following:

e [rate]: 10gbit
e [burst]: 5,000,000
e [[imit} 25,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 25000000

admin@admin-pc: ~

File

Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc: ~¢
bui)00 Timit

admin@admin-pc:~S [}

Figure 14. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. On hl’s terminal, type [ping 10.0.0.2. This command tests the connectivity
between host hl and host h2. The test was initiated by h1 as the command is executed
on hl’s terminal.

Page 11

Lab 8: BDP and Setting TCP Buffer Size

To stop the test, press [Ctrl+d. The figure below shows a successful connectivity test.
Host h1(10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses
back.

"Host: h1"

from
from
from

Figure 15. Output of [ping 10.0.0.2/ command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the round-trip time
(RTT) were 20.092, 25.353, 41.132, and 9.111 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 4. The user can now verify the rate limit configuration by using the tool to

measure throughput. To launch iPerf3 in server mode, run the command in
H2’s terminal:

iperf3 -s

"Host: h2"

Figure 16. Host h2 running [iper£3]as server.

Step 5. Now to launch iPerf3 in client mode again by running the command
in h1’s terminal:

iperf3 -c 10.0.0.2

Page 12

Lab 8: BDP and Setting TCP Buffer Size

"“Host: h1"

15] local 10.0.0.

ID] Interval 2 itrate etr Cwnd
15] J -1.00 5e ?)y 5E 315 1 MBytes
.0 . S 0] 1 5
15] M .6 S [¢] 1
15] 3.00-4.00 4 23 Gbits 0 1
15] 4 -5.00 g its o) 1 M
15] C g S 0 1
15] 6 - seC 3 M hits [0} 1
15] .00-8 2C g y hits 0 1
15] 8 -9, M 4] 1
15] 9.00-10.00 3 394 MBy 0 hi 6] 1

1D] Transfer Retr

15]
15]

315

root@admin-pc:~# I

Figure 17. iPerf3 throughput test.

Notice the measured throughput now is approximately 3 Gbps, which is different than
the value assigned in our rule. Next, we explain why the 10 Gbps maximum
theoretical bandwidth is not achieved.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3 BDP and buffer size

In connections that have a small BDP (either because the link has a low bandwidth or
because the latency is small), buffers are usually small. However, in high-bandwidth high-
latency networks, where the BDP is large, a larger buffer is required to achieve the
maximum theoretical bandwidth.

3.1 Window size in sysctl
The tool sysct! is used for dynamically changing parameters in the Linux operating system.

It allows users to modify kernel parameters dynamically without rebuilding the Linux
kernel.

The sysctl key for the receive window size is net.ipv4.tcp rmem| and the send window
sizeis|net.ipv4.tcp wmen|

Step 1. To read the current receiver window size value of host hl, use the following
command on h1’s terminal:

sysctl net.ipvé4.tcp rmem

Page 13

Lab 8: BDP and Setting TCP Buffer Size

"Host: h1"

root@admin-pc:~# |sysctl net.ipv4.tcp rmem

10240 87380 16777216

Figure 18. Receive window read in [sysctl].

Step 2. To read the current send window size value of host h1, use the following command
on hl’s terminal:

sysctl net.ipvé4.tcp wmem

"Host: h1"

Flsysctl net.ipv4.t Jmem

10240 : 9 16777216

Figure 19. Send window read in[sysctl]

The returned values of both keys (net.ipv4.tcp rmen| and net.ipv4.tcp wmenl) are
measured in bytes. The first number represents the minimum buffer size that is used by
each TCP socket. The middle one is the default buffer which is allocated when applications
create a TCP socket. The last one is the maximum receive buffer that can be allocated for
a TCP socket.

The default values used by Linux are:

e Minimum: 10,240
e Default: 87,380
e Maximum: 16,777,216

In the previous test (10 Gbps, 20ms delay), the buffer size was not modified on end-hosts.
The BDP for the above test is:

BDP = (10-10%) - (20 - 10~3) = 200,000,000 bits = 25,000,000 bytes ~ 25 Mbytes.

Note that this value is significantly greater than the maximum buffer size (16 Mbytes),
and therefore, the pipe is not getting filled, which leads to network resources
underutilization. Moreover, since Linux systems by default uses half of the send/receive
TCP buffers for internal kernel structures (see Section 1.3 Linux systems configuration),
only half of the buffer size is used to store TCP segments. Figure 20 shows the calculated
window size of a sample packet of the previous test- approximately 8 Mbytes. This is 50%
of the default buffer size used by Linux (16 Mbytes).

Window size value: 16129
[Calculated window size: 8258048]
[Window size scaling factor: 512]

Figure 20. Sample window size from previous test.

Note that the observation in Figure 20 reinforces the best practice described in Section
1.3:in Linux systems, the TCP buffer size must be at least twice the BDP.

Page 14

Lab 8: BDP and Setting TCP Buffer Size

4 Modifying buffer size and throughput test

This section repeats the throughput test of Section 4 after modifying the buffer size
according to the formula describe above. This test assumes the same network parameters
introduced in the previous test, therefore, the bandwidth is limited to 10 Gbps, and the
RTT (delay or latency) is 20ms. The send and receive buffer sizes should be set to at least
2 - BDP (if BBR is used as the congestion control algorithm, this should be set to even a
larger value, as described in Section 1). We will use 25 Mbytes value for the BDP instead
of 25,000,000 bytes (1 Mbyte = 10242 bytes).

BDP = 25 Mbytes = 25 - 10242 bytes = 26,214,400 bytes
TCP buffer size = 2 - BDP = 2 - 26,214,400 bytes = 52,428,800 bytes
Step 1. To change the TCP receive receive-window size value(s), use the following
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipvé4.tcp rmem='10240 87380 52428800’

"Host: h1"

rmem="168240 87

Figure 21. Receive window change in[sysctl]

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipvé4.tcp wmem='10240 87380 52428800’

"Host: h1"

root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800'

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# |j

Figure 22. Send window change in [sysct1]

Next, the same commands must be configured on host h2.

Page 15

Lab 8: BDP and Setting TCP Buffer Size

Step 3. To change the current receiver-window size value(s), use the following command
on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

"Host: h2"

rmem="'10240

Figure 23. Receive window change in[sysct1].

Step 4. To change the current send-window size value(s), use the following command on
h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: h2"

ysctl -w net.ipv4.tcp wmem='18248 87380 524

= 10240 8

Figure 24. Send window change in [sysct1].

Step 5. The user can now verify the rate limit configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
h2’s terminal:

iperf3 -s

"Host: h2"

dmin-pc:~#|iperf3 -

Figure 25. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode again by running the command
in hl’s terminal:

iperf3 -c 10.0.0.2

Page 16

Lab 8: BDP and Setting TCP Buffer Size

"Host: h1"

root@admin-pc:~# |iperf3 -c 10.0.0.2

Connecting to host 10.0. port 5201

[15] local 1@ 1 port 47094 connected to 10 2 port 5201

[ID] Interwval Transfer Bitrate Retr and

[15] 0 -1.00 SE 925 MBytes 7.76 5 45 3 MBytes
[15] 0 .11 GByt 9.57 Gbits/se 6] .8 MBytes
[15] .11 GByt 9.56 Gbit = 0 .8 MBytes
[15] .11 GByt 9.56 Gbit = i .8 MBytes
[15] .11 GByt 9.56 Gbits/se ® 39.8 MBytes
[15] .11 GByt 9.55 Gbit = i .8 MBytes
[15] .11 GByt 9.56 Gbit = ! .8 MBytes
[.11 GByt 9.56 Gbit e i 39.8 MBytes
[.11 GByt 9.56 Gbit = ! 39.8 MBytes
[.11 GBytes 9.56 Gbits/se 0 39.8 MBytes

15] 8.00
15] 8.00-9.00

15] 9.00-10.00

.
e e e e e e e ped
|

[ID] Transfer Bitrate
15] p.00-10.00 se 10.9 GBytes Gbits/sec
[15] 0.00-10.04 10.9 GBytes Gbits/sec

iperf Done.
ot@admin-pc:~# [

Figure 26. iPerf3 throughput test.

Note the measured throughput now is approximately 10 Gbps, which is close to the value
assigned in our rule (10 Gbps).

This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

2. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

3. S. Ha, I, Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

4. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf

5. V. Jacobson, R. Braden, D. Borman, “TCP extensions for high performance,”
Internet Request for Comments, RFC Edit, RFC 1323, May 1992. [Online].
Available: https://tools.ietf.org/rfc/rfc1323.txt

Page 17

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Exercise 3: Tuning TCP and Switch’s Buffer Size

Document Version: 08-25-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 3: Tuning TCP and Switch’s Buffer Size

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas

1.1 Credentials o e s e e e aaaee s
2 Setting the eNVIFONMENT.......iiiiiee e e e s rae e e s eaaaeeeenes
3 DlIVEIADIES. ..t e e e s e araeeeea

Exercise 3: Tuning TCP and Switch’s Buffer Size

1 Exercise description

In this exercise, you will emulate a WAN and run throughput tests with different
congestion control algorithms. Additionally, this task requires adding packet losses and

verify the performance using Reno and then BBR.

hl

VA

(4

Gh 1-ethO

100ms

1.1 Credentials

sl
sl-ethl 2& sl-eth? s2-ethl
1 Gbps

s2 h2
‘§y s2-eth2 h2-eth0 S
&

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type fpassword|.

Terminal

Miniedit

Step 2. Load the topology located at /home/admin/NTP_Exercises/Exercises3/.

Exercise 3: Tuning TCP and Switch’s Buffer Size

L MiniEdit
Edit Run Help

New

2] o=
Save

Export Level 2 Script Directory: Ifhome,-‘admin,-‘NTP_Exercisestxerci5e3| _.‘ @‘

[BRtopology.mn

|
s
% =

)
,i\

File name: |tc-pc-|0g y.mn Igpenl

Files of type: Mininet Topology (*.mn) _.‘ Cancel ‘

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

| Run

Stop [T

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

B MiniEdit

Step 5. Navigate into the following directory ~/NTP_Exercises/Exercise3/ by issuing the
command below

cd ~/NTP_Exercises/Exercise3/

admin@admin-pc: ~/NTP_Exercises/Exercise3

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise3 (]

admin@admin-pc:~5 |cd ~/NTP_Exercis

admin@admin-pc:

Exercise 3: Tuning TCP and Switch’s Buffer Size

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

admin@admin-pc: ~/NTP_Exercises/Exercise3

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise3

admin@admin-pc:
[sudo] password for admin:
Setting Environment ...

Done!
admin@admin-pc:

3 Deliverables
Follow the steps below to complete the exercise.
a) Set the sender’s congestion control to Reno.

b) Run aniPerf3 test for 120 seconds and explain the results. What is the
throughput?

c) Inspect and modify the TCP and switch’s buffer sizes to fully utilize the link and
maximize the throughput and repeat b).

d) Add a 0.01% packet loss rate to the interface s1-eth2 and repeat b).

e) Set the sender’s congestion control to BBR and repeat b).

\,
,\\ﬁ.
()

o T

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS
Exercise 4: Running Tests with Competing TCP
Flows and Different Congestion Control
Algorithms

Document Version: 08-25-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 4: Running Tests with Competing TCP Flows and Different Congestion Control Algorithms

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas

1.1 Credentials coueiii e e e e e araee s
2 Setting the eNVIFONMENT.......iiiiiee e e e s rae e e s eaaaeeeenes
3 DlIVEIADIES. ..t e e e s e araeeeea

Exercise 4: Running Tests with Competing TCP Flows and Different Congestion Control Algorithms

1 Exercise description
In this exercise, you will run tests that involve competing TCP flows. The exercise requires

tuning the TCP and switch’s buffer size. The tests will be performed first using CUBIC, then
BBR.

Senders Receivers

hl h3

sl-ethl s2-ethl
1 Gbps
40ms

h2
‘(\

1.1 Credentials

ha

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type jpassword|.

Exercise 4: Running Tests with Competing TCP Flows and Different Congestion Control Algorithms

Terminal

Miniedit

Step 2. Load the topology located at /home/admin/NTP_Exercises/Exercises4/.

- MiniEdit

Edit Run Help

New
[oper] = open - o]
Save
Export Level 2 Script Directory: |,-‘home..fadminJNTP_Exercisestxerciseél| _.‘ @‘

BElltopology.mn

(K |

File name: |topology.mn |gpen |

Files of type: Mininet Topology (*.mn) 4‘ Cancel ‘

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

il < —

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

sudo B MiniEdit

Exercise 4: Running Tests with Competing TCP Flows and Different Congestion Control Algorithms

Step 5. Navigate into the following directory ~/NTP_Exercises/Exercise4/ by issuing the
command below.

cd ~/NTP_Exercises/Exercised/

admin@admin-pc: ~/NTP_Exercises/Exercised4

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercised
admin@admin-pc:~$|cd ~/NTP_Exercises/E

admin@admin-pc:

Step 6. Run the command below. If a password is required, type password|.

sudo ./set env.sh

admin@admin-pc: ~/NTP_Exercises/Exercised

File Actions Edit View Help

admin@admin-pc: ~/NTP_Exercises/Exercise4

jord for admin:

onment ...
link: 1 Gbps
ms

Done!)
admin@admin-pc:

The script sets the bottleneck link to 1 Gbps and the latency to 40ms. Now, you can start
solving the problem.
3 Deliverables
Follow the steps below to complete the exercise.
a) Set the senders’ congestion control to CUBIC.

b) Inspect and modify the TCP and switch’s buffer sizes to fully utilize the link and
maximize the throughput.

c) Run two iPerf3 tests simultaneously for 120 seconds and explain the results.
What is the throughput? Which one is the flow that utilizes more bandwidth?

d) Change the senders’ congestion control to BBR and repeat c).

e) Change the congestion control of a sender to CUBIC and repeat c).

-
~—
)it

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 9: Enhancing TCP Throughput with Parallel
Streams

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 9: TCP Parallel Streams

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 Introduction to TCP parallel Streamsccccuueiiiriiiieiiiiiiee e e s e 3
1.1 Parallel stream fundamentalsccccveeiiiiiiiiniiiie e 3
1.2 Advantages of parallel streamsS.......c.ueeeiviiiiiiiiiiiee e 4
P IF- | o I o] o Yo Lo -1V 20U SRR PUPRPRUPTPPR 6
2.1 Starting host h1 and hoSt h2ooiiiiiiiii e 7
2.2 Emulating 10 Gbps high-latency WANcoiiiiiiiiieieieee e 8
P2RS T =Y1 o T olo T o | o T=Tot { o] o [N TP 9
3 Parallel streams to overcome TCP buffer limitationcccoocviviiniiiieiiniiieeeeen, 11
4 Parallel streams to combat packet 10SSuviiiveeiiiieiceee e 12
4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface....................... 12
4.2 Test with parallel sStreamsc...evviiiiiei e 14
REFEIENCES ...ttt et e e sttt e e s st e e s s abbee e e sareeeesennreeesanns 16

Page 2

Lab 9: TCP Parallel Streams

Overview

This lab introduces TCP parallel streams in Wide Area Networks (WANs) and explains how
they are used to achieve higher throughput. Then, throughput tests using parallel streams
are conducted.

Objectives
By the end of this lab, students should be able to:

Understand TCP parallel streams.

Describe the advantages of TCP parallel streams.

Specify the number of parallel streams in an iPerf3 test.

Conduct tests and measure performance of parallel streams on an emulated WAN.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP parallel streams.
2. Section 2: Lab topology.
3. Section 3: Parallel streams in a high-latency high-bandwidth WAN.
4. Section 4: Parallel streams with packet loss.
1 Introduction to TCP parallel streams

1.1 Parallel stream fundamentals
Parallel Streams are multiple TCP connections opened by an application to increase

performance and maximize the throughput between communicating hosts. With parallel
streams, data blocks for a single file transmitted from a sender to a receiver are

Page 3

Lab 9: TCP Parallel Streams

distributed over the multiple streams. Figure 1 shows the basic model. A control channel
is established between the sender and the receiver to coordinate the data transfer. The
actual transfer occurs over the parallel streams, collectively referred to as data channels.
In this context, the term stream is a synonym of flow and connection.

Sender Receiver
CP |« Control channel J cp] .,
Data channels egena:
ht CP: Control process
D DP DP: D
@ g : Stream 1 1~ ata process
\ DPZ DP2 /
Stream 2
bP DP
s Stream 3 g

Figure 1. Data transfer model with parallel streams.

1.2 Advantages of parallel streams

Transferring large files over high-latency WANs with parallel streams have multiple
benefits, as describe next.

Combat random packet loss not due congestion: assume that packet loss occurs
randomly rather than due congestion. In steady state, the average throughput of a single
TCP stream is given by:

MSS
Average throughput ~ T bytes per second,

where MSS is the maximum segment size and L is the packet loss rate. The above equation
indicates that the throughput is directly proportional to the MSS and inversely
proportional to RTT and the square root of L. When an application uses K parallel streams
and if RTT, packet loss, and MSS are the same in each stream, the aggregate average
throughput is the aggregation of the K single stream throughputs?:

Kk MSS MSS
I=1prryL — RTTVL

Aggregate average throughput = bytes per second.

Thus, an application opening K parallel connections essentially creates a large virtual MSS
on the aggregate connection that is K times the MSS of a single connection?.

The TCP throughput follows the additive increase multiplicative decrease (AIMD) rule: TCP
continuously probes for more bandwidth and increases the throughput of a connection
by approximately 1 MSS per RTT as long as no packet loss occurs (additive increase phase).
When a packet loss occurs, the throughput is reduced by half (multiplicative decrease
event). Figure 2 illustrates the AIMD behavior for two connections with different MSSs.
The MSS of the green connection is six than the MSS of the red connection. Since during
the additive increase phase TCP increases the throughput by one MSS every RTT, the

Page 4

Lab 9: TCP Parallel Streams

speed at which the throughput increases is proportional to the MSS (i.e., the larger the
MSS the faster the recovery after a packet loss).

Slope proportional
4 Additive increase to MSS
Multiplicative
decrease ? MSS, = 6 MSS;

—— MSS; =1 unit

o Packet loss (throughput
decreases by half)

Instantaneous Throughput

» Time

Figure 2. Additive increase multiplicative decrease (AIMD) behavior. The green curve corresponds
to the throughput when the MSS is six times that of the red curve.

Mitigate TCP round-trip time (RTT) bias: when different flows with different RTTs share
a given bottleneck link, TCP’s throughput is inversely proportional to the RTT3. This is also
noted in the equations discussed above. Hence, low-RTT flows get a higher share of the
bandwidth than high-RTT flows. Thus, for transfers across high-latency WANs, one
approach to combat the higher (unfair) bandwidth allocated to low-latency connections
is by using parallel streams. By doing so, even if each high-latency stream receives less
amount of bandwidth than low-latency flows, the aggregate throughput of the parallel
streams can be high.

Overcome TCP buffer limitation: TCP receives data from the application layer and places
it in the TCP buffer, as shown in Figure 3. TCP implements flow control by requiring the
receiver indicate how much spare room is available in the TCP receive buffer. For a full
utilization of the path, the TCP send and receive buffers must be greater than or equal to
the bandwidth-delay product (BDP). This buffer size value is the maximum number of bits
that can be outstanding (in-flight) if the sender continuously sends segments. If the buffer
size is less than the bandwidth-delay product, then throughput will not be maximized.
One solution to overcome small TCP buffer size situations is by using parallel streams.
Essentially, an application opening K parallel connections creates a large buffer size on
the aggregate connection that is K times the buffer size of a single connection.

Sender Receiver
From To application
application layer layer
Spare TCP data in TCP data

room buffer -1 — Spare room in buffer

| o | (BDEEE)| J

T T
TCP send buffer TCP receive buffer

Figure 3. TCP send and receive buffers.

Page 5

Lab 9: TCP Parallel Streams

In this lab, we will explore the use of parallel streams to overcome TCP buffer limitation
and to mitigate random packet loss.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl s2 h2

10 Gbps
h1l-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-eth0

10.0.0.1 10.0.0.2
Figure 4. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|,

H_

Tenminal

Miniedit

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 9.mn topology file and click on Open.

MiniEdit

Edit Run Help

New
|Open|
Save p— Open = X
Export Level 2 Script

Directory: /home/admin/lab_topologies —»l @
Put [[JLab2.mn [Lab8.mn [Lab 14.mn [Z] Lab 20.mn

[l tab 3.mn [C/[EREEEM [Lab 15.mn
[[]Lab4.mn [] Lab 10.mn [-] Lab 16.mn
|[C] Lab 5.mn [£] Lab 11.mn [£] Lab 17.mn
[E] Lab 6.mn [£] Lab 12.mn [C] Lab 18.mn
[[] tab 7.mn [] Lab 13.mn [£] Lab 19.mn

[4 ¥

File name: Lab 9.mn | Open I

Files of type: Mininet Topology (*.mn) 4’ Cancel |

-mg

Figure 6. MiniEdit’s Open dialog.

Page 6

Lab 9: TCP Parallel Streams

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

I o

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

- MiniEdit

File Edit Run Help

5
—
Host Options E

— h2

= =
1 52

|

|

Figure 8. Opening a terminal on host h1l.
Step 2. Apply the same steps on host h2 and open its Terminals.

Step 3. Test connectivity between the end-hosts using the fping command. On host h1,
type the command [ping 10.0.0.2]. This command tests the connectivity between host
h1 and host h2. To stop the test, press [ctrl+d The figure below shows a successful
connectivity test.

Page 7

Lab 9: TCP Parallel Streams

"Host: h1"

from
s from
from

from
s from

Figure 9. Connectivity test using command.

Figure 9 indicates that there is connectivity between host h1l and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between

switch S1 and switch S2 to measure the throughput. Then, we will set the bandwidth
between host hl and host h2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Terminal

Miniedit

Figure 10. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.
Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on switch S1's s1-eth2

interface.

sudo tc gdisc add dev sl-eth2 root handle 1: netem delay 20ms

Page 8

Lab 9: TCP Parallel Streams

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ (X

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 root handle

1: netem delay 20ms
[sudo] password for admin

admin@admin-pc:~$ i

Figure 11. Adding delay of 20ms to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [cate): 10gbit
. m: burst: 5,000,000
. : 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2:

tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (]

admxn@admtn pc 5 udo c qdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit

admn@admn pc. S l

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type ping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1"
root@admin-pc:~#|ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from .0.0.2: seq=1 ttl=64 time=40.9
64 bytes from .0.0.2: i seq=2 tt1=64 time=20.1
64 bytes from - T - kil seq=3 ttl=64 time=20.1

64 bytes from <8002 3 seq=4 ttl=64 time=20.1
"G

--- 10.0.0.2 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 7ms

rtt min/avg/max/mdev = 20.080/25.284/40.883/9.006 ms
root@admin-pc:~# [j

Figure 13. Output of [ping 10.0.0.2/ command.

Page 9

Lab 9: TCP Parallel Streams

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.284, 40.883, and 9.006 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type [ping 10.0.0.1]. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

Step 3. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

dmin-pc:~#|iperf3 -s

Server listening on 5201

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1’s terminal. To stop the test, press[Ctrl+d|.

iperf3 -c 10.0.0.2

"Host: hl"

root@admin-pc:~# iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
15] local 10.0.0.1 port 59976 connected to 10.0.0.2 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 328 MBytes 2.75 Gbits/sec 90 16.1 MBytes
15] .00-2.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-3.00 sec 391 MBytes .28 Gbits/sec 16.1 MBytes
15] .00-4.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-5.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-6.00 sec 390 MBytes .27 Gbits/sec 16.1 MBytes
7
8
9
1

(<]

15] .00-7.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes
15] .00-8.00 sec 396 MBytes .32 Gbits/sec 16.1 MBytes
15] .00-9.00 sec 396 MBytes .32 Gbits/sec 16.1 MBytes
15] .00-10.00 sec 394 MBytes .30 Gbits/sec 16.1 MBytes

OO NOWUSE WN
wWwwwwwwww
[ocloNoNoNoNoNoNol
el el

ID] Interval Transfer Bitrate
15] 0.00-10.00 3.78 GBytes 3.25 Gbits/sec sender
15] 0.00-10.04 3.78 GBytes 3.23 Gbits/sec receiver

iperf Done.
root@admin-pc:~# [

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.22 Gbps. This is because the TCP buffer size is less than the bandwidth-
delay product. In the upcoming section, we run a throughput test without modifying the
TCP buffer size, but with multiple parallel streams.

Page 10

Lab 9: TCP Parallel Streams

Step 5. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Parallel streams to overcome TCP buffer limitation

In this section, parallel streams are specified by the client when executing the throughput
test in iPerf3. The iPerf3 server should start as usual, without specifying any additional
options or parameters.

Step 1. To launch iPerf3 in server mode, run the command in host h2’s
terminal as shown the figure below:

iperf3 -s

"Host: h2"

Figure 16. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the [-F option specified (not to be
confused with the option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host hl’s
terminal:

iperf3 -c 10.0.0.2 -P 8

s [

root@admin-pc:~#|iperf3 -c 10.0.0.2 -P 8
Connecting to host 10.0.0.2, port 5201
[15] local 10.0.0.1 port 60000 connected to 10.

port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201

[17] local 10.0.0.1 port 60002 connected to 10.
[19] local 10.0.0.1 port 60004 connected to 10.
[21] local 10.0.0.1 port 60006 connected to 10.
[23] local 10.0.0.1 port 60008 connected to 10.
[25] local 10.0.0.1 port 60010 connected to 10.
[27] local 10.0.0.1 port 60012 connected to 10.
[29] local 10.0.0.1 port 60014 connected to 10.
[ID] Interval Transfer Bitrate Retr Cwnd

[151 0.00-1.00 sec 221 MBytes 1.85 Gbits/sec 5 13.2 MBytes
[

[

[

[

[

[

[

[

[cloNoNoNoNoNo Nl
(oMo Mo Moo Moo o)
NNNNNNNN

17] .00-1.00 sec 206 MBytes 1.73 Gbits/sec 1477 9.61 MBytes
19] .00-1.00 sec 139 MBytes 1.16 Gbits/sec 1935 .23 MBytes
21] .00-1.00 sec 138 MBytes 1.16 Gbits/sec 4151 .16 MBytes
23] .00-1.00 sec 64.3 MBytes 539 Mbits/sec 2630 .39 MBytes
25] .00-1.00 sec 104 MBytes 874 Mbits/sec 2823 .57 MBytes
27] .00-1.00 sec 64.3 MBytes 539 Mbits/sec 1815 .95 MBytes
29] .00-1.00 sec 89.3 MBytes 748 Mbits/sec 2105 .88 MBytes
SUM] 8.60 Gbits/sec 16941

'
[<M <o Moo NoRNoRNo)

.00-1.00 sec 1.00 GBytes

Figure 17. iPerf3 throughput test with parallel streams.

Page 11

Lab 9: TCP Parallel Streams

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

"Host: h1"

ID] Interval Transfer Bitrate Retr

15] 0.00-10. .48 GBytes .13 Gbits/sec 50 sender
15] .00-10. .47 GBytes .12 Gbits/sec receiver
17] .00-10. .22 GBytes .91 Gbits/sec 1792 sender
17] .00-10. .22 GBytes .90 Gbits/sec receiver
19] .00-10. .19 GBytes .02 Gbits/sec 1935 sender
19] .00-10. .19 GBytes .02 Gbits/sec receiver
21] .00-10. .79 GBytes Gbits/sec 4151 sender
21] .00-10. .78 GBytes Gbits/sec receiver
23] .00-10. 697 MBytes Mbits/sec 3872 sender
.00-10. 688 MBytes Mbits/sec receiver
.00-10. 981 MBytes Mbits/sec 3948 sender
.00-10. 971 MBytes Mbits/sec receiver
.00-10. 708 MBytes Mbits/sec 1815 sender
.00-10. 699 MBytes Mbits/sec receiver
.00-10. 1.02 GBytes Mbits/sec 2105 sender
.00-160. 1.01 GBytes _ 864 Mbits/sec receiver
.00-10. 11.0 GBytes : Gbits/sec” 19668 sender
.00-10. 11.0 GBytes |9. Gbits/sec

o =N NNN
= e e e NN

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

receiver

iperf Done.
root@admin-pc:~# ||

Figure 18. iPerf3 throughput test with parallel streams summary output.

Note the measured throughput now is approximately 9.5 Gbps, which is close to the value
assigned in the rule (10 Gbps).

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Parallel streams to combat packet loss

Packet loss is inevitable in real-world networks. This section explores the use of parallel
streams to mitigate packet loss not due congestion (i.e., random packet loss), and
compares the performance of single and parallel streams.

4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface

In this topology, rate limiting is applied on switch S1’s interface which connects it to
switch S2 (s1-eth2) and 1% packet loss is introduced.

Step 1. Before applying any additional configuration, the previous rules assigned on the

switch’s interface must be deleted. To remove these, type the following command on the
Client’s terminal. When prompted for a password, type and hit enter.

Page 12

Lab 9: TCP Parallel Streams

sudo tc gdisc del dev sl-eth2 root

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$|sudo tc qdisc del dev sl-eth2 root

admin@admin-pc:~$ |

Figure 19. Deleting previous rules on switch S1’s s1-eth2 interface.

Step 2. On the same terminal, type the below command to add 1% packet loss.
sudo tc gdisc add dev sl-eth2 root handle 1: netem loss 1%

= admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (X

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 root handle 1: netem loss 1%

admin@admin-pc:~$ |

Figure 20. Adding 1% packet loss to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [fate) 10gbit
e [urst]: 5,000,000
e [Limit: 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (>

admin@admin :~5 | sudo 1 c add dev sl-eth2 parent 1: handle 2: tbf rate 10
burst 5000¢

admin@admin-pc:-~$

Figure 21. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. The user can now verify the rate limit configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
host h2’s terminal as shown the figure below:

iperf3 -s

Page 13

Lab 9: TCP Parallel Streams

"Host: h2"

Figure 22. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1’s terminal. To stop the test, press[ctril+d|.

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~# iperf3 -c 10.0.0.2

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 60018 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 919 MBytes 7.70 Gbits/sec 6172 218 KBytes
15] .00-2.00 sec 866 MBytes .27 Gbits/sec 6089 157 KBytes
15] .00-3.00 sec 891 MBytes .48 Gbits/sec 6589 129 KBytes
15] .00-4.00 sec 952 MBytes .99 Gbits/sec 6761 42 .4 KBytes
15] .00-5.00 sec 1.00 GBytes .62 Gbits/sec 7597 24.0 KBytes
15] .00-6.00 sec 671 MBytes .63 Gbits/sec 4937 42.4 KBytes
15] .00-7.00 sec 804 MBytes .74 Gbits/sec 5573 2.83 KBytes
15] .00-8.00 sec 901 MBytes .56 Gbits/sec 7123 160 KBytes
15] .00-9.00 sec 892 MBytes .49 Gbits/sec 6052 1.16 MBytes
15] .00-10.00 sec 1.10 GBytes .47 Gbits/sec 7598 400 KBytes

LCOoONOOULLE WN =
O NN U NNN

ID] Interval Transfer Bitrate Retr
15] 0.00-10.00 8.84 GBytes 7.59 Gbits/sec 64491 sender
15] 0.00-10.04 8.83 GBytes 7.56 Gbits/sec receiver

iperf Done.
root@admin-pc:~# ||

Figure 23. Running iPerf3 client on host h1.

Note the measured throughput now is approximately 7.6 Gbps, which is different than
the value assigned in the rule (10 Gbps).

Step 5. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

4.2 Test with parallel streams

Step 1. Now the test is repeated while using parallel streams. To launch iPerf3 in server
mode, run the command in host h2’s terminal as shown in Figure 24:

iperf3 -s

"Host: h2"

Page 14

Lab 9: TCP Parallel Streams

Figure 24. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the [-F option specified (not to be
confused with the option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host hl’s
terminal:

iperf3 -c 10.0.0.2 -P 8

"Host: hl"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -P 8
Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 60022 connected to 10.
[17] local 10.0.0.1 port 60024 connected to 10.
[19] local 10.0.0.1 port 60026 connected to 10.
[21] local 10.0.0.1 port 60028 connected to 10.
[23] local 10.0.0.1 port 60030 connected to 10.
[25] local 10.0.0.1 port 60032 connected to 10.
[27] local 10.0.0.1 port 60034 connected to 10.
[29] local 10.0.0.1 port 60036 connected to 10.
[ID] Interval Transfer Bitrate Retr Cwnd

[15] 0.00-1. sec 137 MBytes 1.15 Gbits/sec 933 413 KBytes
[

[

[

[

[

[

[

[

port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201
port 5201

0.
0.
0.
0.
0.
0.
0.
0.

[clcNoNoNoNoNoNol
NNNNNNNN

17] .00-1. sec 135 MBytes 1.14 Gbits/sec 905 29.7 KBytes
19] .00-1. sec 121 MBytes 1.02 Gbits/sec 1161 36.8 KBytes
21] .00-1. sec 209 MBytes 1.76 Gbits/sec 1267 130 KBytes
23] .00-1. sec 161 MBytes 1.35 Gbits/sec 1093 378 KBytes
25] .00-1. sec 111 MBytes 931 Mbits/sec 1036 199 KBytes
27] .00-1. sec 125 MBytes 1.05 Gbits/sec 1060 31.1 KBytes
29] .00-1. sec 170 MBytes 1.42 Gbits/sec 1013 80.6 KBytes
SUM] .00-1. sec 1.14 GBytes 9.81 Gbits/sec 8468

[cNcoNoNoNoNoNoNol

Figure 25. Host h1 running iPerf3 as client with 8 parallel streams.

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

"Host: h1"

ID] Interval Transfer Bitrate Retr

15] 0.00-10.00 1.48 GBytes 1.27 Gbits/sec 10341 sender
15] .00-10.02 .47 GBytes .26 Gbits/sec receiver
17] .00-10.00 .34 GBytes 15 Gbits/sec 9173 sender
17] 00-10.02 .33 GBytes .14 Gbits/sec receiver
19] .00-10.00 .35 GBytes .16 Gbits/sec 11049 sender
19] .00-10.02 .34 GBytes .15 Gbits/sec receiver
21] .00-10.00 .41 GBytes .21 Gbits/sec 10069 sender
21] .00-10.02 .41 GBytes .20 Gbits/sec receiver
23] 00-10.00 .34 GBytes 15 Gbits/sec 9948 sender
23] 00-10.02 .34 GBytes .15 Gbits/sec receiver
25] .00-10.00 .53 GBytes .31 Gbits/sec 10783 sender
25] .00-10.02 .52 GBytes .31 Gbits/sec receiver
27] .00-10.00 .33 GBytes .14 Gbits/sec 10676 sender
27] .00-10.02 .32 GBytes .13 Gbits/sec receiver
29] 00-10.00 .41 GBytes .21 Gbits/sec 10025 sender
29] .00-10.02 .40 GBytes 1.20 Gbits/sec receiver

[SuM] .00-10.00 11.2 GBytes ﬂ9.60 Gbits/sec|

" 82064 sender
[SUM] .00-10.02 11.1 GBytes |9.55 Gbits/sec| receiver

[cloloNoNoNoNoNoNoNoRoNoNoNoNo ool
el el el il el el
e i sl

L

iperf Done.
root@admin-pc:~# ||

Figure 26. iPerf3 throughput test with parallel streams summary output.

Page 15

Lab 9: TCP Parallel Streams

Note the measured throughput now is approximately 9.6 Gbps, which is close to the value
assigned in our rule (10 Gbps). In conclusion, parallel streams are beneficial when the
packet loss rate is high. As shown in the previous test, when using parallel streams, the
host was able to achieve the maximum theoretical bandwidth.

This concludes Lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm,” ACM Computer Communication Review, vol. 27,
no 3, pp. 67-82, Jul. 1997.

2. T.Hacker, B. Athey, B. Noble, “The end-to-end performance effects of parallel TCP
sockets on a lossy wide-area network,” in Proceedings of the Parallel and
Distributed Processing Symposium, Apr. 2001.

3. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and protocols for
computer communication, pp. 303-314, Sep. 1998.

Page 16

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Exercise 5: Enhancing the Aggregate TCP
Throughput with Parallel Streams

Document Version: 08-25-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 5: Enhancing the Aggregate TCP Throughput with Parallel Streams

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas

1.1 Credentials o e s e e e aaaee s
2 Setting the eNVIFONMENT.......iiiiiee e e e s rae e e s eaaaeeeenes
3 DlIVEIADIES. ..t e e e s e araeeeea

Exercise 5: Enhancing the Aggregate TCP Throughput with Parallel Streams

1 Exercise description

In this exercise, you will run tests using parallel streams. The task also requires verifying
the aggregate throughput in the presence of packet losses.

hl sl s2 h2
S _ - ~ - - ~ _ -
S hl-eth0 sl-ethl 5,5‘ sl-eth2 s2-ethl 5,5' s2-eth2 h2-ethO N
N 100 Mbps T N
20ms 0.2% loss

1.1 Credentials
The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type fpassword|.

Terminal

Step 2. Load the topology located at /home/admin/NTP_Exercises/Exercises5/.

Exercise 5: Enhancing the Aggregate TCP Throughput with Parallel Streams

-— MiniEdit

Edit Run Help

New

L] m _____ opn]
Save

Export Level 2 Script Directory: |/homejadmin/NTP_Exercises/Exercise5 | _.| @|

Blftopology.mn

|
s
% =

)
,i\

File name: |t0p0|0gy.mn |gpen|

Files of type: Mininet Topology (*.mn) 4| Cancel |

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

| Run

Stop [T

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

B MiniEdit

Step 5. Navigate into the following directory ~/NTP_Exercises/Exercise5/ by issuing the
following command:

cd ~/NTP_Exercises/Exercise5/

admin@admin-pc: ~/NTP_Exercises/Exercise5

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise5 (]

admin@admin-pc:~S$|cd ~/NTP_Ex

admin@admin-pc:

Exercise 5: Enhancing the Aggregate TCP Throughput with Parallel Streams

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

admin@admin-pc: ~/NTP_Exercises/Exercise5
File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise5
admin@admin-pc: $|sudo ./set_env.sh
rd for admin:

link: 100 Mbps

admin@admin-pc:

The script sets the bottleneck link to 100 Mbps and the latency to 20ms. Now, you can
start solving the problem.
3 Deliverables
Follow the steps below to complete the exercise.
a) Set a 0.2% packet loss rate to the interface s2-eth2.

b) Run an iPerf3 test for 120 seconds and explain the results. What is the
throughput?

c) Run aniPerf3 test for 120 seconds using 5 parallel streams and explain the
results. What is the aggregate throughput?

d) Repeat c) with 20 parallel streams.

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Problem 2: Enhancing TCP Throughput

Document Version: 08-22-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Problem 2: Enhancing TCP Throughput

Contents

1 Problem desCription. ... s e e e s e e e s raaaee e e
1.1 Credentials o e s e e e aaaee s
2 Setting the eNVIFONMENT.......iiiiiiee e e e e e s bae e e s ssaaeeeenes

Problem 2: Enhancing TCP Throughput

1 Problem description

The interface s2-eth2 is experiencing packet losses. Provide a solution to ensure that the
throughput from host hl to host h2 achieves approximately 900 Mbps. Do not remove
the emulated packet losses in the interface s1-eth2.

hl sl s2 h2
N hl-eth0 sl-ethl ™ S Ysl-eth2 s2-ethl '§>. s2-eth2 h2-ethO }\
N 1 Gbps T &

20ms Packet
losses

1.1 Credentials
The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MinikEdit by doble-clicking the shortcut on the Desktop. If a password is
required type fpassword|.

Terminal

Step 2. Load the topology located at /home/admin/NTP_Problems/Problem2/.

Problem 2: Enhancing TCP Throughput

Edit Run Help

New

= open -]
Save

Export Level 2 Script Directory: |/home/admin/NTP_ProbIems/ProbIem2] —:’ @l
Quit Bltopology.mn

[4 2]

File name: topology.mn

Files of type: Mininet Topology (*.mn) 4‘ Cancel ’

z@%

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

| Run

Stop]

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

M MiniEdit

Step 5. Navigate into the following directory ~/NTP_Problems/Problem2/ by issuing the
following command:

cd ~/NTP_ Problems/Problem2/

admin@admin-pc: ~/NTP_Problems/Problem2

File Actions Edit View Help
admin@admin-pc: ~/NTP_Problems/Problem2 (%]

admin@admin-pc:

admin@admin-pc

Problem 2: Enhancing TCP Throughput

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

admin@admin-pc: ~/NTP_Problems/Problem2

File Actions Edit View Help
admin@admin-pc: ~/NTP_Problems/Problem2

admin@admin-pc:

sudo |

Done!
admin@admin-pc:

The script sets the bottleneck link to 1 Gbps, the latency to 20ms and the loss rate to
0.1%. Now, you can start solving the problem.

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 10: Measuring TCP Fairness

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 10: Measuring TCP Fairness

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 FAIrNESS CONCEPES . ittt sssssssssnsssnsssnnnsnna 3
1.1 TCP bandwidth allocationcoiieiiiiiiiiiiiee e 3
1.2 TCP fairness index Calculationcuueeiiiiiiiiniiiies e 5
P IF- | o I o] o Yo Lo -1V 20U SRR PUPRPRUPTPPR 6
2.1 Starting host h1 and hoSt h2ooiiiiiiiii e 8
2.2 Emulating 10 Gbps high-latency WANcoiiiiiiiiieieieee e 8
P20S T =X] o T olo T o | o =Tt { o] o [N 10
3 Calculating fairness among parallel flowscoocoiiiiiiiiiiiccie e, 13
4 Calculating fairness among several hosts with the same congestion control
F=] F=do T 1 Yo' U 14
5 Calculating fairness among hosts with different congestion control algorithms..... 17

(Y T=T L] LT L- TP 19

Lab 10: Measuring TCP Fairness

Overview

This lab introduces TCP fairness in Wide Area Networks (WAN) and explains how
competing TCP connections converge to fairness. The lab describes how to calculate the
TCP fairness index, a metric that quantifies how fair the aggregate connection is divided
between active connections. Finally, the lab conducts throughput tests in an emulated
high-latency network and derives the fairness index.

Objectives

By the end of this lab, students should be able to:
Define TCP fairness.

Calculate TCP fairness index.

Emulate a WAN and calculating fairness index among parallel streams.
Emulate a WAN and calculating fairness index among competing TCP connections.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Fairness concepts.
2. Section 2: Lab topology.
3. Section 3: Calculating fairness among parallel flows.
4. Section 4: Calculating fairness index with different congestion control
algorithms.
1 Fairness concepts

1.1 TCP bandwidth allocation

Lab 10: Measuring TCP Fairness

Many networks do not use any bandwidth reservation mechanism for TCP flows passing
through a router. Instead, routers simply make forwarding decisions based on the
destination field of the IP header. As a result, flows may attempt to use as much
bandwidth as possible. In this situation, it is the TCP congestion control algorithm that
allocates bandwidth to the competing flows.

Consider the scenario where two TCP flows share a bottleneck link with bandwidth
capacity R, as illustrated in Figure 1. Assume that the two senders are in equal conditions
(round-trip time, maximum segment size, configuration parameters) and that they use
the same congestion control algorithm. Furthermore, assume that the two flows are in
steady state and that the congestion control algorithm operates according to the additive
increase multiplicative decrease (AIMD) rule®. A fair bandwidth allocation would result in
a bandwidth partition of R/2 to each flow.

Sender
TCP flow 1

Router

Bottleneck

TCP flow 2 R

Figure 1. Two TCP flows that share a bottleneck link of capacity R.

Figure 2 shows the bandwidth allocation region for the two flows!. The bandwidth
allocation to flow 1 is on x-axis and to flow 2 is on the y-axis. If TCP is to share the
bottleneck bandwidth equally between the two flows, then the bandwidth will fall along
the fairness line emanating from the origin. Note that the origin (0, 0) is a fair but
undesirable solution. When the allocations sum to 100% of the bottleneck capacity, the
allocation is efficient. This is shown by the efficiency line. Note that potential efficient
solutions include points A (R, 0) and points B (0, R). On point A, flow 1 receives 100% of
the capacity, and on point B flow 2 receives 100% of the capacity. Clearly, these solutions
are not desirable, as they lead to starvation and unfairness.

Assume that the sending rates of senders 1 and 2 at a given time are indicated by point
p1. As the amount of aggregate bandwidth jointly consumed by the two flows is less than
R, no loss will occur, and TCP will gently increase the bandwidth allocation (this process is
called additive increase phase). Eventually, the bandwidth jointly consumed by the two
connections will be greater than R, and a packet loss will occur at a point, say p2. TCP
reacts to a packet loss by aggressively decreasing the sending rate by half (this operation
is called multiplicate decrease). The resulting bandwidth allocations are realized at point
ps. Since the joint bandwidth use is less than R at point p3, TCP will again increase the
allocation to flows 1 and 2. Eventually, the TCP additive increase phase will lead to the

Lab 10: Measuring TCP Fairness

operating point ps, where a loss will again occur, and the two flows again will see a
decrease in the bandwidth allocation, and so on. The bandwidth realized by the two flows
eventually will fluctuate along the fairness line, near the optimal operating point Opt (R/2,
R/2). Chiu and Jain! describe the reasons of why TCP converges to a fair and efficient
allocation. This convergence occurs independently of the starting point? 3.

Bandwidth Sender 2

1.2

A

P2 Fairness line
Stirt P4 ~~ (equal-shared bandwidth)

{ Opt (R/2, RI2)

Efficiency line
%~ (100% bandwidth utilized)

A(R, 0)

>
Bandwidth Sender 1

Legend:
Additive increase
2 (up at 45°)

Multiplicative decrease
(line points to origin)

Figure 2. Bandwidth allocation region realized by two competing TCP flows.

TCP fairness index calculation

A useful index to quantify fairness is Jain’s index®. The index has the following properties:

Population size independence: the index is applicable to any number of flows.
Scale and metric independence: the index is independent of scale, i.e., the unit of

measurement does not matter.

Boundedness: the index is bounded between 0 and 1. A totally fair system has an
index of 1 and a totally unfair system has an index of 0.
Continuity: the index is continuous. Any change in allocation is reflected in the

fairness index.

Jain’s fairness index is given by the following equation:

X Tp)?

2
n Z?:l Ti

where

I is the fairness index, with values between 0 and 1.

n is the total number of flows.
T, T,,..

., T,, are the measured throughput of individual flows.

Lab 10: Measuring TCP Fairness

As an example of fairness index calculation, consider the three flows shown in Figure 3.
Given the bottleneck capacity of 9 Gbps, assume that the bandwidth allocations for flows
1, 2, and 3 are 5 Gbps, 3 Gbps, and 1 Gbps. The fairness index for this allocation is:

(i, T)? (5-10%+3-10°+ 1-10°)2
— i=1 — =0.77
3%5., T2 3-((5-1092+ (3-10%92+ (1-1092)
Sender NS
TCPflow1 |[o
S
Router
N g
Sender \\\ L EEE
TCP flow 2 < Bottleneck
X
S~ 9 Gbps
A
Sender S
TCP flow 3 °
S~

Figure 3. Three TCP flows that share a bottleneck link of capacity 9 Gbps.

Note that by property 2 (scale and metric independence), the fairness index of the above
example is the same as that of an allocation of 5 Mbps, 3 Mbps, and 1 Mbps (or more
generally, an allocation of 5, 3, and 1 units). Also, note that an optimal fair allocation of 3
Gbps to each flow would produce a fairness index of 1.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl

h1l-eth0

sl
sl-eth3

Sz

sl-eth2

10.0.0.1 10 Gbps

sl-ethl 20 ms

Figure 4. Lab topology

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 10: Measuring TCP Fairness

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 10.mn topology file and click on Open.

Edit Run Help

New

f

Save ocnn] Open - O X
Export Level 2 Script

Directory: /home/admin/lab_topologies = l @ l

Quit

[JLab2.mn []Lab8.mn [C]Lab14.mn [-]Lab20.mn
] Lab3.mn [£] Lab9.mn [7] Lab 15.mn
] Lab 4.mn DD Lab 16.mn
[]Ltab5s.mn [5] Lab 11.mn 5] Lab 17.mn
[l Lab6.mn [C] Lab 12.mn [] Lab 18.mn
[[] Lab 7.mn [5] Lab 13.mn [Z] Lab 19.mn

[4] ¥

File name: |Lab 10.mn | Open |

Files of type: Mininet Topology (*.mn) —:l Cancel I

-“k@%

Figure 6. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop l“n-li

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 10: Measuring TCP Fairness

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

File Edit Run Help

Host Options h2
Terminal \) /

h3

Figure 8. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

from
s from
from
from
s Trom
s from

rtt min/avg/ de . /0.477 ms
root@admin

Figure 9. Connectivity test using command.
Figure 9 indicates that there is connectivity between host hl and host h2. Thus, we are
ready to start the throughput measurement process.
2.2 Emulating 10 Gbps high-latency WAN
This section emulates a high-latency WAN. We will first emulate 20ms delay between

switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth
between host hl and host h2 to 10 Gbps.

Lab 10: Measuring TCP Fairness

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Terminal

@
Miniedit
Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password, type
password| and hit Enter. This command introduces 20ms delay on switch S1’s s1-ethl
interface.

sudo tc gdisc add dev sl-ethl root handle 1: netem delay 20ms

Ml admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ d

admin@admin-pc:
de password f

admin@admin-pc:

Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [rate]: 10gbit
e [burst]: 5,000,000
e [limit]: 15,000,000

sudo tc gdisc add dev sl-ethl parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (]

admin@admin-pc:-~$ t disc add dev s1-eth2 parent 1: handle 2: tbf rate 16gbit
burst 0 1

admin@admin-pc:~$

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-ethl interface.

Lab 10: Measuring TCP Fairness

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

“Host: h1"

root@admin-pc:~#/ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 160.
64 bytes from 10.
64 bytes from 160.

0.0.2: icmp seq=1 ttl=64 time=40.10 ms
0.0.2: icmp seq=2 ttl=64 time=20.1 ms
0.0.2: icmp seq=3 ttl=64 time=20.1 ms
64 bytes from 10.0.0.2: icmp seq=4 tt1=64 time=20.1 ms
A€

- 10.0.0.2 ping statistics --
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.102/25.325/40.956/9.024 ms
root@admin-pc:~# [j

Figure 13. Output of ping 10.0.0.2command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type jping 10.0.0.1]. The ping output in this test
should be relatively close to the results of the test initiated by host hl in Step 1. To stop

the test, press [Ctri+d.

Step 3. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host hl’s terminal.

iperf3 -c 10.0.0.2

Lab 10: Measuring TCP Fairness

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
19] local 10.0.0.1 port 60040 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
19] 0.00-1.00 sec 320 MBytes .68 Gbits/sec 17 16.
19] .00-2.00 sec 372 MBytes .12 Gbits/sec 16.
19] .00-3.00 sec 388 MBytes .25 Gbits/sec 16.
19] .00-4.00 sec 372 MBytes .13 Gbits/sec 16.
19] .00-5.00 sec 395 MBytes .31 Gbits/sec 165
19] .00-6.00 sec 392 MBytes .29 Gbits/sec 16.
19] .00-7.00 sec 391 MBytes .28 Gbits/sec 16.
19] .00-8. sec 394 MBytes .30 Gbits/sec 16.
sec 394 MBytes .30 Gbits/sec 16.
MBytes Gbits/sec 16.

N

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

(<)

OLOONOWUL A WN =
WWwwwwwwww
L S R ST S S S

0
0
0
0
0
0
0
0

Interval Transfer
0.00-10.00 3.72 GBytes 3.20 Gbits/sec sender
0.00-10.04 3.72 GBytes 3.18 Gbits/sec receiver

iperf Done.
root@admin-pc:~# |

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.20 Gbps. This is because the TCP buffer size was not modified at this point.

Step 5. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 6. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation:

BW = 10,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 10,000,000,000 = 0.02 = 200,000,000 bits
= 25,000,000 bytes = 25 Mbytes

The send and receive buffer sizes should be set to 2 - BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes

BDP = 25 Mbytes = 25 x 1024? bytes = 26,214,400 bytes

2 - BDP = 2-26,214,400 bytes = 52,428,800 bytes

Now, we have calculated the maximum value of the TCP sending and receiving buffer size.
In order to apply the new values, on host h1’s terminal type the command showed down

below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

Lab 10: Measuring TCP Fairness

"Host: h1"
root@admin-pc:~# sysctl -w net.ipv4.tcp rmem='10240 87380 52428800

net.ipv4.tcp rmem = 10240 87380 52428800
root@admin-pc:~# [

Figure 16. Receive window change in[sysct1]

Step 7. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipvéd.tcp wmem=’10240 87380 52428800’

"Host: h1"

root@admin-pc:~# lsysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# [}

Figure 17. Send window change in [sysct1].

Next, the same commands must be configured on host h2.

Step 8. To change the current receive-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

"Host: h2"

root@admin-pc:~# sysctl -w net.ipv4.tcp rmem='10240 87380 52428800

net.ipv4.tcp rmem = 10240 87380 52428800
root@admin-pc:~# [

Figure 18. Receive window change in[sysct1].

Step 9. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp wmem=’'10240 87380 52428800’

"Host: h2"

root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~#

Figure 19. Send window change in[sysct1].

Step 10. The user can now verify the rate limit configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
host h2’s terminal:

iperf3 -s

Lab 10: Measuring TCP Fairness

"Host: h2"

Figure 20. Host h2 running iPerf3 as server.

Step 11. Now to launch iPerf3 in client mode again by running the command
in host h1’s terminal:

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2
Connecting to host 10.0.0.2, port 5201
[19] local 10.0.0.1 port 60044 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
19] 0.00-1.00 sec 920 MBytes 7.72 Gbits/sec 0] 36.
19] .00-2.00 sec .11 GBytes .57 Gbits/sec 36.
19] .00-3.00 sec .11 GBytes .54 Gbits/sec 36.
19] .00-4.00 sec .11 GBytes .56 Gbits/sec 36.
5
6

[

[MBytes
[

[

[

[19] .00-5.00 sec .11 GBytes .57 Gbits/sec 36.
[

[

[

[

[

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

19] .00-6.00 sec .11 GBytes .56 Gbits/sec 36.
19] .00-7.00 sec .11 GBytes .56 Gbits/sec 36.
19] .00-8.00 sec .11 GBytes .56 Gbits/sec 36.
19] .00-9.00 sec .11 GBytes .56 Gbits/sec 36.
19] .00-10.00 sec .11 GBytes .56 Gbits/sec 36.

OO NO UL ES WN
il el el el e i
LB U= I Ve Ve Iy Ve I Vo Ve Ve B Ve B Vo
[cloNoNoNoNoNoNoNol
00 00 0 0 0 00 0 0 0

[ID] Interval Transfer Bitrate
[19] 0.00-10.00 10.9 GBytes 9.38 Gbits/sec sender
[19] 0.00-10.04 10.9 GBytes 9.33 Gbits/sec receiver

iperf Done.
root@admin-pc:~# |

Figure 21. iPerf3 throughput test.

Note the measured throughput now is approximately 9.38 Gbps, which is close to the
value assigned in our rule (10 Gbps).

Step 12. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.
3 Calculating fairness among parallel flows

In this section, an iPerf3 test that includes several parallel streams is conducted, followed
by the calculation of the fairness index.

Step 1. Now a test is conducted using parallel streams. To launch iPerf3 in server mode,
run the command in host h2’s terminal as shown in Figure 22:

iperf3 -s

Lab 10: Measuring TCP Fairness

"Host: h2"

Figure 22. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the option specified to start
parallel streams. The {J option is also specified to indicate that JSON output is desired,
and the redirection operator [>| to store the output in a file. Run the following command
in host h1’s terminal as shown in Figure 23:

iperf3 -c 10.0.0.2 -P 8 -J > out.json

"Host: h1"

root@dmin-pc:~# |iperf3 -c 10.0.0.2 -P 8 -] = out.json
root@admin-pc:~# JJ

Figure 23. Host h1 running iPerf3 as client with 8 parallel streams and saving output in file.

Step 3. The client includes a script called [fairness. sh|. Basically, this script accepts as
input the JSON file exported by iPerf3 and calculates the fairness index. Run the following

command to calculate the fairness index:

fairness.sh out.json

"Host: h1"
root@admin-pc:~# |fairness.sh out.json
3 o S o o o e o o oK o o o o o o o B K o o o o o o o B o e o o S o o o o o o o o o o o o o ok o o o ok o o o ok ok ok ok ok ok ke

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

Fairness index
s

root@admin-pc:~# ||

Figure 24. Calculating the fairness index between the parallel streams.

In the above test, the fairness index is .91395, or 91% fair. Note that this result may vary
according to the result of your emulation test.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see

the throughput results in the server side too.

4 Calculating fairness among several hosts with the same congestion
control algorithm

Lab 10: Measuring TCP Fairness

In the previous section, we calculated the fairness index among several parallel streams,
all initiated by a single host. In this section we calculate the fairness index among two
transmitting devices. Specifically, an iPerf3 client is executed on host h1l and connected
to host h2 (iPerf3 server); another iPerf3 client is executed on host h3 and connected to
host h4 (iPerf3 server).

To calculate the fairness index, the transmitting hosts should initiate their transmissions
simultaneously. Since it is difficult to start the clients at the same time, the client’s

machine provides a script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

*= qgterminal -2 windows I MiniEdit

Figure 25. Opening Mininet’s terminal.

sword for admin:
and Switches.
+*++ Configuring hosts

h4 hl h2 h3
**+* Starting 0@ controllers

REMEMBER TO EXIT THE CLI BEFORE YOU PRESS THE STOP BUTTON. Not exi
nt MiniEdit from quitting and will p nt you from starting the
oin.

Figure 26. Mininet’s terminal.

Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_same_algo

Lab 10: Measuring TCP Fairness

mininet>|source concurrent same algo

Setting hl's congestion control algorithm to Reno:
---> sysctl -w net.ipv4.tcp congestion control=reno

Setting h3's congestion control algorithm to Reno:
---> sysctl -w net.ipv4.tcp congestion control=reno

Modifying TCP buffer size on all devices... (10Gbps, 20ms delay)
---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800'
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

hl connected to h2. Transmitting for 120 seconds, please wait ...

h3 connected to h4. Transmitting for 120 seconds, please wait ...

ARk Rk kR kR Rk Rk kR ke kk ok kkkk sk ok kk ke k sk ke ks k ke ke ek ko k ok

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

n * SUM(xi ~ 2)
Figure 27. Running the tests simultaneously for 120 seconds. Both host h1 and host h3 are using
Reno.

Throughput over time
6000) T q

—— hl.json.dat
— h3.json.dat

5000

4000

Mbps

; I DS B
0 20 40 60 80 100 120

Time (sec)
Figure 28. Throughput of host h1 and host h3.

The above graph shows that the throughput of host hl is close to that of host h3.
Therefore, the fairness index should be close to 1 (100%). Note that this result may vary
according to the result of your emulation test.

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 10: Measuring TCP Fairness

sudo

---> sysctl -w net.ipv4.tcp congestion control=reno

Modifying TCP buffer size on all devices... (10Gbps, 20ms delay)
---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

hl connected to h2. Transmitting for 120 seconds, please wait ...

h3 connected to h4. Transmitting for 120 seconds, please wait ...

ARk kR kR ko kk ko ko kR ke ke ks kkk ke kk ks kkk ek k%

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

Fairness indexs_ - “"° |
o e o Sk ok ok o ok ok ok ok ok ke ok ok ok ok sk ok ok ok ke sk ok ok e ok sk ok ok ok ok ok ok ok ok ok ke ok ok ok e ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok kR ok

Figure 29. Calculated fairness index.
The above figure shows a fairness index of .99595. This value indicates that the bottleneck

bandwidth was 99% fairly shared among host h1 and host h3. Note that this result may
vary according to the result of your emulation test.

5 Calculating fairness among hosts with different congestion control
algorithms

In the previous test, we calculated the fairness index while using the same congestion
control algorithm (Reno). In this section we repeat the test, but with host h1 using Reno

and host h3 using BBR.

Step 1. Go back to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

RN Bl | sudo - qterminal -2 windows [MiniEdit

Figure 30. Opening Mininet’s terminal.

Step 2. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent diff algo

Lab 10: Measuring TCP Fairness

mininet> |source concurrent diff algo

Setting hl's congestion control algorithm to Reno:
---> sysctl -w net.ipv4.tcp congestion control=reno

Setting h3's congestion control algorithm to BBR:
---> sysctl -w net.ipv4.tcp congestion control=bbr

Modifying TCP buffer size on all devices... (10Gbps, 20ms delay)
---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800'

hl connected to h2. Transmitting for 20 seconds, please wait ...

h3 connected to h4. Transmitting for 20 seconds, please wait ...

LR RS RS e e e R e e e e R e e R R S R R R R R R R R R R R

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

n * SUM(xi ~ 2)
Figure 31. Running the tests simultaneously for 20 seconds. Host h1 is using Reno while host h3
is using BBR.

Throughput over time

7000 ! - ' ' '- — bbr.json.dat
reno.json.dat
6000
5000
Q
o i i i b b i i b b
Z 3000 _ . ; -
~ L
2000 _ i
T B S S SR R R i e pa e
0 A TN T NN S SR S S
0 2 4 6 g8 10 12 14 16 18 20

Time (sec)
Figure 32. Throughput of host h1 and host h3.

The above graph shows that the device configured with BBR has a larger bandwidth
allocation than that configured with Reno. Therefore, the fairness index will not be close
to 1 (100%).

Step 3. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 10: Measuring TCP Fairness

sudo

Setting h3's congestion control algorithm to BBR:
---> sysctl -w net.ipv4.tcp congestion control=bbr

Modifying TCP buffer size on all devices... (10Gbps, 20ms delay)
---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800'
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

hl connected to h2. Transmitting for 20 seconds, please wait ...

h3 connected to h4. Transmitting for 20 seconds, please wait ...

F S e o o ok ok e ok ok K ok o sk ok ok ok ok ok o ok ok e ok ok ok o ok ok S ok ok e ok ok sk e ok ok ok ok ok ok ok ok ok ok ok ok ok sk kR ok R ok sk ok kK ok

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

Fairness indexs
EE RS S S S SRS SRS kR Rk Rk Rk Rk Rk Rk Rk Rk kR kR kR kR kR kR kR kR Rk Rk kR Rk kK ok

Figure 33. Calculated fairness index.

The above figure shows a fairness index of .86036 (~ 86%), which is very far from 100%.
This value indicates that the bottleneck bandwidth was 86% fairly shared among host h1
and host h3. Note that this result may vary according to the result of your emulation test.

This concludes Lab 10. Stop the emulation and then exit out of MiniEdit.

References

1.

3.

4.

D. Chiu, R. Jain, “Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks,” Journal of Computer Networks and ISDN
Systems, vol. 17, issue 1, pp. 1-14, Jun. 1989.

A. Tanenbaum, D. Wetherall, “Computer networks,” 5" Edition, Prentice Hall,
2011.

J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7t Edition,
Pearson, 2017.

R. Jain, D. Chiu, W. Hawe, “A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems,” DEC Research Report TR-301,
Sep. 1984.

§
0

[l

®
780\
AN

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 6: Understanding Traditional TCP Congestion
Control (HTCP, Cubic, Reno)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 6: Understanding Traditional TCP Congestion Control

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
R (01 Yo [0 Tt o o I e T I 6 PP UPPRRUPPPPR 3
L.l TP FEVIBW .ttt s sssssssssssssssasssnsnsnne 4
0 1 O o o o1 o YU ={ o' TV | PSPPI 4
1.3 TCP PacKet 0SS @VENT.......uiiiiiiiiee ittt e e s e s st e e e e saaaee s 5
1.4 Impact of packet loss in high-latency Nnetworks........ccccceevviieeeiviiiii e, 6
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 7
2.1 Startinghost h1 and hoSt h2ooooooeieee e 8
2.2 Emulating 10 Gbps high-latency WAN with packet 0SScccccvveveeiiiicciiinenenen. 9
PSSR =Y) u{ o T=oleT o] T=Tot f [0 o [N 10
3 INtroduction tO SYSCL.ceeeii i e 11
3.1 Read sysctl PAarameters e 11
3.2 Write sySCtl ParameEtersuuuieei i 12
3.3 Configuring sysctl.cONf filecuvereieiiiiee e 12
4 Congestion control algorithms and SysCtl.........cccveeieiieiiiiiieee e, 14
4.1 Inspect and install/load congestion control algorithmsccccccevveeiiieennnenn, 15
4.2 Inspect the default (current) congestion control algorithm...........ccceeeennnneee. 16
4.3 Modify the default (current) congestion control algorithmccccveeennnneee. 17
5 iPerf3 throughput teSt ..o 17
5.1 Throughput test without delayccccuviiiieeiii e, 18
700 00 R 01 (= Vo TP 18
5.1.2 Hamilton TCP (HTCP) ..ueuiteeeieeee ettt ettt e e e etnrre e e e e e e e s nnrneneee e 19
5.1.3 TCP CUDIC ceeiueiieiiiee ettt ettt et e s e s 21
5.2 Throughput test with 30ms delayccccveeeeeieiicciiiiieeee e 22
5,21 TCP RENO ..ttt e e e e e e s e e e e e e e e s nnreeneeeeens 23
5.2.2 Hamilton TCP (HTCP) ..ttt eecttrtree e e e e trrre e e e e e e e s ennrreneeeeees 24
5.2.3 TCP CUDIC cetiutiieiiiee ettt sttt s e e e s 26
RETEIENCES ...ttt st e st e s bt e s bt e e sneeesanee 27

Page 2

Lab 6: Understanding Traditional TCP Congestion Control

Overview

This lab reviews key features and behavior of Transmission Control Protocol (TCP) that
have a large impact on data transfers over high-throughput, high-latency networks. The
lab describes the behavior of TCP’s congestion control algorithm, its impact on
throughput, and how to modify the congestion control algorithm in a Linux machine.

Objectives
By the end of this lab, students should be able to:

1. Describe the basic operation of TCP congestion control algorithm and its impact
on high-throughput networks.

2. Explain the concepts of congestion window, bandwidth probing, and Additive-

Increase Multiplicative-Decrease (AIMD).

Understand TCP throughput calculation.

Understand the impact of packet loss on high-latency networks.

Deploy emulated WANSs in Mininet.

Modify the TCP congestion control algorithm in Linux using sysct/ tool.

Compare TCP Reno, HTCP, and Cubic with injected packet loss.

Compare TCP Reno, HTCP, and Cubic with both injected delay and packet loss.

O NOUL AW

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab topology.
3. Section 3: Introduction to sysctl.
4. Section 4: Congestion control algorithms and sysctl.
5. Section 5: iPerf3 throughput test.
1 Introduction to TCP

Page 3

Lab 6: Understanding Traditional TCP Congestion Control

1.1 TCP review

Big data applications require the transmission of large amounts of data between end
devices. Data must be correctly delivered from one device to another; e.g., from an
instrument to a Data Transfer Node (DTN). Reliability is one of the services provided by
TCP and a reason why TCP is the protocol used by most data transfer tools. Thus,
understanding the behavior of TCP is essential for the design and operation of networks
used to transmit big data.

TCP receives data from the application layer and places it in the TCP send buffer, as shown
in Figure 1(a). Data is typically broken into Maximum Segment Size (MSS) units. Note that
“segment” here refers to the Protocol Data Unit (PDU) at the transport layer, and
sometimes the terms packet and segment are interchangeably used. The MSS is simply
the Maximum Transmission Unit (MTU) minus the combined lengths of the TCP and IP
headers (typically 40 bytes). Ethernet’s normal MTU is 1,500 bytes. Thus, MSS’s typical
value is 1,460. The TCP header is shown in Figure 1(b).

Source port ‘ Destination port
Application Application 8 Sequence number
Segments s
| g T 2- Acknowledgment number
v TCP &
TCP send ; S oo | R ctibits| window
buffer receive :
buffer Checksum Urgent pointer

Options Padding

(@ (b)
Figure 1. (a) TCP Connection. (b) TCP header.

For reliability, TCP uses two fields of the TCP header to convey information to the sender:
sequence number and acknowledgement (ACK) number. The sequence number is the
byte-stream number of the first byte in the segment. The acknowledgement number that
the receiver puts in its segment is the sequence number of the next byte the receiver is
expecting from the sender. In the example of Figure 2(a), after receiving the first two
segments containing sequence number 90 (which contains bytes 90-99) and 100 (bytes
100-109), the receiver sends a segment with acknowledge number 110. This segment is
called cumulative acknowledgement.

1.2 TCP throughput

The TCP rate limitation is defined by the receive buffer shown in Figure 1(a). If this buffer
size is too small, TCP must constantly wait until an acknowledgement arrives before
sending more segments. This limitation is removed by setting a large receive buffer size.

A second limitation is imposed by the congestion control mechanism operating at the
sender side, which keeps track of a variable called congestion window. The congestion

Page 4

Lab 6: Understanding Traditional TCP Congestion Control

window, referred to as cwnd (in bytes), imposes a constraint on the rate at which a TCP
sender can send traffic. The cwnd value is the amount of unacknowledged data at the
sender. To see this, note that at the beginning of every Round-Trip Time (RTT), the sender
can send cwnd bytes of data into the connection; at the end of the RTT the sender receives
acknowledgments for the data. Thus, the sender’s send rate is roughly cwnd/RTT
bytes/sec. By adjusting the value of cwnd, the sender can therefore adjust the rate at
which it sends data into the connection.

cwnd

TCP Throughput ~ ——— [bytes/second]
S Sender Receiver@
S s S
eq: 0,
N
A
o
o
= o
o
2 o
=
c
K]
@
()
D
C
o
o
5 Time
< »
-]
_S O Triple duplicate ACK (packet loss)
§' Additive increase
% Multiplicative decrease
S 5
=
v v

(@) (b)
Figure 2. (a) TCP operation. (b) Adaptation of TCP’s congestion window.

1.3 TCP packet loss event

TCP is a reliable transport protocol that requires each segment be acknowledged. If an
acknowledgement for an outstanding segment is not received, TCP retransmits that
segment. Alternatively, instead of waiting for a timeout-triggered retransmission, the
sender can also detect a packet loss before the timeout by detecting duplicate ACKs. A
duplicate ACK is an ACK that re-acknowledges a segment for which the sender has already
received. If the TCP sender receives three duplicate ACKs for the same segment, TCP
interprets this event as packet loss due to congestion and reduces the congestion window
cwnd by half. This congestion window reduction is known as multiplicative decrease.

In steady state (ignoring the initial TCP period when a connection begins), a packet loss
will be detected by a triple duplicate ACK. After decreasing cwnd by half, and as long as
no other packet loss is detected, TCP will slowly increase cwnd again by 1 MSS per RTT.
This congestion control phase essentially produces an additive increase in the congestion
window. For this reason, TCP congestion control is referred to as an Additive-Increase

Multiplicative-Decrease (AIMD) form of congestion control. AIMD gives rise to the “saw
Page 5

Lab 6: Understanding Traditional TCP Congestion Control

tooth” behavior shown in Figure 2(b), which also illustrates the idea of TCP “probing” for
bandwidth—TCP linearly increases its congestion window size (and hence its transmission
rate) until a triple duplicate-ACK event occurs. It then decreases its congestion window
size by a factor of two but then again begins increasing it linearly, probing to see if there
is additional available bandwidth.

14 Impact of packet loss in high-latency networks

During the additive increase phase, TCP only increases cwnd by 1 MSS every RTT period.
This feature makes TCP very sensitive to packet loss on high-latency networks, where the
RTT is large.

Consider Figure 3, which shows the TCP throughput of a data transfer across a 10 Gbps
path. The packet loss rate is 1/22,000, or 0.0046%. The purple curve is the throughput in
a loss-free environment; the green curve is the theoretical throughput computed
according to the equation below, where L is the packet loss rate.

Throughput vs RTT, 0.0046% Packet Loss

10— T
8\<— LAN \\
[\

m
Q.
QO
O 6\
5 \ +—— Metro
Q. \
= \
= Regional Continental
’_
2 / l
O P e e 3 ﬂ
0 10 20 30 40 50 60 70 80 90
RTT (milliseconds)
e \leasured TCP HTCP = \leasured no loss
=== Measured TCP Reno Theoretical TCP Reno

Figure 3. Throughput vs Round-Trip Time (RTT), for two devices connected via a 10 Gbps path.
The performance of two TCP implementations are provided: Reno! (blue) and Hamilton TCP?
(HTCP) (red). The theoretical performance with packet losses (green) and the measured
throughput without packet losses (purple) are also shown?3.

MSS
RTT VL

TCP Throughput = [bytes / second]

The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the Round-Trip Time (RTT) and the square root of the packet loss rate (L). The red and
blue curves are real throughput measurements of two popular implementations of TCP:
Reno?! and Hamilton TCP (HTCP)?. Because TCP interprets losses as network congestion, it
reacts by decreasing the rate at which packets are sent. This problem is exacerbated as
the latency increases between the communicating hosts. Beyond LAN transfers, the
throughput decreases rapidly to less than 1 Gbps. This is often the case when research
collaborators sharing data are geographically distributed.

Page 6

Lab 6: Understanding Traditional TCP Congestion Control

TCP Reno is an early congestion control algorithm. TCP Cubic?, HTCP®, and BBR® are more
recent congestion control algorithms, which have demonstrated improvements with
respect to TCP Reno.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl s2 h2
10 Gbps

h1-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-ethO

10.0.0.1 10.0.0.2
Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

H_

Tenminal

Miniedit

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 6.mn topology file and click on Open.

Edit Run Help

New
Export Level 2 Script

et Directory: /home/admin/lab_topologies = ’ ml
Quit [ltab2.mn []Llab8mn []Llabl4.mn [Lab20.mn

Eltab3.mn [E] Lab9.mn [] Lab 15.mn
[[] Lab4.mn [] Lab 10.mn] Lab 16.mn
[El Lab5.mn [£] Lab 11.mn [C] Lab 17.mn
CI[EEEEEE [tab 12.mn [Lab 18.mn
[Lab 7.mn [5] Lab 13.mn] Lab 19.mn

K | ¥

File name: |Lab 6.mn I Open I

Files of type: Mininet Topology (*.mn) —'| Cancel ’

ﬂ%

Figure 6. MiniEdit shortcut.
Page 7

Lab 6: Understanding Traditional TCP Congestion Control

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop |EJ__

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

- MiniEdit

File Edit Run Help

sl 52

Host Options B

h2

Terminal

Figure 8. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the [pingl command. On host h1,
type the command [ping 10.0.0.2]. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

Page 8

Lab 6: Understanding Traditional TCP Congestion Control

"Host: hl"

, time 91ms

Figure 9. Connectivity test using command.

Figure 9 indicates that there is connectivity between host hl and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN with packet loss

This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1l and host h2 to 10 Gbps. Then

we will emulate packet losses between switch S1 and switch S2 and measure the
throughput.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Terminal

Miniedit

Figure 10. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard

and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter.

sudo tc gdisc add dev sl-eth2 root handle 1: netem loss 0.01%

Page 9

Lab 6: Understanding Traditional TCP Congestion Control

$_ admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc:~S |sudo tc qdisc add dev sl-eth2 root handle 1: netem loss 0.01%

[SLIdG] |'1j__|.‘(”d for admin:

admin@admin-pc:~$ I
Figure 11. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2; on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [ate: 10gbit
. -sooo 000

. : 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc: sud qdisc add dev sl1-eth2 parent 1: handle 2: tbf rate 10gbit
burst 5 0
admin@admin-pc:

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type [ping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seg=1 ttl=64 time=0.869
64 bytes from .0.0.2: icmp seqg=2 ttl=64 time=0.075
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=0.064

64 bytes from .0.0.2: icmp seg=4 ttl=64 time=0.068
5

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 64ms
rtt min/avg/max/mdev = 0.064/0.269/0.869/0.346 ms
root@admin-pc:~#

Figure 13. Output of ping 10.0.0.2]command.

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Page 10

Lab 6: Understanding Traditional TCP Congestion Control

Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type [ping 10.0.0.1]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

3 Introduction to sysctl

sysctl is a tool for dynamically changing parameters in the Linux operating system’. It
allows users to modify kernel parameters dynamically without rebuilding the Linux kernel.

Step 1. Run the command below on the Clientl’s terminal. When prompted for a

password, type and hit enter.

sudo sysctl -a

$_ admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

CD-ROM information, Id: cdrom.c 3.20

drive name: srd

Figure 14. Listing all system parameters in Linux.

This command produces a large output containing the kernel parameters and their values.
This is represented in a key-value pair. For instance, net.ipv4.ip forward = 0|implies
that the key [net.ipv4.ip forward has the value [0].

3.1 Read sysctl parameters

It is often useful to search for specific keys without having to manually locate the needed
key. This can be achieved using the following command:

sysctl <key>

Where <key> is replaced by the needed key. For example, the command
|net.ipv4.ip forward| returnslnet.ipv4.ip forward = O].

Step 1. Run the following command on the host h1’s terminal:
Page 11

Lab 6: Understanding Traditional TCP Congestion Control

sysctl net.ipv4.ip forward

"Host: h1"

root@admin-pc:~#|sysctl net.ipv4.ip forward

net.ipv4.ip forward = @
root@admin-pc:~# [

Figure 15. Reading the value of a given key.

3.2 Write sysctl parameters

It is also very useful to modify kernel parameters on the fly. The [-w] switch is added to
the sysctl to “write” a value for a specific key.

sysctl -w <key>=<value>

Step 1. For example, if the user decides to enable IP forwarding (i.e., to configure a device
as a router), then the following command is used:

sudo sysctl -w net.ipv4.ip forward=1
Run the above command on the host h1l’s terminal:

"Host: hl1"

sysctl -w net.ipv4.ip forward=1

Figure 16. Modifying a system parameter.
The changes made to a parameter using this command are temporary. Therefore, a new
boot resets the value of a key to its default value. Also, when stopping MiniEdit’s
emulation, the configured parameters are reset.

3.3 Configuring sysctl.conf file

If the user wishes to permanently modify the value of a specific key, then the key-value
pair must be stored within the file /etc/sysctl.conf.

Step 1. In the Linux terminal, open the /etc/sysctl.conf file using your favorite text editor.
Run the following command on the Client1’s terminal. When prompted for a password,

type and hit enter.

sudo featherpad /etc/sysctl.conf

This is a text file that can be edited in any text editor (vin, hand], etc.). For simplicity, we
use a Graphical User Interface (GUI)-based text editor (featherpad)).

Page 12

Lab 6: Understanding Traditional TCP Congestion Control

File Actions Edit View Help

admin@admin-pc: ~ "]

ctl.conf
faulting to '/tmp

/runtime-root
aulting to '/tm time-root'

File Edit Options Search Help

REBRARIS e C|IA XD

s to enable S

1cation 1n

Figure 17. Opening the /etc/sysctl.conf file.

Step 2. Keys and values are appended to this file. Enable IP forwarding permanently on
the system by append net.ipva.ip forward=1|to the /etc/sysctl.conf file and save it.
Once you have saved the file, close the text editor.

net.ipvéd.ip forward=1l

Page 13

Lab 6: Understanding Traditional TCP Congestion Control

4 */etc/ -0 x
File Edit Options Search Help

DE@ElS e QXD

rsysctl.conf lSave the current tabl

or gateways listed in our default

4 /k’L,‘L”4,(0.’?".‘7_L.:~CLUI.'E redirects = 1

E
Do not send ICMP redirects (we are not a router)
#net.ipv4.conf.all.send redirects = 0
#
Do not accept IP source route packets (we are not a router)
#net.ipv4. .all.accept source ro =0
#net.ipv6.conf.all.accept source route = @
#
Log Packets
#net.ipv4.conf.all.log martians = 1
#
s
ystem r t .‘\!.:\
e, l=e e all, >1 bitmask of sysrq functions
3 https //www. ke/r.el orl/doc/html/latest/admlnjulde sysrq.html
for what other values do

#kernel.sysrq=438

Inet .ipv4.ip forward=1 I

vl N~ A A° 2]

Figure 18. Appending key+value to the /etc/sysctl.conf file and saving.

Step 3. To refresh the system with the new parameters, the switch is passed to the
command as follows:

sudo sysctl -p

When prompted for a password, type and hit enter.

s admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~]

Figure 19. Loading new sysctl.conf parameters.
Now, even after a new system boot (or reboot), the system will have IP forwarding
enabled.
4 Congestion control algorithms and sysctl

Congestion control algorithms can be inspected and modified using the command
and the /etc/sysctl.conf file. Specifically, the following operations are possible:

1. Check the installed congestion control algorithms on the system.

Page 14

Lab 6: Understanding Traditional TCP Congestion Control

2. Inspect the default congestion control algorithm (i.e., the current algorithm used
by the system).
3. Modify the congestion control algorithm.

4.1 Inspect and install/load congestion control algorithms

In Linux, it is possible to check the available TCP congestion control algorithms installed
on the system with the command below.

Step 1. Execute the command below on the Client1’s terminal.

sysctl net.ipv4.tcp available congestion control

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ 3

Lon control
c bbr htcp

pc

Figure 20. Displaying the system’s available congestion control algorithms.

Usually, the default congestion control algorithm is CUBIC or Reno, depending on the
installed operating system. A list of some of the possible output is:

e [rend]: Traditional TCP used by almost all other Operating Systems. Characterized
by slow start, congestion avoidance, and fast retransmission via triple duplicate
ACKs.

® [cubidl: CUBIC-TCP. Optimized congestion control algorithm for high bandwidth
networks with high latency. Operates in a similar but more systematic fashion than
BIC-TCP, in which its congestion window is a cubic function of time since the last
packet loss, with the inflection point set to the window prior to the congestion
event.

e pid: BIC-TCP. Congestion window utilizes a binary search algorithm to find the
largest congestion window that will last the maximum amount of time.

® f|htcp: Hamilton TCP. A loss-based algorithm using additive-increase and
multiplicative-decrease to control TCP’s congestion window.

e [vegas|: TCP Vegas. Emphasizes packet delay, rather than packet loss, as a signal
to help determine the rate at which to send packets.

® [pbr]: a new algorithm, discussed in future labs. Measures bottleneck bandwidth
and Round-Trip Propagation (RTP) time in its execution of congestion control.

If the above command does not return a specific congestion control algorithm, it means
that it is not loaded on the distribution.

Step 2. The command used in Step 1 listed three algorithms: [reno cubic bbr]. To install
a new algorithm, its corresponding kernel module must be loaded. This can be done using

Page 15

Lab 6: Understanding Traditional TCP Congestion Control

[insmod or modprobe] commands. For example, to load the BIC-TCP module, use the
following command on the Client1’s terminal:

sudo modprobe tcp bic

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$ |sudo modprobe tcp_bic
[sudo] password for admin:

admin@admin-pc:~$ I

Figure 21. Loading [tcp_bic] module into the Linux kernel.

lmodprobe] and [insmod commands require high privileges to insert kernel modules.
When prompted for a password, type and hit enter.

Step 3. To verify that the BIC-TCP algorithm is loaded, execute the below command on
the Clientl’s terminal.

sysctl net.ipv4.tcp available congestion control

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ 1

admin@admin-pc:~$ |sysctl net.ipv4d.tcp available congestion control
net.ipv4.tcp available congestion control = reno cubic bbr bic

admin@admin-pc:~$ [}

Figure 22. Displaying the system’s available congestion control algorithms after loading TCP-BIC.

4.2 Inspect the default (current) congestion control algorithm
To check which TCP congestion control is currently being used by the Linux kernel, the
net.ipv4.tcp_congestion_control sysctl key is read. This key can be read on an end-host’s

terminal (host hl or host h2) or on the Clientl’s terminal.

Step 1. Execute the following command on the Clientl’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp congestion control

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (X%

admin@admin-pc:~$|sysctl net.ipv4.tcp _congestion_cont
net.ipv4.tcp_congestion_control = cubic
admin@admin-pc:~$ |

rol

Figure 23. Current TCP congestion control algorithm.

Page 16

Lab 6: Understanding Traditional TCP Congestion Control

The output shows that the default congestion control algorithm is Cubic. Note that
applications can set this value (congestion control algorithm) for individual connections.

4.3 Modify the default (current) congestion control algorithm

To temporarily change the TCP congestion control algorithm, the command is
used with the [-w| switch on the net.ipv4.tcp_congestion_control key.

Step 1. To modify the current algorithm to TCP Reno, the following command is used.
Execute the command below on the Client1’s terminal. When prompted for a password,

type and hit enter.

sudo sysctl -w net.ipv4.tcp congestion control=reno

. admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ X

admin@admin-pc:~$ |sudo sysctl -w net.ipv4.tcp_congestion_control=reno
[sudo] password for admin:

net.ipvd.tcp_congestion_control reno
admin@admin-pc:~$ i

Figure 24. Modifying the congestion control algorithm to [rend].

If no error occurred in the assignment (e.g., the module is not installed on the system),

the output echoes back the new key-value pair, i.e.:
lnet.ipv4.tcp congestion control=reno

Step 2. Execute the following command on the Clientl’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp congestion control

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ £

admin@admin-pc:~$ |sysctl net.ipv4.tcp _congestion_control
net.ipv4.tcp_congestion_control = reno

admin@admin-pc:~$ |

Figure 25. Current TCP congestion control algorithm after modifying to [renod].

The output shows that the default congestion control algorithm is now Reno instead of
Cubic.

5 IPerf3 throughput test

In this section, the throughput between host h1 and host h2 is measured using different
congestion control algorithms, namely Reno, HTCP, and Cubic. Moreover, the test is

Page 17

Lab 6: Understanding Traditional TCP Congestion Control

repeated using various injected delays to observe the throughput variations depending
on each congestion control algorithm and the selected RTT.

5.1 Throughput test without delay

In this test, we measure the throughput between host hl and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

5.1.1 TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

“Host: h1"

root@admin-pc:- 5 -w net.ipv4.tcp congestion control=reno

ion control = reno

Figure 26. Changing TCP congestion control algorithm to on host h1.
Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

root@admin-pc:~#|iperf3 -s

Serv

Figure 27. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host hl ’s terminal. The option is used to
specify the number of seconds to omit in the resulting report. Note that this option is a
capitalized ‘O’, not a zero.

iperf3 -c 10.0.0.2 -t 20 -0 10

Page 18

Lab 6: Understanding Traditional TCP Congestion Control

root@admin-pc:~

[15] local 10.0.0.1 port 34490 connected to 10.0.0.2

ID] Interval

15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
15]
ID]
15]
15]

0.

1
P
3
4
)
6
7
8
1
1
2
3
4
5
6
7
8

(Y]

10.
11
12.
13
14.
15.
16.
172
18.

19

Interval

00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
.00-
00-
00-
00-
00-
00-
00-
00-
00-
00-
.00-

1)

O NOOUVESE WNMHOUONOWUL S WN

o

20

0.00-20
0.00-20.04

iperf Done.

root@admin-pc:~# |J

00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
10.
1 B S
12.
13.
14.
457
16.
L7
18.
49
.00

00
00
00
00
00
00
00
00
00
00

.00

sec
sec
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
sec
SecC
SecC
SecC
secC
sec
secC
Sec
sec
sec
secC
sec
SecC

'
el el e el e el i el e el el el e e e el
'

Transfer

13
L
g b |
.11
A |
1
aidd:
211
.11
1A
add:
.11
b |
A
AL
i b
S
~1
Al
o1l
b K
~Ad
A
«11
Ralik
A
A
«11
¥ b &

GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes
GBytes

GBytes

Transfer

22:3
22.3

GBytes
GBytes

|

"Host: h1"

#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.0.2, port 5201

Bitrate

g.
.56
=57
.56
.56
<27
.56
<7
.56
.79
.56
.56
.56
+95
274
.56
.56
.56
D7
.56
.56
.56
.56
.56
ST
.56
.56
.56
.56

O WOWWWWWOWWWWOWOLWYWOWOLOLOWOHOWOWOWWOOOO

9.56 Gbits/sec

69

Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec

Bitrate
9.56 Gbits/sec

port 5201

Retr

315
45
0
135
0
90
0

45
45
90

90
0

90
45

Cwnd
1.29
1.72
2.47
703
.90
15
12
.20
B b
.83
.27
730
782
1.93
824
735
1.65
724
1.08
878
321
1.80
2.:53
3.09
1004
1022
1.09
1.49
1014

MBytes
MBytes
MBytes
KBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
KBytes
KBytes
MBytes
KBytes
KBytes
MBytes
KBytes
MBytes
KBytes
KBytes
MBytes
MBytes
MBytes
KBytes
KBytes
MBytes
MBytes
KBytes

sender
receiver

Figure 28. Running iPerf3 client on host h1.

(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)
(omitted)

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1890

(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

5.1.2 Hamilton TCP (HTCP)

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=htcp

Page 19

Lab 6: Understanding Traditional TCP Congestion Control

"Host: h1"

min-pc:~ sctl -w net.ipv4.tcp congestion control=htcp

.tcp _congestion control = htcp
min-pc:

Figure 29. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

Figure 30. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:
iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: h1"

root@dmin-pc:~# iperf3 -c 10.0.0.2 -t 20 -0 10

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 34494 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec .13 GBytes 9.69 Gbits/sec 158 4.16 MBytes
15] .00-2.00 sec .11 GBytes .57 Gbits/sec 45 2.49 MBytes
15] .00-3.00 sec .11 GBytes .56 Gbits/sec 90 1.45 MBytes omitted
15] .00-4.00 sec .11 GBytes .56 Gbits/sec 225 956 KBytes omitted

(omitted)
()
()
()
15] .00-5.00 sec .11 GBytes .57 Gbits/sec 135 713 KBytes (omitted)
()
()
()
()
()

omitted

[

[

[

[

[

[15] .00-6.00 sec .11 GBytes .56 Gbits/sec 0 .85 MBytes omitted
[-15] .00-7.00 sec .11 GBytes .56 Gbits/sec 0 .54 MBytes omitted
[215] .00-8.00 sec .11 GBytes .57 Gbits/sec 90 .27 MBytes omitted
[=15] .00-9.00 sec .11 GBytes .56 Gbits/sec 90 .44 MBytes omitted
[15] .00-10.00 sec .11 GBytes .56 Gbits/sec 45 .68 MBytes omitted
[-15] .00-1.00 sec .11 GBytes .56 Gbits/sec 45 .38 MBytes

[5] .00-2.00 sec .11 GBytes .56 Gbits/sec 90 .61 MBytes

[15] .00-3.00 sec .11 GBytes .56 Gbits/sec 45 .43 MBytes

[15] .00-4.00 sec .11 GBytes .56 Gbits/sec 45 .40 MBytes

[:15] .00-5.00 sec .11 GBytes .56 Gbits/sec 45 .77 MBytes

[A5] .00-6.00 sec .11 GBytes .56 Gbits/sec 781 KBytes

[15] .00-7.00 sec .11 GBytes .56 Gbits/sec 1.51 MBytes
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

o e e e e e e N

15] .00-8.00 sec .11 GBytes 56 Gbits/sec 2.30 MBytes
.57 Gbits/sec 2.89 MBytes
.56 Gbits/sec 1.14 MBytes
.56 Gbits/sec 1.03 MBytes
56 Gbits/sec - 696 KBytes
.55 Gbits/sec 1.26 MBytes
.56 Gbits/sec 621 KBytes
56 Gbits/sec 1.81 MBytes
56 Gbits/sec 1.90 MBytes
.56 Gbits/sec 622 KBytes
.56 Gbits/sec 1.81 MBytes
15] .00-19.00 sec .11 GBytes 56 Gbits/sec 1.14 MBytes
15] .00-20.00 sec .11 GBytes .56 Gbits/sec 1.51 MBytes

ONOUVAEWNFHFOOUONOU LS WN -

15] .00-9.00 sec
15] .00-10.00 sec
15] .00-11.00 sec
15] .00-12.00 sec
15] .00-13.00 sec
15] .00-14.00 sec
15] .00-15.00 sec
15] .00-16.00 sec
15] .00-17.00 sec
15] .00-18.00 sec

.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes
.11 GBytes

e e e e e e I e S S = S S S S S S S S S S S S
OO OLOWOUWLWOLOWOLOWODOWPYWOOVOWOWWOWWOUWLWWOWWWLWWLWLWWLWWWWW

—

ID] Interval Transfer Bfirate
15] 0.00-20.00 22.3 GBytes |9.56 Gbits/sec sender
15] 0.00-20.04 22.3 GBytes |9.56 Gbits/sec receiver
iperf Done.
root@admin-pc:~# |J

Figure 31. Running iPerf3 client on host h1l.

Page 20

Lab 6: Understanding Traditional TCP Congestion Control

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1789
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.
5.1.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipvé4.tcp congestion control=cubic

"Host: h1"

root@admin-pc ctl -w net.ipv4.tcp congestion control=cubic

net. 4.1tc 1on control = cubic
root@admin-pc:~3

Figure 32. Changing TCP congestion control algorithm to on host h1l.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

“Host: h2"

Figure 33. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host hl’s terminal:

iperf3 -c 10.0.0.2 -t 20 -0 10

Page 21

Lab 6: Understanding Traditional TCP Congestion Control

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.0.2, port 5201
[15] local 10.0.0.1 port 34498 connected to 10.0.0.2 port 5201

ID] Interval Transfer Bitrate Retr Cwnd

0.00-1.00 sec 1.13 GBytes 9.69 Gbits/sec 135 5.90 MBytes

.00-2.00 sec .11 GBytes .56 Gbits/sec 45 4.42 MBytes
.00-3.00 sec .11 GBytes .56 Gbits/sec 135 1.76 MBytes omitted
.00-4.00 sec .11 GBytes .56 Gbits/sec 180 1.15 MBytes omitted

(omitted)
()
()
()
.00-5.00 sec .11 GBytes .56 Gbits/sec 45 1.43 MBytes (omitted)
()
()
()
()

omitted

.00-6.00 sec .11 GBytes 56 Gbits/sec 135 776 KBytes omitted
.00-7.00 sec .11 GBytes .56 Gbits/sec 0 1.48 MBytes omitted
.00-8.00 sec .11 GBytes 56 Gbits/sec 135 1.08 MBytes omitted
.00-9.00 sec .11 GBytes .57 Gbits/sec 90 1024 KBytes omitted
.00-1.00 sec .11 GBytes 78 Gbits/sec 0 1.84 MBytes
.00-2.00 sec .11 GBytes .56 Gbits/sec 180 1.07 MBytes
.00-3.00 sec .11 GBytes 56 Gbits/sec 135 970 KBytes
.00-4.00 sec .11 GBytes .57 Gbits/sec 135 1.05 MBytes
.00-5.00 sec .11 GBytes 56 Gbits/sec 180 1012 KBytes
.00-6.00 sec .11 GBytes .56 Gbits/sec 45 1.25 MBytes
.00-7.00 sec .11 GBytes .57 Gbits/sec 90 1.13 MBytes
.00-8.00 sec .11 GBytes .56 Gbits/sec 1.22 MBytes
.00-9.00 sec .11 GBytes .56 Gbits/sec 962 KBytes
.00-10.00 sec .11 GBytes .56 Gbits/sec .15 MBytes
10.00-11.00 sec .11 GBytes .57 Gbits/sec .06 MBytes
11.00-12.00 sec .11 GBytes .56 Gbits/sec .22 MBytes
12.00-13.00 sec .11 GBytes .56 Gbits/sec .40 MBytes
13.00-14.00 sec 11 GBytes 56 Gbits/sec .08 MBytes
14.00-15.00 sec .11 GBytes .56 Gbits/sec .30 MBytes
15.00-16.00 sec .11 GBytes .56 Gbits/sec .46 MBytes
16.00-17.00 sec .11 GBytes .56 Gbits/sec .17 MBytes
17.00-18.00 sec .11 GBytes .56 Gbits/sec 984 KBytes
18.00-19.00 sec .11 GBytes .56 Gbits/sec - 1.33 MBytes
19.00-20.00 sec .11 GBytes .56 Gbits/sec 1.87 MBytes

1
2
3
4
5
6
7
8
1
1
2
3
4
5
6
7
8

o

)
el i T I R e e R e S R e e e i s I = I SR =S R SRy =)
= b e e

OV VOWOWOVOVOVOVOWOWOOOWOWWOWWOWWOWOHROOLOLOOOOWY

Interval Transfer [Bitrate
0.00-20.00 22.3 GBytes |9.56 Gbits/secI sender
0.00-20.04 22.3 GBytes |9.56 Gbits/sec| receiver

root@admin-pc:~# ||
Figure 34. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1845
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1l and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. On the client’s terminal, run the following command to modify the previous rule
to include 30ms delay. When prompted for a password, type and hit enter.

sudo tc gdisc change dev sl-eth2 root handle 1: netem loss 0.01% delay 30ms

Page 22

Lab 6: Understanding Traditional TCP Congestion Control

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ [
admin@admin-pc:~$|sudo tc qdisc ch

delay 30ms

admin@admin-pc:~$

Figure 35. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host hl’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem="10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem="10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipvé4.tcp rmem=’10240 87380 150000000"

sysctl -w net.ipvé4.tcp wmem='10240 87380 150000000’

"Host: hl1"

cp rmem='10240 3
00

Figure 36. Modifying the TCP buffer size on host h1.
Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following

commands: sysctl -w net.ipv4.tcp_rmem="10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem="10,240 87,380 150,000,000’

"Host: h2"

Figure 37. Modifying the TCP buffer size on host h2.

521 TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

"Host: h1"

tl -w net.ipv4.tcp congestion control=reno
tion control = reno

Figure 38. Changing TCP congestion control algorithm to on host h1.

Page 23

Lab 6: Understanding Traditional TCP Congestion Control
Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

"Host: h2"

Figure 39. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The [-0 option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: hl1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 47044 connected to 10.0.0.2 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

[5] 0.00-1.00 sec 527 MBytes 4.42 Gbits/sec 5134 19.5 MBytes (omitted)
[:15] .00-2.00 sec 352 MBytes .96 Gbits/sec ® 10.0 MBytes (omitted)
[15] .00-3.00 sec 335 MBytes .81 Gbits/sec 10.1 MBytes (omitted)
[15] .00-4.00 sec 336 MBytes .82 Gbits/sec 10.1 MBytes (omitted
[15] .00-5.00 sec 314 MBytes .63 Gbits/sec 5.08 MBytes (omitted
[15] .00-6.00 sec 145 MBytes .22 Gbits/sec .12 MBytes (omitted
[15] .00-7.00 sec 134 MBytes .12 Gbits/sec .16 MBytes (omitted
[15] .00-8.00 sec 56.2 MBytes 472 Mbits/sec .74 MBytes

5] .00-9.00 sec 57.5 MBytes 482 Mbits/sec .78 MBytes

[::15:] .00-10.00 sec 58.8 MBytes 493 Mbits/sec .83 MBytes
[
[
[
[
[
[
[
[
[
[

O ~NO WL B WN
o
(<]

[Xe]

15] 10.00-11.00 sec 61.2 MBytes 514 Mbits/sec .87 MBytes
MBytes 514 Mbits/sec .92 MBytes
MBytes 535 Mbits/sec .96 MBytes
.01 MBytes
.05 MBytes
.10 MBytes
.14 MBytes
.19 MBytes
.14 MBytes
.18 MBytes

15] 11.00-12.00 sec 61.
15] 12.00-13.00 sec 63.

15] 14.00-15.00 sec 66.
15] 15.00-16.00 sec 67.
15] 16.00-17.00 sec 70.
15] 17.00-18.00 sec 71.
15] 18.00-19.00 sec 40.
19.00-20.00 sec 37.

MBytes 556 Mbits/sec
MBytes 566 Mbits/sec
MBytes 587 Mbits/sec
MBytes 598 Mbits/sec
MBytes 335 Mbits/sec
MBytes 315 Mbits/sec

o
[l NN oo NoNoNoNoNo oMo RNo Moo RS ol

o N NNNNRF -0 W,

5
8
2
2
8
15] 13.00-14.00 sec 65.0 MBytes 545 Mbits/sec
2
5
0
2
0
5

Interval Transfer Bitrate l Retr
0.00-20.00 1.10 GBytes | 472 Mbits/sec| 45 sender
0.00-20.04 1.10 GBytes | 472 Mbits/sec| receiver
iperf Done.
root@admin-pc:~# |j

Figure 40. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 472 Mbps (sender) and 472 Mbps (receiver), and the number of retransmissions is 45.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see

the throughput results in the server side too.

5.2.2 Hamilton TCP (HTCP)

Page 24

Lab 6: Understanding Traditional TCP Congestion Control

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=htcp

"Host: h1"

root@admin-pc:~#|sysctl -w net.ipv4.tcp congestion control=htcp

net.ipv4.tcp congestion control = htcp

Figure 41. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

"Host: h2"

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -0 10

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.6.2, port 5201
0.0.1 port 47052 connected to 10.0.0.2 port 5201

[

15] local 10.
ID] Interval
15] 0.00-1.
15] .00-
15] .00-
15] .00-
15] .00-
15] 00-
15] .00-
15] 00-
15] .00-
15] 00-
15] .00-
15] .00-
15] .00-
15] .00-
151 00-
15] .00-
15] .00-
15] .00-
15] .00-
15] 10.00-
15] 11.00-
15] 12.00-
15] 13.00-
15] 14.00-
15] 15.00-
15] 16.00-
15] 17.00-
15] 18.00-
15] 19.00-
ID] Interval
15]
15]

ONOUVHEWNRMEFEMFEONOU S WN M
WCONOULREWNEMROODNOOUSE WN

w0
el
NH® -

-
w

N b e e
O WoONO WU,

0.00-20.
0.00-20.

00

.00
.00
.00
.00
.00
.00

00

.00

00

.00
.00
.00
.00

00

.00
.00

00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

00
04

sec
sec
secC
sec
Sec
sec
sec
sec
SecC
sec
sec
sec
sec
sec
SecC
sec
sec
Sec
sec
sec
SecC
SecC
sec
sec
SecC
sec
secC
SecC
sec

Bitrate
4.63 Gbits/sec
1.42 Gbits/sec
923 Mbits/sec
514 Mbits/sec
336 Mbits/sec
252 Mbits/sec
262 Mbits/sec
304 Mbits/sec
210 Mbits/sec
94.4 Mbits/sec
210 Mbits/sec
252 Mbits/sec
294 Mbits/sec
357 Mbits/sec
346 Mbits/sec
199 Mbits/sec
377 Mbits/sec
514 Mbits/sec
619 Mbits/sec
703 Mbits/sec
398 Mbits/sec
409 Mbits/sec
409 Mbits/sec
304 Mbits/sec
220 Mbits/sec
241 Mbits/sec
252 Mbits/sec
33.8 MBytes 283 Mbits/sec
36.2 MBytes 304 Mbits/sec
[Bitrate
344 Mbits/sec

Transfer
552 MBytes
169 MBytes
110 MBytes

61.2 MBytes

40.0 MBytes

30.0 MBytes

31.2 MBytes

36.2 MBytes

25.0 MBytes

22.5 MBytes

25.0 MBytes

30.0 MBytes

35.0 MBytes

42.5 MBytes

41.2 MBytes

23.8 MBytes

45.0 MBytes

61.2 MBytes

73.8 MBytes

83.8 MBytes

47.5 MBytes

48.8 MBytes

48.8 MBytes

36.2 MBytes

26.2 MBytes

28.8 MBytes

30.0 MBytes

N

0
0
2
P
0
)
0
0
0
5
P
8
0
2
8
8
5
8
8
p
P
8
0
8
P

Transfer
820 MBytes
821 MBytes

Retr

344 Mbits/sec

Cwnd
10335 13.1 MBytes
90 3.31 MBytes
® 3.35 MBytes
45 1.71 MBytes
45 909 KBytes
0 950 KBytes (omitted
1.03 MBytes (omitted)
1.17 MBytes (omitted)
642 KBytes (omitted)
731 KBytes
829 KBytes
.01 MBytes
.20 MBytes
.40 MBytes
.50 MBytes
.59 MBytes
.71 MBytes
.07 MBytes
.39 MBytes
.44 MBytes
.47 MBytes
.51 MBytes
.55 MBytes
826 KBytes
864 KBytes
909 KBytes
988 KBytes
1.06 MBytes
1.21 MBytes

(omitted)
(omitted)
(omitted)
(omitted)
(omitted)

)

()

[cNoNoNoNoNVNoNoNoNoNoNoNoNoNoNoNoNoNoNo RV
o b e NN R R e e e e

sender
receiver

Figure 43. Running iPerf3 client on host h1l.

Page 25

Lab 6: Understanding Traditional TCP Congestion Control

The figure above shows the iPerf3 test output report. The average achieved throughput
is 344 Mbps (sender) and 344 Mbps (receiver), and the number of retransmissions is 93.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=cubic

"Host: h1"

tl -w net.ipv4.tcp congestion control=cubic

on control = cubic

Figure 44. Changing TCP congestion control algorithm to on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:
iperf3 -s

"Host: h2"

Figure 45. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -0 10

Page 26

Lab 6: Understanding Traditional TCP Congestion Control

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t 20 -0 10
Connecting to host 10.0.0.2, port 5201
[15] local 10.0.0.1 port 47040 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15 0.00-1.00 sec 655 MBytes .49 Gbits/sec 24574 23.4 MBytes (omitted)
15 .00-2.00 sec 705 MBytes .91 Gbits/sec 45 16.9 MBytes (omitted)
15 .00-3.00 sec 564 MBytes .73 Gbits/sec 0 17.4 MBytes (omitted)
15 .00-4.00 sec 450 MBytes .78 Gbits/sec 45 12.6 MBytes (omitted)
15 .00-5.00 sec 348 MBytes .92 Gbits/sec 45 9.13 MBytes (omitted)
15 .00-6.00 sec 296 MBytes .49 Gbits/sec 45 .63 MBytes (omitted)
(
(
(

w

]
]
]
]
]
]
]
15] .00-7.00 sec 224 MBytes .88 Gbits/sec 0 .91 MBytes omitted)
15] .00-8.00 sec 229 MBytes .92 Gbits/sec] .15 MBytes omitted)
15] .00-9.00 sec 176 MBytes .48 Gbits/sec .24 MBytes omitted)

]

]

]

]

]

]

]

]

]

NN WS WD

15 .00-1.00 sec 182 MBytes 765 Mbits/sec .61 MBytes
.00-2.00 sec 172 MBytes .45 Gbits/sec
.00-3.00 sec 136 MBytes .14 Gbits/sec
.00-4.00 sec 145 MBytes .22 Gbits/sec
.00-5.00 sec 146 MBytes .23 Gbits/sec
.00-6.00 sec 146 MBytes .23 Gbits/sec
.00-7.00 sec 110 MBytes 923 Mbits/sec
.00-8.00 sec 116 MBytes 975 Mbits/sec
.00-9.00 sec 119 MBytes 996 Mbits/sec
.00-10.00 sec 122 MBytes 1.03 Gbits/sec
.00-11.00 sec 125 MBytes 1.05 Gbits/sec
.00-12.00 sec 96.2 MBytes 807 Mbits/sec
.00-11.00 sec 125 MBytes 1.05 Gbits/sec
.00-12.00 sec 96.2 MBytes 807 Mbits/sec
.00-13.00 sec 82.5 MBytes 692 Mbits/sec
.00-14.00 sec 70.0 MBytes 587 Mbits/sec
.00-15.00 sec 72.5 MBytes 608 Mbits/sec
.00-16.00 sec 76.2 MBytes 640 Mbits/sec
.00-17.00 sec 77.5 MBytes 650 Mbits/sec
.00-18.00 sec 80.0 MBytes 671 Mbits/sec
.00-19.00 sec 80.0 MBytes 671 Mbits/sec
.00-20.00 sec 81.2 MBytes 681 Mbits/sec

15
15
15
15
15

.05 MBytes
.24 MBytes
.40 MBytes
.53 MBytes
.25 MBytes
.42 MBytes
.57 MBytes
.68 MBytes
.76 MBytes
.83 MBytes
.82 MBytes
.83 MBytes
.82 MBytes
.08 MBytes
.19 MBytes
.28 MBytes
.35 MBytes
.40 MBytes
.43 MBytes
.45 MBytes
.45 MBytes

O NOOUVEWNEHERMEONOUESE WN =

N
NNNNNNNNNWNWDWODWDWDWWSAAAERPULLLIO O

[oloNoNoNoNoNCRY R NORENoNCRo NN o

NeOoULNULOo WM

Interval Transfer Bitrate
0.00-20.00 sec 2.19 GBytes 938 Mbits/sec sender
0.00-20.04 sec 2.19 GBytes 939 Mbits/sec receiver
iperf Done.
root@admin-pc:~# ||

Figure 46. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 938 Mbps (sender) and 939 Mbps (receiver), and the number of retransmissions is 180.

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux
terminal.
References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

Page 27

Lab 6: Understanding Traditional TCP Congestion Control

2. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

3. E.Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

4. S. Ha, ., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

5. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

6. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

7. System information variables — sysctl (7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

Page 28

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Problem 3: Minimizing the Unfairness

Document Version: 08-22-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Problem 3: Minimizing the Unfairness

Contents

1 Problem desCription. ... s e e e s e e e s raaaee e e
1.1 CredeNtialS ..oveee e e e e e e e e e areeeens
2 Setting the eNVIFONMENT.......iiiiiiee e e e e e s bae e e s ssaaeeeenes

Problem 3: Minimizing the Unfairness

1 Problem

description

When host h1 and host h2 are transferring data simultaneously, the fairness index is low.
Find the issue and provide a solution that guarantees a fairness index greater than 0.9.
Additionally, ensure that the aggregate throughput is greater than 90 Mbps.

Senders

hl

h2

‘(\

sl-eth2 s2-ethl

100 Mbps
40ms

1.1 Credentials

Receivers

h3

h4

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type fpassword|.

Problem 3: Minimizing the Unfairness

¥

Terminal

Miniedit

Step 2. Load the topology located at /home/admin/NTP_Problems/Problem3/.

Edit Run Help
New

Open

i

Export Level 2 Script

Directory: |/homeladmin/NTP_ProbIemslProbIem3| 4| ﬁbl

Bltopology.mn

Quit

[4 1]

File name: \topology.mn | gpen|

Files of type: Mininet Topology (*.mn) “I Cancel ’

-m%

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

Run

il < —

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

B MiniEdit

Problem 3: Minimizing the Unfairness

Step 5. Navigate into the following directory ~/NTP_Problems/Problem3/ by issuing the
following command:

cd ~/NTP_Problems/Problem3/

admin@admin-pc: ~/NTP_Problems/Problem3

File Actions Edit View Help
admin@admin-pc: ~/NTP_Problems/Problem3

admin@admin-pc:

admin@admin-pc:

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

admin@admin-pc: ~/NTP_Problems/Problem3

File Actions Edit View Help

admin@admin-pc: ~/NTP_Problems/Problem3

admin@admin-pc:
[sudo] p: ord for admin:

admin@admin-pc:

The script sets the bottleneck link to 100 Mbps and the latency to 40ms. Now, you can
start solving the problem.

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 11: Router’s Buffer Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 11: Router’s Buffer Size

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
R 101 o Yo [0 Tt d o o IO PP PUPPPUPUPPR 3
1.1 Introduction tO SWItCRING ...cccvciiiiiiiiie e e 4
O (o TU) T T o 11 (=Tt (<SSP 4
1.3 Where does packet 10SS OCCUI?.....ouiiiiiiiiiiie ettt 5
R 10 i LT R PRSP 5
P IF- | o I o] o Yo Lo} -1V 20U PP PUPPPRTPPR 6
2.1 Starting host hl, host h2, hosth3 and host h4 ..o, 8
2.2 Modifying hosts’ BUfer Size.......ueeeieiiiieeece e 9
2.3 Emulating high-1atency WAN ... e e 12
P S =Y\] o T=AoloT o | =Tt { o] o [N 13
3 Testing throughput with 100-MTU switch’s buffer Sizeccocceeeeiieeiiecieeeccnee. 14
3.1 Setting switch S1’s buffer size t0 100-MTUcccceeeeiiiiieiiieiiiee e 14
70 2 @ = GT o 1[PPI 14
70 T @ = 0= oV TP 16
0 0 o == T TP 18
4 Testing throughput with one BDP switch’s buffer size.........cccooovveeieiiieeiccieece, 20
4.1 Changing switch S1’s buffer size to 0N@ BDPccoccvviviieiiiieieeieee e, 20
4.2 TCP CUDIC .ttt iiiieiiiiie ettt ettt ettt e st e st e e sab e s sabeeesabeessseessneesneeeens 21
I T 1 1 (=T o T PSPPSRI 23
O 1] 2 2 PRSPPI 25
5 Emulating high-latency WAN with packet [0SS.......cccovveeieiiieiiiiiireeeeeec e, 27
5.1 TCP CUDIC cuutiiiiitectie ettt ettt ettt e s e s saneesnnees 27
5.2 TCP RENO ettt ettt e e e e e e e e s et e e e e e e e s reneeeeens 29
5.3 TCP BBR ettt ettt ettt et sttt sab e e nare e s nreas 31
RETEIENCES ...ttt st e s bt e s bt e e s bt e e sbeeesanee 33

Page 2

Lab 11: Router’s Buffer Size

Overview

This lab reviews the internal architecture of routers and switches. These devices are
essential in high-speed networks, as they must be capable of absorbing transient packet
bursts generated by large flows and thus avoid packet loss. The lab describes the buffer
requirements to absorb such traffic fluctuations, which are then validated by
experimental results.

Objectives
By the end of this lab, students should be able to:

1. Describe the internal architecture of routers and switches.

2. Understand the importance of buffers of routers and switches to prevent packet
loss.

3. Conduct experiments with routers and switches of variable buffer sizes.

4. Calculate the buffer size required by routers and switches to absorb transient
bursts.

5. Use experimental results to draw conclusions and make appropriate decision
related to routers’ and switches’ buffers.

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing throughput with 100*MTU switch’s buffer size.
4. Section 4: Testing throughput with one BDP switch’s buffer size.
5. Section 5: Emulating high-latency WAN with packet loss.

1 Introduction

Page 3

Lab 11: Router’s Buffer Size

1.1 Introduction to switching

Two essential functions performed by routers are routing and forwarding. Routing refers
to the determination of the route taken by packets. Forwarding refers to the switching of
a packet from the input port to the appropriate output port. The term switching is also
used interchangeably with forwarding. Traditional routing approaches such as static and
dynamic routing (e.g., Open Shortest Path First (OSPF)!, BGP?) are used in the
implementation of high-speed networks, e.g., Science DMZs. Routing events, such as
routing table updates, occur at the millisecond, second, or minute timescale, and best
practices used in regular enterprise networks are applicable to high-speed networks as
well. These functions are sometimes collectively referred to as the control plane and are
usually implemented in software and execute on the routing processor (typically a
traditional CPU), see Figure 1. On the other hand, with transmission rates of 10 Gbps and
above, the forwarding operations related to moving packets from input to output
interfaces at very high speed must occur at the nanosecond timescale. Thus, forwarding
operations, collectively referred to as forwarding or data plane, are executed in
specialized hardware and optimized for performance.

----------- | RAM }{ CPU ‘ Control plane
Forwarding plane
Inputs Fabric Outputs
e
iP1 ?Lookup Buffer® =D = Buffer 4 oP1
+ Mgmt + Mgmt <

~ EEW |

Buffer «

i - H Buffer4
iP2 iLookup \igmt &, = = Mgmt + oP2

FT: Forwarding table
NP: Network processor

Figure 1. A generic router architecture.

Since forwarding functionality is common in both routers and switches, this lab reviews
the architecture and forwarding-related attributes of switches. These attributes are
applicable to routers as well; thus, for this lab, the terms switch and router are used
interchangeably.

1.2 Router architecture
Consider the generic router architecture that is shown in Figure 1. Modern routers may
have a network processor (NP) and a table derived from the routing table in each port,

which is referred to as the forwarding table (FT) or forwarding information base (FIB). The
router in Figure 1 has two input ports, iP1 and iP2, with their respective queues. iP1 has

Page 4

Lab 11: Router’s Buffer Size

three packets in its queue, which will be forwarded to output ports oP1 (green packets)
and oP2 (blue packet) by the fabric. A switch fabric moves packets from input to output
ports. Switch fabric designs are shared memory, crossbar network, and bus. In shared
memory switches, packets are written into a memory location by an input port and then
read from that memory location by the output port. Crossbar switches implement a
matrix of pathways that can be configured to connect any input port to any output port.
Bus switches use a shared bus to move packets from the input ports to the output ports3.

Router queues/buffers absorb traffic fluctuations. Even in the absence of congestion,
fluctuations are present, resulting mostly from coincident traffic bursts®. Consider an
input buffer implemented as a first-in first-out in the router of Figure 1. As iP1 and iP2
both have one packet to be forwarded to oP1 at the front of the buffer, only one of them,
say the packet at iP2, will be forwarded to oP1. The consequence of this is that not only
the first packet must wait at iP1. Also, the second packet that is queued at iP1 must wait,
even though there is no contention for oP2. This phenomenon is known as Head-Of-Line
(HOL) blocking®. To avoid HOL blocking, many switches use output buffering, a mixture of
internal and output buffering, or techniques emulating output buffering such as Virtual
Output Queueing (VOQ).

1.3 Where does packet loss occur?

Packet queues may form at both the input ports and the output ports. The location and
extent of queueing (either at the input port queues or the output port queues) will
depend on the traffic load, the relative speed of the switching fabric, and the line speed®.
However, in modern switches with large switching rate capability, queues are commonly
formed at output or transmission ports. A main contributing factor is the coincident
arrivals of traffic bursts from different input ports that must be forwarded to the same
output port. If transmission rates of input and output ports are the same, then packets
from coincident arrivals must be momentarily buffered.

Note, however, that buffers will only prevent packet losses in case of transient traffic
bursts. If those were not transient but permanent, such as approximately constant bit
rates from large file transfers, the aggregate rate of input ports will surpass the rate of
the output port. Thus, the output buffer would be permanently full, and the router would
drop packets.

Packet loss occurs when a router drops the packet. It is the queues within a router, where
such packets are dropped and lost.

1.4 Buffer size

From the above observation, a key question is how large should buffers be to absorb the
fluctuations generated by TCP flows. The rule of thumb has been that the amount of
buffering (in bits) in a router’s port should equal the average Round-Trip Time (RTT) (in

seconds) multiplied by the capacity C (in bits per seconds) of the port®”.

Page 5

Lab 11: Router’s Buffer Size

Router’s buffer size = C - RTT [bits] (single / small number of flows)

Note that RTT is the average of individual RTTs. For example, if there are five TCP flows
sharing a router’s link (port), the RTT used in the equation above is the average value of
the five flows, and the capacity C is the router’s port capacity. E.g., for 250 millisecond
connections and a 10 Gbps port, the router’s buffer size equals 2.5 Gbits. The above
guantity is a conservative value that can be used in high-throughput high-latency
networks.

In 2004, Appenzeller et al.® presented a study that suggests that when there is a large
number of TCP flows passing through a link, say N (e.g., hundreds, thousands or more),
the amount of buffering can be reduced to:

Router’s buffer size = % [bits] (large number of flows N)

This result is observed when there is no dominant flow and the router aggregates
hundreds, thousands, or more flows. The observed effect is that the fluctuation of the
sum of congestion windows are smoothed, and the buffer size at an output port can be
reduced to the expression given above. Note that N can be very large for campus and
backbone networks, and the reduction in needed buffer size can become considerable.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hi h2

h1-ethO h2-ethO

s2-eth2

S

s2-eth3

10 Gbps

sl-ethl s2-ethl
sl-eth2

h3-eth0

10.0.0.3 10.0.0.4
Figure 2. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 6

Lab 11: Router’s Buffer Size

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 11.mn topology file and click on Open.

Edit Run Help
New
|0pen|
Export Level 2 Script
Directory: /home/admin/lab_topologies —-’ m
Quit
[JLab2.mn [£JLab8.mn [Lab14.mn [5] Lab 20.mn

[l Lab3.mn [£] Lab9.mn [] Lab 15.mn
[[] Lab4.mn [Z] Lab 10.mn [-] Lab 16.mn
= [£] Lab 5.mn DD Lab 17.mn
] Lab6.mn [Z] Lab 12.mn [} Lab 18.mn
[[] Lab 7.mn [5] Lab 13.mn [] Lab 19.mn

4] I

File name: |Lab 11.mn | Open |

Files of type: Mininet Topology (*.mn) —x‘ Cancel |

%

i
\

Figure 4. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host h1l and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Run

Stop (£

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 7

Lab 11: Router’s Buffer Size
2.1 Starting host hl, host h2, host h3 and host h4

Step 1. Hold the right-click on host hl and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

e MiniEdit

File Edit Run Help

Host Options | h2
= ‘

51 52

‘ ha

Figure 6. Opening a terminal on host h1l.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

root@admin-p # |ping 10.0.0

bytes of data.

s from 6
from
from
from

s Trom

s from

Figure 7. Connectivity test using command.

Step 4. Test connectivity between the end-hosts using the command. On host h3,
type the command [ping 10.0.0.4]. This command tests the connectivity between host
h3 and host h4. To stop the test, press [ctrl+cd The figure below shows a successful
connectivity test.

Page 8

Lab 11: Router’s Buffer Size

"Host: h3"

root@admin-pc:~#|ping 10.0.0.4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
bytes from 10.0.0.4: icmp seq=1 ttl=64 time=0.

4 bytes from 10.0.0.4: icmp seq=2 ttl=64 time=0.

4 bytes from 10.0.0.4: icmp seq=3 ttl=64 time=0.

4 bytes from 10.0.0.4: icmp seq=4 ttl=64 time=0.

bytes from 10.0.0.4: icmp seq=5 ttl=64 time=0.
4 bytes from 10.0.0.4: icmp seq=6 ttl=64 time=0.

- 10.0.0.4 ping statistics
6 packets transmitted, 6 recelved 0% packet loss, time 110ms
rtt min/avg/max/mdev = 0.061/0.071/0.089/0.012 ms
root@admin-pc:~#

Figure 8. Connectivity test using command.

2.2 Modifying hosts’ buffer size

The following tests the bandwidth is limited to 10 Gbps, and the RTT (delay or latency) is
20ms.

In order to have enough TCP buffer size, we will set the sending and receiving buffer
to5 - BDP in all hosts.

BW = 10,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 10,000,000,000 - 0.02 = 200,000,000 bits
= 25,000,000 bytes =~ 25 Mbytes

The send and receive buffer sizes should be set to 5 - BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes

BDP = 25 Mbytes = 25 - 10242 bytes = 26,214,400 bytes

5 - BDP = 5-26,214,400 bytes = 131,072,000 bytes

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host hl’s terminal type the

command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 131072000"

Page 9

Lab 11: Router’s Buffer Size

"Host: h1"
root@admin-pc:~#|sysctl -w net.ipv4.tcp rmem='10240 87380 131072000’

net.ipv4.tcp rmem = 10240 87380 131072000
root@admin-pc:~# |

Figure 9. Receive window change in[sysctl].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 131,072,000 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp wmem=’'10240 87380 131072000'

"Host: h1"
root@admin-pc:~# |sysctl -w net.ipv4.tcp rmem='10240 87380 131072000'

net.ipv4.tcp rmem = 10240 87380 131072000
root@admin-pc:~# Jj

Figure 10. Send window change in [sysct1].

Next, the same commands must be configured on host h2, host h3, and host h4.
Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

131,072,000 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 131072000’

"Host: h2"
root@admin-pc:~# |sysctl -w net.ipv4.tcp rmem='10240 87380 131072000’

net.ipv4.tcp rmem = 10240 87380 131072000
root@admin-pc:~# |

Figure 11. Receive window change in[sysct1].

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp wmem=’'10240 87380 131072000’

"Host: h2"
root@admin-pc:~#|sysctl -w net.ipv4.tcp wmem='10240 87380 131072000’

net.ipv4.tcp wmem = 10240 87380 131072000
root@admin-pc:~# [

Figure 12. Send window change in[sysct1].

Page 10

Lab 11: Router’s Buffer Size

Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipvé4.tcp rmem=’10240 87380 131072000'

"Host: h3"
root@admin-pc:~#|sysctl -w net.ipv4.tcp rmem='10240 87380 131072000’

net.ipv4.tcp rmem = 10240 87380 131072000
root@admin-pc:~# |

Figure 13. Receive window change in[sysctl]

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipvé4.tcp wmem='10240 87380 131072000’

"Host: h3"
root@admin-pc:~#|sysctl -w net.ipv4.tcp wmem='10240 87380 131072000’

net.ipv4.tcp wmem = 10240 87380 131072000
root@admin-pc:~# [

Figure 14. Send window change in [sysctl].

Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 131072000’

"Host: h4"
root@admin-pc:~#|sysctl -w net.ipv4.tcp rmem='10240 87380 131072000

net.ipv4.tcp rmem = 10240 87380 131072000
root@admin-pc:~# |

Figure 15. Receive window change in[sysctl]

Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp wmem=’'10240 87380 131072000’

"Host: h4"
root@admin-pc:~#|sysctl -w net.ipv4.tcp wmem='10240 87380 131072000’

net.ipv4.tcp wmem = 10240 87380 131072000
root@admin-pc:~# [

Figure 16. Send window change in [sysct1].

Page 11

Lab 11: Router’s Buffer Size

2.3 Emulating high-latency WAN
This section emulates a high-latency WAN. We will first emulate 20ms delay between
switches, setting 10ms delay on switch S1 and 10ms delay on switch S2, resulting in 20ms

of Round-Trip Time (RTT).

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

$_

Terminal

Miniedit

Figure 17. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password| and hit Enter. This command introduces 10ms delay to switch S1’s si1-ethl
interface.

sudo tc gdisc add dev sl-ethl root handle 1: netem delay 10ms

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ <)

admin@admin-pc:~5% |sudo tc
| 1 password for admi

admin@admin-pc:~5% I

Figure 18. Adding delay of 10ms to switch S1’s s1-ethl interface.
Step 3. Similarly, repeat again the previous step to set a 10ms delay to switch S2’s
interface. When prompted for a password, type and hit Enter. This command

introduces 10ms delay on switch S2’s s2-eth1 interface.

sudo tc gdisc add dev s2-ethl root handle 1: netem delay 10ms

admin@admin-pc: ~

File Actions Edit Vview Help

admin@admin-pc: ~ (]

ladmin@admin-pc:~S |

Figure 19. Adding delay of 10ms to switch S2’s s2-eth1 interface.

Page 12

Lab 11: Router’s Buffer Size

2.4 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seq=1 ttl=64 time=20.1
64 bytes from .0.0.2: icmp seq=2 ttl=64 time=20.1
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=20.1

64 bytes from .0.0.2: icmp seq=4 ttl=64 time=20.1

07 €

--- 10.0.0.2 ping statistics --

4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.096/20.110/20.135/0.101 ms
root@admin-pc:~#

Figure 20. Output of ping 10.0.0.2]command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.096, 20.110, 20.135, and 0.101 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h3, type jping 10.0.0.4]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, pressctri+d.

"Host: h3"

root@admin-pc:~#/ping 10.0.0.4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp seq=1 ttl=64 time=20.5

64 bytes from 10.0.0.4: icmp seq=2 ttl=64 time=20.1

64 bytes from 10.0.0.4: icmp seq=3 ttl=64 time=20.1
0.0.4: icmp seq=4 ttl=64 time=20.1

64 bytes from 10.
"

--- 10.0.0.4 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.094/20.212/20.529/0.252 ms
root@admin-pc:~# [

Figure 21. Output of ping 10.0.0.4]command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.094, 20.212, 20.529, and 0.252 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Page 13

Lab 11: Router’s Buffer Size

3 Testing throughput with 100-MTU switch’s buffer size

In this section, you are going to change the switch S1’s buffer size to 100-MTU and
emulate a 10 Gbps Wide Area Network (WAN) using the Token Bucket Filter ([tbf]). Then,
you will test the throughput between host h1l and host h2 while there is another TCP flow
between host h3 and host h4. On each test, you will modify the congestion control
algorithm in host h1, namely, cubic, reno and bbr. The congestion control algorithm will
still be cubic in host h3 for all tests. In this section, the MTU is 1600 bytes, thus the
limit value will be set to 100 - MTU = 160,000 bytes.

3.1 Setting switch S1’s buffer size to 100-MTU

Step 1. Apply rate limiting rule on switch S1’s si-ethl interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [catd: 10gbit
e [burst}: 5,000,000
o [[imit} 160,000

sudo tc gdisc add dev sl-ethl parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 160000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~
:~S$ |sudo tc qdisc add dev sl-ethl parent 1: handle 2: tbf rate 10gbit

admin@admin-pc:~$ |
Figure 22. Limiting rate to 10 Gbps and setting the buffer size to 100-MTU on switch S1’s interface.

3.2 TCP Cubic

The default congestion avoidance algorithm in the following test is cubic thus, there is
no need to specify it manually.

Step 1. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

root@admin-pc:~#|iperf3 -s

Figure 23. Starting iPerf3 server on host h2.

Page 14

Lab 11: Router’s Buffer Size

Step 2. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

root@admin-pc:~# |iperf3 -s

Server listening on 5201

Figure 24. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 3. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -t E'EJI

Figure 25. Typing iPerf3 client command on host h1.

Step 4. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

dadmin-pc:~# |iperf3 -c 10.0.0.4 -t 90f]

Figure 26. Typing iPerf3 client command on host h3.

Step 5. Press Enter to execute the commands, first in host hl terminal then, in host h3
terminal.

Page 15

Lab 11: Router’s Buffer Size

19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
ID]
19]
19]

s
74.
75:
76.
T
78.
79.
80.
81.

82

83.
84.
85.
86.
87.
88.
89.

0.
0.

Interval
00-90.
00-90.

00-74.
00-75.
00-76.
00-77.
00-78.
00-79.
00-80.
00-81.
00-82.
.00-83.
00-84.
00-85.
00-86.
00-87.
00-88.
00-89.
00-90.

iperf Done.

root@admin-pc:~# [j

00
04

14
14
14
7
8
8.
8
7

8.

L

i3
.9
4

.83
.64

95

.89
757

51
6

11.
13
16.
18.
a ki e~

8.

95

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

Transfer
927 MBytes
925 MBytes

"Host: h1"

119 Mbits/sec
125 Mbits/sec
121 Mbits/sec
.7 Mbits/sec
72.
5%
74.
65.
71.

65

8.76 MBytes

o2}

[+ M-Il oo NoNoNo e o« oRe B o R o)

Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec

Mbits/sec|
Mbits/sec|

Figure 27. Running iPerf3 client on host h1.

KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes

sender

receiver

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 86.4 Mbps (sender) and 86.1 Mbps (receiver), and the number of
retransmissions is 994. Host h3’s results are similar to the above, however we are just
focused on host h1’s results.

Step 6. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

3.3

TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

Note that host h3’s congestion control algorithm is cubic by default.

Figure 28. Changing TCP congestion control algorithm to in host h1.

"Host: h1"

ctl -w net.ipv4.tcp congestion control=reno

ion control =

reno

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Page 16

Lab 11: Router’s Buffer Size

"Host: h2"

Figure 29. Starting iPerf3 server on host h2.
Step 3. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

Figure 30. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h1"

2 -t o]

Figure 31. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# |iperf3 -c 10.0.0.4 -t E'EJI

Figure 32. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host hl terminal then, in host h3
terminal.

Page 17

Lab 11: Router’s Buffer Size

19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
ID]
19]
19]

735
74.
75.
76.
T
78.
19
80.
81.
82.
83.
84.
85.
86.
87.
88.
.00-90.

89

00-74.
00-75.
00-76.
00-77.
00-78.
00-79.
00-80.
00-81.
00-82.
00-83.
00-84.
00-85.
00-86.
00-87.
00-88.
00-89.

Interval

0.
0.

00-90.
00-90.

iperf Done.
root@admin-pc:~# |}

Figure 33. Running iPerf3 client on host h1.

8.75
7.50

10
11
10

.0
o2
.0

7.50
8.75
7.50

L,
10.
10.
11
10.

2
0
0
2
0

7.50
7.50
8.75

10

.0

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

Transfer
844 MBytes
840 MBytes

"Host: h1"

73.
62.
83.
94.
83.
62.
73.
62.
94.
83.
83.
94.
83.
62.
62.
73.
83.

Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec

78.7 Mbits/sec

78.3 Mbits/sec

W
QO OV ULDVWNNO VW

N N
(ol <R |

1129

KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes

sender
receiver

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 78.7 Mbps (sender) and 78.3 Mbps (receiver), and the number of
retransmissions is 1129. Host h3’s results are similar to the figure above, however we are
just focused on host h1’s results.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The

user can see the throughput results in the server side too.

3.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=bbr

Note that host h3’s congestion control algorithm is cubic by default.

root@admin-pc:~#

net
root@admin-pc:~# JJ

Figure 34. Changing TCP congestion control algorithm to in host h1.

vd.tcp co

"Host: h1"

ctl -w net.ipv4.tcp congestion control=bbr

on

control = bbr

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3

—-S

Page 18

Lab 11: Router’s Buffer Size

"Host: h2"

Figure 35. Starting iPerf3 server on host h2.
Step 3. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

Figure 36. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h1"

root@admin-pc:~#|iperf3 -c

Figure 37. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# |[iperf3 -c 10.0.0.4 -t 96f]

Figure 38. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Page 19

Lab 11: Router’s Buffer Size

"Host: h1"

.39 Gbits/sec 20.9 MBytes
.25 Gbits/sec 21.5 MBytes
.28 Gbits/sec ‘ 22.5 MBytes
.89 Gbits/sec 21.1 MBytes
.18 Gbits/sec 21.9 MBytes
.61 Gbits/sec 22.6 MBytes
.74 Gbits/sec 22.1 MBytes
.03 Gbits/sec 21.0 MBytes
.78 Gbits/sec 22.2 MBytes
.40 Gbits/sec 22.2 MBytes
.81 Gbits/sec 20.8 MBytes
.99 Gbits/sec 10.5 MBytes
.01 Gbits/sec 10.3 MBytes
.99 Gbits/sec 21.2 MBytes
.00 Gbits/sec 10.6 MBytes
.85 Gbits/sec 20.6 MBytes
.30 Gbits/sec 22.4 MBytes

73.00-74. 404 MBytes
74.00-75. 388 MBytes
75.00-76. 510 MBytes
76.00-77. 464 MBytes
77.00-78. 499 MBytes
78.00-79. 430 MBytes
79.00-80. 446 MBytes
80.00-81. 480 MBytes
81.00-82. 451 MBytes
82.00-83. 405 MBytes
83.00-84. 335 MBytes
84.00-85. 356 MBytes
85.00-86. 359 MBytes
86.00-87. 356 MBytes
87.00-88. 358 MBytes
88.00-89. 340 MBytes
89.00-90. 512 MBytes

3
<
4
3
4
3
3
4
3
3
P
P
3
2
3
2
4

Interval Transfer itrate
0.00-90. 36.4 GBytes | 3.48 Gbits/sec sender
0.00-90. 04 36.4 GBytes | 3.47 Gbits/sec receiver

iperf Done.
root@admin-pc:~# |

Figure 39. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 3.48 Gbps (sender) and 3.47 Gbps (receiver), and the number of
retransmissions is 75818. Note that the congestion control algorithm used in host h1l is
bbr and in host h3 is cubic.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4 Testing throughput with one BDP switch’s buffer size

In this section, you are going to change the switch S1 buffer size to one BDP (26,214,400)
using the Token Bucket Filter (tbf]). Then, you will test the throughput between host hl
and host h2 while there is another TCP flow between host h3 and host h4. On each test,
you will modify the congestion control algorithm in host h1l namely, cubic, reno and bbr.
The congestion control algorithm will still cubic in host 3 for all tests. In this section, the
limit value will be set to one BDP = 26,214,400 bytes.

4.1 Changing switch S1’s buffer size to one BDP
Step 1. Apply rate limiting rule on switch S1’s sI-ethl interface. In the client’s

terminal, type the command below. When prompted for a password, type and
hit Enter.

e [rate]: 10gbit

Page 20

Lab 11: Router’s Buffer Size

e [urst} 5,000,000
o [[imit] 26,214,400

sudo tc gdisc change dev sl-ethl parent 1: handle 2: tbf rate 10gbit burst
5000000 limit 26214400

admin@admin-pc: ~

File Actions Edit View

Help
admin@admin-pc: ~

admin@admin-pc:~$ |sudo t 1 add dev sl1-ethl parent 1: handle 2: tbf rate 10gbit
) L1]

Figure 40. Changing the buffer size to one BDP on switch S1’s s1-eth1 interface.

4.2 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=cubic

"Host: h1"

tl -w net.ipv4.tcp congestion control=cubic

tion control = cub

Figure 41. Changing TCP congestion control algorithm to in host h1.
Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

"Host: h2"

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Page 21

Lab 11: Router’s Buffer Size

"Host: h4"

Figure 43. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the

commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

root@admin-pc:~#

"Host: h1"
-c 10.0.08.2 -t 96}

Figure 44. Typing iPerf3 client command on host h1l.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

root@admin-pc:~#

"Host: h3"

-c 10.0.0.4 -t 90f]

Figure 45. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3

terminal.

19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]
19]

ID]
19]
19]

735
74.
75.
76.
77
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

0.

00-74.
00-75.
00-76.
00-77.
00-78.
00-79.
00-80.
00-81.
00-82.
00-83.
00-84.
00-85.
00-86.
00-87.
00-88.
00-89.
00-90.

Interval
00-90.
0.00-90.

iperf Done.
root@admin-pc:~# [

545
550
540
549
542
545
545
550
546
542
548
548
544
549
540
545
548

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

MBytes

Transfer

00 47.9
04 47.9

Figure 46. Running iPerf3 client on host h1.

GBytes
GBytes

“"Host: h1"

<57
.61
:53
60
55
.57
<57
61
.58
.55
<59
59
.56
.60
53
D7
.59

qeltrate i

|4.57
ﬂ4.57

Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec

Gbits/sec
Gbits/sec

|

[cNoNoNoNoRoNoNoNoNoNoNoNoNoNoNoNol

Retr
0

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

sender
receiver

Page 22

Lab 11: Router’s Buffer Size

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 4.57 Gbps (sender) and 4.57 Gbps (receiver), and the number of
retransmissions is 0. Note that the congestion avoidances algorithm used in host hl and
host h2 is cubic. Similar results are found in host h3 terminal.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.
4.3 TCP Reno

Step 1. In host hl’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipvé4.tcp congestion control=reno

"Host: h1"

-w net.ipv4.tcp congestion control=reno

stion control = reno

Figure 47. Changing TCP congestion control algorithm to in host h1l.
Note that host h3’s congestion control algorithm is cubic by default.
Step 2. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

root@admin-pc:~#|iperf3 -s

Server listening on 5201

Figure 48. Starting iPerf3 server on host h2.
Step 3. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

root@admin-pc:~# |iperf3 -s

Figure 49. Starting iPerf3 server on host h4.

Page 23

Lab 11: Router’s Buffer Size

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.8.2 -t 9@.

Figure 50. Typing iPerf3 client command on host h1l.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# [iperf3 -c 10.0.0.4 -t 90

Figure 51. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

"Host: h1"

.57 Gbits/sec
.65 Gbits/sec
.20 Gbits/sec
.11 Gbits/sec
.01 Gbits/sec
.94 Gbits/sec
.85 Gbits/sec
.91 Gbits/sec
.77 Gbits/sec
.24 Gbits/sec
.17 Gbits/sec
.17 Gbits/sec
.18 Gbits/sec
.14 Gbits/sec
.17 Gbits/sec
Gbits/sec
Gbits/sec

19] 73.00-74. 306 MBytes
19] 74.00-75. 316 MBytes
19] 75.00-76. 381 MBytes
19] 76.00-77. 371 MBytes
19] 77.00-78. 359 MBytes
19] 78.00-79. 351 MBytes
19] 79.00-80. 340 MBytes
19] 80.00-81. 228 MBytes
19] 81.00-82. 211 MBytes
19] 82.00-83. 268 MBytes

[MBytes
[

[

[

[

[

[

[

[

[

[19] 83.00-84. 259 MBytes
[

[

[

[

[

[

[

[

[

MBytes

MBytes

MBytes

MBytes
.7 MBytes
.7 MBytes
.88 MBytes
.93 MBytes
.99 MBytes
.05 MBytes
.11 MBytes
.17 MBytes
.22 MBytes
.28 MBytes
.34 MBytes
.39 MBytes

19] 84.00-85. 259 MBytes
19] 85.00-86. 260 MBytes
19] 86.00-87. 255 MBytes
19] 87.00-88. 259 MBytes
19] 88.00-89. 256 MBytes
19] 89.00-90. 258 MBytes

NNNNNNNNEHERERENNWWWOWNRN
[cloNoNoNoNoNoNoRoNcCNoNoNoNoNOo NN

[«) B« I« I« B Ble B RS RS,

ID] Interval Transfer Bitrate
19] 0.00-90. sec 28.7 GBytes | 2.74 Gbits/sec sender
19] 0.00-90. sec 28.7 GBytes | 2.74 Gbits/sec receiver

iperf Done.
root@admin-pc:~#

Figure 52. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 2.74 Gbps (sender) and 2.74 Gbps (receiver), and the number of
retransmissions is 1982. Note that the congestion avoidances algorithm used in host hl

Page 24

Lab 11: Router’s Buffer Size

is reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however
we are just focused on host h1’s results.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.
4.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=bbr

"Host: h1"

root@admin-pc:~# ctl -w net.ipv4.tcp congestion control=bbr

ion control = bbr

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

C:~# |iperf3 -s

Server liste

Figure 54. Starting iPerf3 server on host h2.
Step 3. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

n-pc:~# |iperf3 -s

ening on 5201

Figure 55. Starting iPerf3server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

Page 25

Lab 11: Router’s Buffer Size

iperf3 -c 10.0.0.2 -t 90

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.8.8.2 -t 9@.

Figure 56. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# |iperf3 -c 10.0.0.4 -t 90ff

Figure 57. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host hl terminal then, in host h3
terminal.

"Host: h1"

19] 73.00-74. 525 MBytes .40 Gbits/sec
19] 74.00-75. 548 MBytes .59 Gbits/sec
19] 75.00-76. 394 MBytes .30 Gbits/sec
19] 76.00-77. 481 MBytes .04 Gbits/sec
19] 77.00-78. 490 MBytes .11 Gbits/sec
19] 78.00-79. 534 MBytes .48 Gbits/sec
19] 79.00-80. 539 MBytes .52 Gbits/sec
19] 80.00-81. 548 MBytes .59 Gbits/sec
19] 81.00-82. 581 MBytes .88 Gbits/sec
19] 82.00-83. 588 MBytes .93 Gbits/sec
19] 83.00-84. 580 MBytes .86 Gbits/sec
19] 84.00-85. 592 MBytes .97 Gbits/sec
19] 85.00-86. 425 MBytes .57 Gbits/sec
19] 86.00-87. 502 MBytes .22 Gbits/sec
19] 87.00-88. 476 MBytes .99 Gbits/sec
19] 88.00-89. 469 MBytes .93 Gbits/sec
19] 89.00-90. 501 MBytes .20 Gbits/sec

o+

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
VO OODALHHPLPAOODAL,HOOL,DODUNOGO

ID] Interval Transfer [Bitrate 1
19] 0.00-90.00 59.1 GBytes |5.64 Gbits/sec| sender
19] 0.00-90.05 59.0 GBytes ‘5.63 Gbits/seci receiver
iperf Done.
root@admin-pc:~# |

Figure 58. Runnihg iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 5.64 Gbps (sender) and 5.63 Gbps (receiver), and the number of
retransmissions is 16,110. Note that the congestion avoidances algorithm used in host hl
is bbr and in host h3 is cubic. Host h3’s results are similar to the figure above, however
we are just focused on host h1’s results.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

Page 26

Lab 11: Router’s Buffer Size

5 Emulating high-latency WAN with packet loss

This section emulates a high-latency WAN with packet loss. We already have set a 20ms
RTT on the switches. Now, you will add 0.01% packet loss on the switch S1. Note that the
switch S1’s buffer size is set to one BDP.

Step 1. In the terminal, type the command below. When prompted for a password, type
and hit Enter. This command introduces 0.01% packet loss on switch S1’s s1-
eth1 interface.

sudo tc gdisc change dev sl-ethl root handle 1: netem delay 10ms loss 0.01%
L admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ X

admin@admin-pc:~$ |sudo tc gdisc change dev sl-ethl root handle 1: netem delay 10ms loss 0.01%
[sudo] password for admin:

admin@admin-pc:-5$

Figure 59. Adding delay of 0.01% to switch S1’s s1-ethl interface.

5.1 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=cubic

"Host: h1"

root@admin-pc:- tl -w net.ipv4.tcp congestion control=cubic

tion control = cubic

Figure 60. Changing TCP congestion control algorithm to in host h1.
Note that host h3’s congestion control algorithm is Cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

"Host: h2"

dmin-pc:~#|iperf3 -s

Server listening on 5201

Figure 61. Starting iPerf3 server on host h2.

Page 27

Lab 11: Router’s Buffer Size
Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

"Host: h4"

Figure 62. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h1"

root@dmin-pc:~#|iperf3 -c 10.0.0.2 -t 9@.

Figure 63. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# |iperf3 -c 10.0.0.4 -t 96fj

Figure 64. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Page 28

Lab 11: Router’s Buffer Size

"Host: h1"

MBytes 367 Mbits/sec
MBytes 388 Mbits/sec
MBytes 398 Mbits/sec
MBytes 409 Mbits/sec
MBytes 440 Mbits/sec
MBytes 430 Mbits/sec
MBytes 472 Mbits/sec
MBytes 482 Mbits/sec
MBytes 493 Mbits/sec
MBytes 535 Mbits/sec
MBytes 598 Mbits/sec

19] 73.00-74. 43.
19] 74.00-75. 46.
19] 75.00-76. 47.
19] 76.00-77. 48.
19] 77.00-78. 52.
19] 78.00-79. 51.
19] 79.00-80. 56.
19] 80.00-81. 57.
19] 81.00-82. 58.
19] 82.00-83. 63.
19] 83.00-84. 71..
19] 84.00-85. 80.0 MBytes 671 Mbits/sec
19] 85.00-86. 93.8 MBytes 786 Mbits/sec
19] 86.00-87. 108 MBytes 902 Mbits/sec
19] 87.00-88. 122 MBytes 1.03 Gbits/sec
19] 88.00-89. 142 MBytes 1.20 Gbits/sec
19] 89.00-960. 164 MBytes 1.37 Gbits/sec

KBytes
KBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

8
2
5
8
5
P
2
5
8
8
P
0

(o]
[ololloNoNoNoNoNoNoNoNoNoNoNoNo Mool

WWNNNR R e e e e

ID] Interval Transfer ‘Eifrate] {dg
19] 0.00-90. 10.7 GBytes |1.02 Gbits/sec| 3088 sender
19] 0.00-90. 10.7 GBytes [1.02 Gbits/sec\ receiver
oo — = >
iperf Done.
root@admin-pc:~# [j

Figure 65. Running iPerf3 client on host h1l.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 1.02 Gbps (sender) and 1.02 Gbps (receiver), and the number of
retransmissions is 3088. Note that the congestion control algorithm used in host h1l and
host h2 is cubic. Host h3’s results are similar to the figure above, however we are just
focused on host h1’s results.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

5.2 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=reno

"Host: h1"

sctl -w net.ipv4.tcp congestion control=reno
tion control = reno

Figure 66. Changing TCP congestion control algorithm to in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.
iperf3 -s

Page 29

Lab 11: Router’s Buffer Size

"Host: h2"

Figure 67. Starting iPerf3 server on host h2.
Step 3. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

Figure 68. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

“Host: h1"

root@admin-pc:~#|iperf3 -c 10.6.0.2 -t 98]

Figure 69. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# |iperf3 -c 10.0.0.4 -t 90f]

Figure 70. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host hl terminal then, in host h3
terminal.

Page 30

Lab 11: Router’s Buffer Size

"Host: h1"

MBytes 535 Mbits/sec
MBytes 556 Mbits/sec
MBytes 587 Mbits/sec
MBytes 608 Mbits/sec
MBytes 650 Mbits/sec
MBytes 671 Mbits/sec
MBytes 692 Mbits/sec
MBytes 661 Mbits/sec
MBytes 377 Mbits/sec
MBytes 409 Mbits/sec
MBytes 440 Mbits/sec
MBytes 461 Mbits/sec
MBytes 482 Mbits/sec
MBytes 524 Mbits/sec
MBytes 545 Mbits/sec
MBytes 577 Mbits/sec
MBytes 598 Mbits/sec

19] 73.00-74. 63.
19] 74.00-75. 66.
19] 75.00-76. 70.
19] 76.00-77. T2
19] 77.00-78. 77.
19] 78.00-79. 80.
19] 79.00-80. 82.
19] 80.00-81. 78.
19] 81.00-82. 45.
19] 82.00-83. 48.
19] 83.00-84. 52\
19] 84.00-85. 557
19] 85.00-86. 97
19] 86.00-87. 62.
19] 87.00-88. 65.
19] 88.00-89. 68.
19] 89.00-90. 71.

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
KBytes
KBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

[cNoNoNoNoNoNoNoNONE NoNoNoNoNoNoNol

PN OOV U O UL UWULO N @
el el e el

——

ID] Interval Transfer i }ate Retr
19] 0.00-90.00 7.60 GBytes 726 Mbits/sec | 19496 sender
19] 0.00-90.04 7.53 GBytes | 718 Mbits/sec | receiver
iperf Done.
root@admin-pc:~# ||

Figure 71. Running iPerf3 client on host h1l.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 726 Mbps (sender) and 718 Mbps (receiver), and the number of
retransmissions is 19,496. Note that the congestion control algorithm used in host h1 is
reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however we
are just focused on host h1’s results.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.
5.3 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp congestion control=bbr

"Host: hl1"

Figure 72. Changing TCP congestion control algorithm to in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

Page 31

Lab 11: Router’s Buffer Size

iperf3 -s

"Host: h2"

Figure 73. Starting iPerf3 server on host h2.
Step 3. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4"

nin-pc:

Server listening on 5201

Figure 74. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: hl1l"

root@dmin-pc:~#|iperf3 -c 10.0.0.2 -t 9@.

Figure 75. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

"Host: h3"

root@admin-pc:~# |[iperf3 -c 10.0.0.4 -t 90f]

Figure 76. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Page 32

Lab 11: Router’s Buffer Size

"Host: h1"

GBytes .12 Gbits/sec
GBytes .86 Gbits/sec
GBytes .10 Gbits/sec
GBytes .09 Gbits/sec
GBytes .04 Gbits/sec
GBytes .02 Gbits/sec 90
GBytes .13 Gbits/sec 45
GBytes .05 Gbits/sec 90
GBytes .98 Gbits/sec 45
GBytes .00 Gbits/sec 0
4 GBytes .96 Gbits/sec 135
GBytes .98 Gbits/sec 0
GBytes .07 Gbits/sec 135
GBytes .18 Gbits/sec 45
GBytes .20 Gbits/sec 90
GBytes .10 Gbits/sec 45
GByte .13 Gbits/sec 90

.00-74.
4.00-75.
.00-76.
.00-77.
.00-78.
.00-79.
.00-80.
.00-81.
.00-82.
.00-83.
.00-84.
.00-85.
.00-86.
.00-87.
.00-88.
.00-89.
.00-90.

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

el e B T e S S S R S S S S S S S S
O WO W OO0 WO WWWWWWOo W
W OWOUODOUWOOODODN,AOOEESNNNOGOM-

—_ 1

Interval Transfer Bitrate Retr
0.00-90. 91.3 GBytes |8.72 Gbits/sec| 25740 sender
0.00-90. 04 91.3 GBytes

8.71 Gbits/sech receiver

iperf Done.
root@admin-pc:~# |

Figure 77. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 8.72 Gbps (sender) and 8.71 Gbps (receiver), and the number of
retransmissions is 25,740. Note that the congestion avoidances algorithm used in host h1
is bbr and in host h3 is cubic.

Step 7. In order to stop the server, press in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

This concludes Lab 11. Stop the emulation and then exit out of MiniEdit.

References

1.

J. Moy, “Open shortest path first (OSPF) Version 2,” Internet Request for
Comments, RFC Editor, RFC 2328, Apr. 1998. [Online]. Available:
https://www.ietf.org/rfc/rfc2328.txt.

Y. Rekhter, T. Li, S. Hares, “Border gateway protocol 4,” Internet Request for
Comments, RFC Editor, RFC 4271, Jan. 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271.

J. Crichigno, E. Bou-Harb, N. Ghani, “A comprehensive tutorial on Science DMZ,”
IEEE Communications Surveys and Tutorials, 2019.

N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

J. Kurose, K. Ross, “Computer networking: a top-down approach,” 7th Edition,
Pearson, 2017.

Page 33

Lab 11: Router’s Buffer Size

6. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

7. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

8. G.Appenzeller, I. Keslassy, N. McKeown, “Sizing router buffers,” in Proceedings of
the 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 281-292, Oct. 2004.

Page 34

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 12: TCP Rate Control with Pacing

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 12: TCP Pacing

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 Introduction t0 TCP PACING .eeeeeiieiieiiiiieee et e e e e e e e e e e e eee e e e e e e e s eanennnees 4
1.1 TCP Pacing @SSENTIANS ...uuuviiiieeie et e e e e e e s e s s r e e e e e e e enanns 4
1.2 Use case: TCP pacing on a 100 Gbps Networkccccevvecviiieieei e 5
1.3 Fair qQUEUBING detailSuuiiieeiie et e e e e e s e e e e e e e e 6
P2 - o 8 o o To] Uo Y =AY 2SS PPPPRR 7
2.1 Startinghost h1 and hoSt h2ooeoooeeee e 8
2.2 Emulating 10 Gbps high-latency WANccooiiiiieeee e, 9
P2 TR =Y1 d{ o T=Aolo T o | =Tt { o] o [N 10
3 Enabling TCP pacing with tcand fg......cccovmrmeieeiii e, 13
4 Enabling TCP pacing from applicationcccuvvireeiiiiciiceeeee e 15
5 Concurrent transmission Without PACINGeeeveviiiiiiiiiiieeecee e 17
6 Concurrent transmission With PACINGcceevcieiiiiiiiie e 19
7 Parallel streams and WithOUt PACINGccuvveviiiiiiiee e 21
8 Parallel streams and With PACINGcceiviiiiiiiiciie e 23
2] =T =Y gVl TP 25

Page 2

Lab 12: TCP Pacing

Overview

This lab introduces TCP pacing, which is a technique that evenly spaces out packets and
minimizes traffic burstiness and packet losses. The focus in this lab is on Fair Queueing
(FQ)-based pacing in high-latency Wide Area Networks (WANSs). The lab describes the
steps to conduct throughput tests that encompass TCP pacing and to compare the
performance of TCP pacing against regular (non-paced) TCP.

Objectives
By the end of this lab, students should be able to:

Define TCP pacing.

Understand FQ-based pacing.

Enable TCP pacing in Linux.

Compare the performance of paced TCP vs. non-paced TCP.
Understand pacing effect on parallel streams.

Emulate a WAN and calculate the coefficient of variation of flows.

SR

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap
This lab is organized as follows:

Section 1: Introduction to TCP pacing.

Section 2: Lab topology.

Section 3: Enabling TCP pacing with tc and fq.
Section 4: Enabling TCP pacing from application.
Section 5: Concurrent transmission without pacing.
Section 6: Concurrent transmission with pacing.
Section 7: Parallel streams and without pacing.
Section 8: Parallel streams and with pacing.

O NoUAEWNR

Page 3

Lab 12: TCP Pacing

1 Introduction to TCP pacing

1.1 TCP pacing essentials

Data transmission can be bursty, resulting in packets being buffered at routers and
switches and dropped at times. End devices can contribute to the problem by sending a
large number of packets in a short period of time. If those packets were transmitted at a
steady pace, the formation of queues could be reduced, avoiding packet losses.

TCP pacing is a technique by which a transmitter evenly spaces or paces packets at a pre-
configured rate. It has been applied for years in enterprise networks?, with mixed results.
However, its recent application to data transfers in high-throughput high-latency
networks and science demilitarized zones (Science DMZs) suggests that its use has several
advantages?. TCP pacing has also been applied to datacenter environments3.

The existing TCP congestion control algorithms, except for BBR?, indicate how much data
is allowed for transmission. Those algorithms do not provide a time period over which
that data should be transmitted and how the data should be spread to mitigate potential
bursts. The rate, however, can be enforced by a packet scheduler such as a fair queue
(FQ)°. The packet scheduler organizes the flow of packets of each TCP connection through
the network stack to meet policy objectives. Some Linux distributions such as CentOS®
implement FQ scheduling in conjunction with TCP pacing®’.

FQ is intended for locally generated traffic (e.g., a sender device, such as data transfer
node (DTN) in Science DMZs). Figure 1 illustrates the operation of FQ pacing. Application
1 generates green packets, and application 2 generates blue packets. Each application
opens a TCP connection. FQ paces each connection according to the desired rate, evenly
spacing out packets within an application based on the desired rate. The periods T1 and
T, represent the time-space used for connections 1 and 2 respectively.

App1 App2

AR

DTCP H N

- Tz N
HEE N EEN
T,
Figure 1. TCP pacing. Packets of applications 1 and 2 are evenly spaced by T: and T, time units.

TCP pacing reduces the typical TCP sawtooth behavior® and is effective when there are
rate mismatches along the path between the sender and the receiver. This is the case, for
example, when the ingress port of a router has a capacity of 100 Gbps, and the egress
port has a capacity of 10 Gbps. Because of the TCP congestion control mechanism, the
sawtooth behavior always emerges. As TCP continues to increase the size of the
congestion window, eventually the bottleneck link becomes full while the rest of the links

Page 4

Lab 12: TCP Pacing

become underutilized. These mismatches produce a continuous circle of additive
increases and multiplicative decreases?.

1.2 Use case: TCP pacing on a 100 Gbps network

With the increase of big data transfers across networks, network professionals have
recently explored the impact of pacing on large flows®. Figure 2(a) shows the results of
data transfers over the Energy Science Network (ESnet). ESnet is a high-performance
network that carries science traffic for the U.S. Department of Energy. As of 2018, this
network is transporting more than 200 petabytes per month. The path capacity and
round-trip time (RTT) between end devices, referred to as DTNs, are 100 Gbps and 92
milliseconds respectively. Transfers use TCP Cubic congestion control algorithm® without
pacing and a maximum segment size (MSS) of 1,500 bytes. Four concurrent TCP
connections are generated from a single source DTN to a single destination DTN. These
four connections exhibit the typical sawtooth behavior!?, which in part is attributed to
the inability of switches to absorb traffic bursts. Figure 2(b) shows the behavior of TCP
Cubic with FQ pacing. The pacing rate for the four TCP connections is approximately 20
Gbps (curves are overlapped at nearly 20 Gbps). The throughput is slightly lower than 20
Gbps per connection. However, notice how the sawtooth behavior is reduced and stable
rates are obtained.

In general, TCP FQ pacing is also effective when there are rate mismatches along the path
between the sender and the receiver. This is the case, for example, when the ingress port
of a router has a capacity of 100 Gbps and the egress port has a capacity of 10 Gbps. As
TCP increases the congestion window during the additive increase phase, eventually the
bottleneck link becomes full while the rest of the links become underutilized. The
mismatches produce a continuous circle of additive increases and multiplicative
decreases, thus generating the sawtooth behavior.

40 + stream 1. —w— 40 - straam. .. —x— 14 T H H T Cent0SH —se—
stream 2 —=— stream 2 —a— Cent0ST

35 - siream 3 35 . stream 3 CentOST with 800M pacing

shracim 4 straam 4 1] 1 2
30 /','
25+ ¥ M l./ /\
20, 4 |

w
o

1.0
0.8 lurug ol M_A_‘Mv/_‘/\/‘u\f\

n
w

Throughput (Gbps)
)
o
Throughput (Gbps)

=y
o

-
(&3]

10
5

Throughput (Gbps)

w

: : H H i i i .
20 40 60 80 100 20 40 60 80 100 10 20 30 40 50 60

Time (seconds) Time (seconds) Time (seconds)
(a) (b) (c)

Figure 2. Impact of TCP pacing on throughput. (a) Data transfers of four parallel TCP connections
across a 100 Gbps, 92 milliseconds RTT path. (b) The same data transfer as in (a) but using TCP
pacing. (c) Data transfers between two DTNs connected by a path with a bottleneck link of 1 Gbps.
The curves show the performance when the DTNs use different Linux operating systems (violet:
CentOS 6; green: CentOS 7, and blue: CentOS7 with pacing). The results are reproduced from&.

Figure 2(c) shows the data transfer between two DTNs over ESnet. One DTN is in Amarillo,
Texas, and the other DTN is in New York City. Although the WAN connecting the two sites
has 100 Gbps capacity, one of the DTNs is attached to the network via a 1 Gbps network

Page 5

Lab 12: TCP Pacing

interface card. Thus, the entirety of the path includes multiple 100 Gbps links and one
bottleneck link of 1 Gbps. The figure shows three curves: the throughput when both DTNs
are based on Linux CentOS® Version 6 (violet), the throughput when DTNs are based on
Linux CentOS Version 7 (green), and the throughput when DTNs are based on Linux
CentOS Version 7 and packets are paced at 800 Mbps (blue). Note that pacing also leads
to much more stable behaviors, almost removing the TCP sawtooth behavior.

1.3 Fair queueing details

In Linux-based systems, network traffic can be controlled by Queueing Disciplines (gdisc)
used in conjunction with the Traffic Control (tc) tool. In this lab we focus on the most
commonly used queueing discipline: FQ. In this queueing discipline, aggregate queues are
used to associate token buckets in order to limit the transmission rate.

FQ performs flow separation to achieve pacing; it is designed to follow the requirements
set by the TCP stack®. Generally, a flow is considered all packets pertaining to a particular
socket. FQ uses the red-black tree data structure to index and track the state of single
flows as shown in Figure 3(a)!’. A red-black tree is a binary search tree which ensures that
no path in the tree is more than twice long as any other. This property ensures that tree
operations have a logarithmic complexity. FQ achieves fairness through the Deficit Round
Robin (DRR) algorithm??, illustrated in Figure 3(b). The DRR is an algorithm that allows
each flow passing through a network device to have a nearly perfect fairness and requires
only a constant number of operations per packet. FQ uses the leaky bucket queue where
transmitting timestamps (indexed on the read-black tree) are derived from the pacing
rate specified by the user and the packet size. FQ is a non-work conserving scheduler,
therefore, it can have idle scheduled resources even if there are jobs ready to be

scheduled.
Source
flows

Flow state lookup
[[[|]
Hashtable of red-black trees on

flow ids

Flow pacing
time_next_packe

]
low delays (red-black tree on
timestamps)

Figure 3. (a) FQ-pacing. (b) Deficit Round-Robin (DRR) algorithm.

Page 6

Lab 12: TCP Pacing

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl-ethO h2-eth0

10.0.0.1 10.0.0.2

sl-eth3 sl s2

10.0.0.3|3 10 Gbps “110.0.0.4
sl-ethl s2-eth2
s2-eth5
10.0.0.5 10.0.0.6
10.0.0.7|3 “|10.0.0.8
h7 h8

Figure 4. Lab topology.
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Terminal

Miniedit

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 12.mn topology file and click on Open.

Page 7

Lab 12: TCP Pacing

MiniEdit

New

|Open|

Export Level 2 Script

Directory: /home/admin/lab_topologies = l @
Quit

Edit Run Help

[E]Ltab2.mn [£] Lab8.mn [Lab 14.mn [5] Lab 20.mn
|[£] Lab 3.mn [£] Lab 9.mn [] Lab 15.mn
'] Lab 4.mn [5] Lab 10.mn [Z] Lab 16.mn
‘D Lab5.mn [] Lab11.mn [] Lab 17.mn

|[£] Lab 6.mn DMD Lab 18.mn
;[l Lab 7.mn [£] Lab 13.mn [} Lab 19.mn
[3]

File name: |Lab 12.mn | Open |

Files of type: Mininet Topology (*.mn) _'{ Cancel I

u@%

Figure 6. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network

must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop ||\.J7
Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.
2.1 Starting host h1l and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Page 8

Lab 12: TCP Pacing

File Edit Run Help

&

—

Host Options E

\ / h2
m &= S

I h3 / sl c2 __ h4
(] (]
h5 h6
] (]
h7 hs

Figure 8. Opening a terminal on host h1l.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2]. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

root@admin-

root@admin-pc:~#

Figure 9. Connectivity test using command.

2.2 Emulating 10 Gbps high-latency WAN
This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth

between hosts 1 and 2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 9

Lab 12: TCP Pacing

Terminal

o
Miniedit
Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type

password| and hit enter. This command introduces 20ms delay on switch S1’s s1-ethl
interface.

sudo tc gdisc add dev sl-ethl root handle 1: netem delay 20ms

$_ admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (%]

admin@admin-pc:~$|¢

[~ ‘fu_ pas yora T

admin@admin-pc:~$

Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

o [rate]: 10gbit
e [purst]: 5,000,000
e [limit} 15,000,000

sudo tc gdisc add dev sl-ethl parent 1: handle 2: tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (]

admin@admin-pc:~S) - add dev sl-eth2 parent 1: handle 2: tbf rate 10gbit

burst) L

admin@admin-pc:~$ |

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface.

2.3 Testing connection

Page 10

Lab 12: TCP Pacing

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type ping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

“Host: hl"

root@admin-pc:~#|ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seq=1 ttl=64 time=40
64 bytes from .0.0.2: icmp seqg=2 ttl=64 time=20
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=20

64 bytes from .0.0.2: icmp seq=4 ttl=64 time=20
AC

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.102/25.325/40.956/9.024 ms
root@admin-pc:~# [

Figure 13. Output of ping 10.0.0.2]command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation:

BW = 10,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 10,000,000,000 - 0.02 = 200,000,000 bits
= 25,000,000 bytes =~ 25 Mbytes

The send and receive buffer sizes should be set to 2 - BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes
BDP = 25 Mbytes = 25 - 10242 bytes = 26,214,400 bytes
TCP buffer size = 2 - BDP = 2 - 26,214,400 bytes = 52,428,800 bytes

Now, we have calculated the maximum value of the TCP sending and receiving buffer size.
In order to apply the new values, on host hl’s terminal type the command showed down
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipvé4.tcp rmem=’10240 87380 52428800’

Page 11

Lab 12: TCP Pacing

"Host: h1"

root@admin-pc:~# |sysctl -w net.ipv4.tcp rmem='10240 87380 52428800

net.ipv4.tcp rmem = 10240 87380 52428800
root@admin-pc:~# |

Figure 14. Receive window change in[sysctl]

Step 3. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: hl1"

root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# |j

Figure 15. Send window change in [sysct1].

Next, the same commands must be configured on host h2.

Step 4. To change the current receive-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

"Host: h2"

root@admin-pc:~#|sysctl -w net.ipv4.tcp rmem='10240 87380 52428800'

net.ipv4.tcp rmem = 10240 87380 52428800
root@admin-pc:~#

Figure 16. Receive window change in[sysct1].

Step 5. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp wmem=’'10240 87380 52428800’

"Host: h2"

root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800’

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# |

Figure 17. Send window change in[sysct1].

Step 6. The user can now verify the rate limit configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in

host h2’s terminal:
iperf3 -s

Page 12

Lab 12: TCP Pacing

"Host: h2"

Figure 18. Host h2 running iPerf3 as server.

Step 7. Now to launch iPerf3 in client mode again by running the command
in host h1’s terminal:

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~# |iperf3 -c 10.0.0.2

onnecting to host 10.0.0.2, port 5201
27] local 10.0.0.1 port 36246 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
27] 0.00-1.00 sec 926 MBytes 7.76 Gbits/sec 90 40.3 MBytes
27] .00-2.00 sec .11 GBytes .56 Gbits/sec 40.3 MBytes
27] .00-3.00 sec .11 GBytes .56 Gbits/sec 40.3 MBytes
27] .00-4.00 sec .11 GBytes .56 Gbits/sec 40.3 MBytes
27] .00-5.00 sec .11 GBytes .56 Gbits/sec 40.3 MBytes
27] .00-6.00 sec .11 GBytes .56 Gbits/sec 40.3 MBytes
27] .00-7.00 sec .11 GBytes .56 Gbits/sec 40.3 MBytes
27] .00-8.00 sec 875 MBytes .34 Gbits/sec 9.97 MBytes
27] .00-9.00 sec 1.11 GBytes .54 Gbits/sec 28.2 MBytes
27] .00-10.00 sec 1.11 GBytes .56 Gbits/sec 28.2 MBytes

(o]

OO NOUV LA WN -
W W~NWWWWWWY
(o]
(<]
[cHoNoNoNoNoNo Nl

[ID] Interval Transfer Bitrate
27] 0.00-10.00 10.7 GBytes 9.16 Gbits/sec sender
27] 0.00-10.04 10.7 GBytes 9.11 Gbits/sec receiver

iperf Done.
root@admin-pc:~# ||

Figure 19. iPerf3 throughput test.

Note the measured throughput is approximately 10 Gbps, which is close to the value
assigned in our rule (10 Gbps).

Step 8. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.
3 Enabling TCP pacing with tc and fq

The user enables fair queuing using a command line utility called [td The basic [cd] syntax
used with [Eq is as follows:

sudo tc gdisc [add|del|replace|change|show] dev dev id root fg opts
[sudo): enables the execution of the command with higher security privileges.

Page 13

Lab 12: TCP Pacing

[td: invokes Linux’s traffic control.

ladisd: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is applied to
a packet queue to decide when to send each packet.

[[add | del | replace | change | show]]: thisis the operation on qdisc. For example,
to add delay on a specific interface, the operation will be [add]. To change or remove delay
on the specific interface, the operation will be [change] or [del].

[dev_id]: this parameter indicates the interface to be subject to emulation.

[Eq): this parameter enables fair queuing qdisc.

lopts|: this parameter indicates the amount of delay, packet loss, duplication, corruption,
and others.

Step 1. In host h1, type the following command:

sudo tc gdisc add dev hl-eth0O root fg maxrate 5gbit
This command can be summarized as follows:

[sudo: enable the execution of the command with higher security privileges.
[td]: invoke Linux’s traffic control.
[adisc: modify the queuing discipline of the network scheduler.

[add: create a new rule.
[dev_hi-ethof: specify the interface on which the rule will be applied.

[£q]: use the fair queueing qdics.
maxrate 5gbit]: Maximum sending rate of a flow (default is unlimited). Enables

pacing on a maximum rate of 5 Gbps.

"Host: h1"

sudo tc qdisc add dev hl-eth® root fq maxrate 5gbit

Figure 20. Enabling fair queuing pacing with a maximum rate of 5 Gbps to the interface h1-ethO
on host h1l.

Step 2. The user can now verify pacing configuration by using the [iper£3|tool to measure
throughput. To launch iPerf3 in server mode, run the command in host h2’s

terminal:

iperf3 -s

"Host: h2"

root@admin-pc:~#

Server 1 ing on 5

Figure 21. Host h2 running iPerf3 as server.

Page 14

Lab 12: TCP Pacing

Step 3. Now to launch iPerf3 in client mode again by running the command
[10.0.0.2 -0 5lin host hl’s terminal. The option is used to specify the number of
seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -0 5

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2 -0 5
Connecting to host 10.0.0.2, port 5201
[27] local 10.0.0.1 port 36258 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
27] 0.00-1.00 sec 19.3 MBytes 162 Mbits/sec 891 KBytes (omitted)
27] .00-2.00 sec 202 MBytes .70 Gbits/sec 9.50 MBytes (omitted)
27] .00-3.00 sec 564 MBytes .73 Gbits/sec 12.4 MBytes (omitted)
()
()

[<]

27] .00-4.00 sec 569 MBytes .77 Gbits/sec 12.4 MBytes omitted
27] .00-5.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes omitted
271 .00-1.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes
27] .00-2.00 sec 569 MBytes .77 Gbits/sec 12.4 MBytes
27] .00-3.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes
27] .00-4.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes
27] .00-5.00 sec 569 MBytes .77 Gbits/sec 12.4 MBytes
27] .00-6.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes
27] .00-7.00 sec 568 MBytes .76 Gbits/sec 12.4 MBytes
27] .00-8.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes
27] .00-9.00 sec 570 MBytes .78 Gbits/sec 12.4 MBytes
27] .00-10.00 MBytes .77 Gbits/sec 12.4 MBytes

Moo NoNoNoNo NN NoNo NN RN ol

1
4
4
4
4
4
4
4
4
4
4
4
4
4

OO NOOU A WN O R WN

ID] Interval Transfer Bitrate
27] 0.00-10.00 5.56 GBytes 4.78 Gbits/sec sender
27] 0.00-10.04 5.58 GBytes 4.78 Gbits/sec receiver

iperf Done.
root@admin-pc:~# ||

Figure 22. iPerf3 throughput test.
The figure above shows the iPerf3 test output report. The average achieved throughput
is 4.78 Gbps (sender) and 4.78 Gbps (receiver), which is close to the assigned pacing value

(5 Gbps).

Step 4. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Enabling TCP pacing from application
An application can specify a maximum pacing rate using the SO_MAX_ PACING_RATE

setsockopt call. This packet scheduler adds delay between packets to respect rate
limitation set on each socket. Application specific setting via SO_MAX_PACING_RATE is

ignored only if it is larger than the value assigned with [£q] (if any).

In iPerf3, the option sets a rate to be used with fair-queueing based socket-
level pacing, in bits per second.

Step 1. Remove previous gdiscs on host h1’s hl-eth0 interface.

Page 15

Lab 12: TCP Pacing

sudo tc gdisc del dev hl-ethO root

"Host: h1"

Figure 23. Removing gdiscs on host h1l’s h1-ethO interface.

Step 2. To launch iPerf3 in server mode, run the command in host h2’s
terminal:

iperf3 -s

"Host: h2"

Figure 24. Host h2 running iPerf3 as server.

Step 3. Now launch iPerf3 in client mode by running the command [iperf3 -c 10.0.0.2]

[[0 5 ——fg-rate 5gbit]in host hl’s terminal. The -] option is used to specify the number

of seconds to omit in the resulting report (5 seconds), and the is used to
enable pacing through the SO_MAX_PACING_RATE setsockopt call.

iperf3 -c 10.0.0.2 -0 5 --fg-rate 5gbit

Connecting to host 10.0.0.2, port 5201
[27] local 10.0.0.1 port 36266 connected to 10.0.0.2 port 5201

ID] Interval

27]
27]
27]
27]
27]
27]
27]
27]
27]
27]
27]
27]
27]
27]
27]

ID]
27]
27]

0.
.00-
.00-
.00-

OO NOOUMSAE WN O AR WN

00-

00-

.00-
.00-

00-

.00-

00-

.00-
.00-

00-

.00-
.00-

L,
2.00
3.00
4.00
5.00
1.00
2.00
3.00
4.
5
6
7
8
9
1

Interval

0.00-10.00
0.00-10.04

iperf Done.

root@admin-pc:~# ||

00

00

.00
.00
.00
.00
.00
0.00

SecC
SecC
SecC
Sec
Sec
SecC
SecC
SecC
Sec
sec
SecC
SeC
SeC
sec
sec

Transfer
9.39 MBytes
41.4 MBytes
170 MBytes
370 MBytes
504 MBytes
540 MBytes
541 MBytes
541 MBytes
541 MBytes
540 MBytes
540 MBytes
538 MBytes
541 MBytes
536 MBytes
540 MBytes
Transfer
5.27 GBytes
5.29 GBytes

"Host: h1"
root@dmin-pc:~# |iperf3 -c 10.0.0.2 -0 5 --fq-rate 5gbit

Bitrate

78.7
348
.43
.10
.23
.53
.54
.54
.54
.53
.53
291
.54
.50
.53

Bitrate

Mbits/sec
Mbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec
Gbits/sec

4.53 Gbits/sec
4.53 Gbits/sec

Retr
0

[cNoNoNoNoNoNoNoNoNoNoNoNo RNl

Cwnd

355
1.24
5.56
8.83

11.
it I
11
ot 8
11.
11.
11
11.
11.
1 B
11.

1

NN SNSNSNSNSNNNN

KBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

sender
receiver

(omitted)
(omitted)
(omitted)
(omitted)
(omitted)

Figure 25. iPerf3 throughput test with pacing enabled by iPerf3 application.

Page 16

Lab 12: TCP Pacing

5 Concurrent transmission without pacing

In the previous section, we applied pacing on a single host (host h1) and we measured the
average throughput. In this section we run a test where four clients (host hl, host h3,
host h5, and host h7) are transmitting simultaneously to four servers (host h2, host h4,
host h6, and host h8), while sharing the same bottleneck link (link connecting switch S1
to switch S2).

Since it is difficult to start the four clients at the same time, Client1’s machine provides a
script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

*- qterminal -2 windows Il MiniEdit

Figure 26. Opening Mininet’s terminal.

word for admin:

Getting Hosts and Switches.
Getting Li :

*** Config g hosts

h4 hl h2z h3

**** Starting © controllers

*¥**¥* Starting 2 switches
51

No NetFlow ta

No sFlow tar

REMEMBER. TO EXIT THE CLI BEFORE YOU P STOP BUTTON. Not
vent MiniEdit from quitting and will prevent you from starting the

network again during this sessoin.

*** Starting CLI
mininet> [J

Figure 27. Mininet’s terminal.

Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent no_ pacing

Page 17

Lab 12: TCP Pacing

mininet>|source concurrent no pacing

sudo

Removing previous qdiscs on end-hosts.
---> tc qdisc del dev dev eth root

Modifying TCP buffer size on all devices...

---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800’
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

connected to h2.
connected to h4. Transmitting for
connected to h6. Transmitting for

connected to h8. Transmitting for

Transmitting for

20

20

20

20

seconds,
seconds,
seconds,

seconds,

please wait
please wait
please wait

please wait

(10Gbps, 20ms delay).

e 3 S e e o Sk ok s ok ok Sk ok ok Sk ok sk ok ok S ok ok Sk ok sk ok o Sk ok ok S ok sk ok S Sk ok ok S ok s S o Sk ok ok Sk ok s e ok ok ok ok Sk ok o ok ok ok ok ok ok ok ke

This script calculates the fairness index among parallels streams

or among several JSON files exported from iPerf3,

Figure 28. Running the tests simultaneously for 20 seconds without applying pacing.

4000

3500

3000

2500

2000

Mbps

1500

1000

500

Throughput over time

1 flow per

1

1

1

6

8

10

12

Time (sec)

Figure 29. Throughput of host h1, host h3, host h5 and host h7.

14

16 18 20

each

—— hl.json.dat
h3.json.dat
h5.json.dat
h7.json.dat

The above graph shows that the throughput of host h1, host h3, host h5 and host h7. It is
clear from the figure that there are variations in the flows. Moreover, the bottleneck
bandwidth was not evenly shared among the hosts, which decreases the fairness index

from 100%.

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Page 18

Lab 12: TCP Pacing

sudo

---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800'
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800'

connected to h2. Transmitting for 20 seconds, please wait ...
connected to h4. Transmitting for 20 seconds, please wait ...
connected to h6. Transmitting for 20 seconds, please wait ...

connected to h8. Transmitting for 20 seconds, please wait ...

o ok S S e e ok ok ok ok Sk ok e S o o e ok sk ok ok Sk ok e e o e ok ok ok ok Sk Sk e e ok e ok ok sk ok sk Sk e e s ok ok ok ok sk ke e e ok ok ok ok ok ok ok ok ke ke

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

Fairness index=
S o ok o ok ok o K o ok K ok ok ok o ok e ok K o SR S ok ok o Sk ok ok ok o ok ok o ok ok o ok ok ok ok ok Sk ok o ok ke o ok ok o ok o ok ok o ok ok ok ok ok ke

Figure 30. Calculated fairness index.

The above figure shows a fairness index of .83588. This value indicates that the bottleneck
bandwidth was approximately 83% evenly shared among host h1, host h3, host h5, and
host h7.

6 Concurrent transmission with pacing

In the previous section, we ran a test where four clients (host h1, host h3, host h5, and
host h7) are transmitting simultaneously to four servers (host h2, host h4, host h6, and
host h8), while sharing the same bottleneck link (link connecting switch S1 to switch S2)
without applying pacing. In this section we repeat the same test, but with pacing enabled
on host h1, host h3, host h5 and host h7.

Since it is difficult to start the four clients at the same time, Client1l’s machine provides a
script that automates this process.

Step 1. Using same Mininet’s terminal, issue the following command on Mininet’s
terminal as shown in the figure below.

source concurrent pacing

Page 19

Lab 12: TCP Pacing

sudo

mininet> [source concurrent pacing
Removing previous qdiscs on end-hosts.
---> tc qdisc del dev dev eth root

Enabling fq pacing to a maxrate of 2.5gbit per host.
---> tc gqdisc add dev dev eth root fq maxrate 2.5gbit

Modifying TCP buffer size on all devices... (10Gbps, 20ms delay).

---> sysctl -w net.ipv4.tcp rmem='10240 87380 52428800'
---> sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

hl connected to h2. Transmitting for 20 seconds, please wait

h3 connected to h4. Transmitting for 20 seconds, please wait

h5 connected to h6. Transmitting for 20 seconds, please wait
Figure 31. Running the tests simultaneously for 20 seconds while applying pacing.

Throughput over time

L L —— hljson.dat
—— : — —— — h3.json.dat
: : i i i i : : : h5.json.dat
1500 + -
wn
o
£
= : 5 : 5 5 : 5 : 5
0O IR TTE SNNFITE TTIFRN NPT MNP TRNNE NS
0 A S S S N S S N

0 2 4 6 8 10 12 14 16 18 20

Time (sec)
Figure 32. Throughput of host h1, host h3, host h5 and host h7 after applying pacing.

The above graph shows that the throughput of host h1, host h3, host h5 and host h7 with
pacing enabled. It is clear from the figure that there are less variations in the flows
compared to the non-paced flows. Moreover, the bottleneck bandwidth is now better
shared among the hosts.

Step 2. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Page 20

Lab 12: TCP Pacing

---> sysctl -w net
---> sysctl -w net

hl connected to h2.

h3 connected to h4.

h5 connected to hé6.

h7 connected to h8

sudo

.ipv4.tcp rmem='10240 87380 52428800'
.ipv4.tcp wmem='10240 87380 52428800'

Transmitting for 20 seconds,
Transmitting for 20 seconds,

Transmitting for 20 seconds,

. Transmitting for 20 seconds,

please
please
please

please

wailt ...

wait ..

wait ...

wait ..

kR k kR Rk kR kR kR Rk kR kR kR kkk ko ke k kR kkkkkkkkkkkk kk ke Rk kk kk k¥

This script calculates the fairness index among parallels streams
or among several JSON files exported from iPerf3, 1 flow per each

Fairness index=

3 ok o ok ok ok K ok ok K ok ok ok ok ok K o ok o ok ok ok SRR Sk ok ok ok ok s ok ok o ok ok ok ok sk ok ok ok o ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Figure 33. Calculated fairness index.

The above figure shows a fairness index of .99999. The fairness index here is better than
the previous test .83588. Therefore, pacing generally improves fairness among

transmitting hosts.

7 Parallel streams and without pacing

In the previous tests, four clients (host h1l, host h3, host h5, and host h7) were
transmitting simultaneously to four servers (host h2, host h4, host h6, and host h8), while
sharing the same bottleneck link (link connecting switch S1 to switch S2). In this section
only one client (host h1) is transmitting to one server (host h2) while using five parallel

streams.

Step 1. In MiniEdit, hold the right-click on host h1 and select Terminal. This opens the

terminal of host h1l and allows the execution of commands on that host.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. To launch iPerf3 in server mode, run the command in host h2’s

terminal:

iperf3 -s

"Host: h2"

Page 21

Lab 12: TCP Pacing

Figure 34. Host h2 running iPerf3 as server.

Step 4. Create and enter to a new directory parallel_streams:

mkdir parallel streams && cd parallel streams

"Host: hl"

#|mkdir paralle && cd parallel streams
/parallel strea [|

Figure 35. Creating and entering a new directory parallel_streams.

Step 5. Launch iPerf3 in client mode on host hl’s terminal. The [-J option is used to
produce a JSON output and the redirection operator [> to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -P 5 -J > parallel streams.json

"Host: h1" N

@admin-pc:~/parallel streams# iperf3 -c 10 -t 36 -P 5 -] > parallel streams.json
root@dmin-pc:~/parallel streams# |}
Figure 36. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds, and redirecting
the output to parallel_streams.json.

Step 6. Once the test is finished, in order to generate the output plots for iPerf3’s JSON
file run the following command:

plot iperf.sh parallel streams.json

"Host: h1"

plot iperf.sh parallel streams.json

Figure 37.plot iperf.sh|script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf).
These files are stored in a directory results created in the same directory where the script
was executed.

Step 7. Navigate to the results folder using the [cd command.

cd results/

"Host: h1"

root@admin-pc:~/parallel streams#|cd results/
root@admin-pc:~/parallel streams/results# I

Figure 38. Entering the results directory using the command.

Page 22

Lab 12: TCP Pacing
Step 8. Open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

"Host: h1"
root@admin-pc:~/parallel streams/results#| xdg-open throughput.pdf

QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

Figure 39. Opening the throughput.pdf file using [xdg-open|.

Throughput over time

: : 2.dat
L T T il AT 3.dat
s = _— U R Sy s 4.dat
e T 5.dat
2000 st “ ws s = 5 “‘ § . =
Q \: : : |
s : : i
1000 4
500 - -
0 i i i | i
0 5 10 15 20 25 30

Time (sec)
Figure 40. Throughput of 5 parallel streams initiated by host h1 without pacing.

Step 9. Close throughput.pdf file and stop the server by pressing in host h2’s
terminal. The user can see the throughput results in the server side too.

Step 10. Exit the parallel_streams/results directory by using the following command on
host h1’s terminal:

cd ../..

"Host: h1"
root@admin-pc:~/parallel streams/results#|cd
root@admin-pc:~# |

Figure 41. Exiting the reno/results directory.
8 Parallel streams and with pacing

Step 1. To launch iPerf3 in server mode, run the command in host h2’s
terminal:

iperf3 -s

Page 23

Lab 12: TCP Pacing

"Host: h2"

Figure 42. Host h2 running iPerf3 as server.
Step 2. Create and enter to a new directory parallel_streams_pacing:

mkdir parallel streams pacing && cd parallel streams pacing

"Host: h1"

' mkdir parallel str pacing && cd parallel_streams_pacing

Figure 43. Creating and entering a new directory parallel_streams_pacing.

Step 3. Launch iPerf3 in client mode on host hl’s terminal. The [-J] option is used to
produce a JSON output and the redirection operator [> to send the standard output to a
file. The [-P|is used to specify the number of parallel streams, and the is used
to enable pacing through the SO_MAX_PACING_RATE setsockopt call. In this test, pacing
is applied to a maximum rate of 1.9 Gbps per stream, and 5 * 1.9 Gbps (9.5 Gbps) total
for all streams. Note that assigning a pacing rate slightly less than the maximum
bandwidth (10 Gbps in our case) reduces packet lost and the variations of flows.

iperf3 -c 10.0.0.2 -t 30 -P 5 -J --fg-rate 1.9gbit > parallel streams pace.json

"Host: h1"
root@admin-pc:~/parallel streams pacing# iperf3 -c 10.0.0.2 -t 30 -P 5 -J

--fq-rate 1.9gbit > parallel streams pace.json
root@admin-pc:~/parallel streams pacing# [}

Figure 44. Running iPerf3 client on host hl with 5 parallel streams for 30 seconds with pacing
enabled, and redirecting the output to parallel_streams_pace.json.

Step 4. Once the test is finished, type the command, to generate the output plots for
iPerf3’s JSON file run the following command:

plot iperf.sh parallel streams pace.json

"Host: h1"

root@admin-pc:~/parallel_streams_pacing# plot iperf.sh parallel streams_pace.json
root@admin-pc:~/parallel streams pacing# |}

Figure 45. plot iperf.sh|script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf).
These files are stored in a directory results created in the same directory where the script
was executed.

Page 24

Lab 12: TCP Pacing

Step 5. Navigate to the results folder using the [cd command.

cd results/

"Host: h1"

root@admin-pc:~/parallel streams pacing#|cd results/
root@admin-pc:~/parallel streams pacing/results# |j

Figure 46. Entering the results directory using the |cd command.
Step 6. Open the throughput.pdf file, use the following command:
xdg-open throughput.pdf

"Host: h1"

root@admin-pc:~/parallel streams pacing/results#|xdg-open throughput.pdf

QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'
QStandardPaths: XDG RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

Figure 47. Opening the throughput.pdf file using [xdg-open).

Throughput over time

1800 J ! ' S—— —— l.dat
L - .. : B 2.dat
1600 : 3 dat
1400 - SRR IR - S SR— 4.dat
: : : : 5.dat
1200 - ; -
9 1000 - — . - SRSUUNSS TR
a
600 |- : = preanis R : -
400 - W - - B il
0 1 1 1 1 }
0 5 10 15 20 25 30

Time (sec)
Figure 48. Throughput of 5 parallel streams initiated by host h1 with pacing applied to a maximum
rate of 1.9 Gbps per stream.

The graph above shows how the advantages of applying pacing when using parallel
streams. Compared to figure 40, the flows have less variations and the fairness among

these flows is improved.

This concludes Lab 12. Stop the emulation and then exit out of MiniEdit.

References

1. A. Aggarwal, S. Savage, T. Anderson, "Understanding the performance of TCP
pacing," in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), Mar. 2000.

Page 25

Lab 12: TCP Pacing

2.

10.

11.

12.

B. Tierney, N. Hanford, D. Ghosal, “Optimizing data transfer nodes using packet
pacing: a journey of discovery,” in Workshop on Innovating the Network for Data-
Intensive Science, Nov. 2015.

M. Ghobadi, Y. Ganjali, “TCP pacing in data center networks,” in IEEE Annual
Symposium on High-Performance Interconnects (HOTI), Aug. 2013.

N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Fair Queue traffic policing. [Online]. Available: http://man7.org/linux/man-
pages/man8/tc-fq.8.html

The centos project. [Online]. Available: https://www.centos.org

J. Corbet, “TSO sizing and the FQ scheduler,” LWN.net Online Magazine, Aug. 2013.
[Online]. Available: https://lwn.net/Articles/564978

B. Tierney, “Improving performance of 40G/100G data transfer nodes,” in 2016
Technology Exchange Workshop, Sep. 2016. [Online]. Available:
https://meetings.internet2.edu/2016-technologyexchange/detail/10004333/

I. Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM Special
Interest Group on Operating Systems Operating System Review, vol. 42, issue 5,
pp. 64-74, Jul. 2008.

J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’'98
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 303-314, Sep. 1998.

A. Saeed, N. Dukkipati, V. Valancius, C. Contavalli, A. Vahdat, “Carousel: scalable
traffic shaping at end hosts,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 404-417, Aug. 2017.

M. Shreedhar, G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE/ACM Transactions on Networking, vol. 4, issue 3, pp. 375-385, Jun. 1996.

Page 26

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Exercise 7. Setting the Pacing Rate

Document Version: 08-22-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 7: Setting the Pacing Rate

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas

1.1 Credentials o e s e e e aaaee s
2 Setting the eNVIFONMENT.......iiiiiiee e e e e e s bae e e s ssaaeeeenes
3 DlIVEIADIES. .ot e s e e e s e araeeeea

Exercise 7: Setting the Pacing Rate

1 Exercise description

In this exercise, you will build a topology and run tests that involve competing TCP flows.
The exercise requires setting the senders’ pacing rate to ensure a fairness index of
approximately 1.

Senders Receivers
h1 h5
S K N
N S
h2 ; h6
Bottleneck link
N
S I 5
S S
'\{ sl-eth? y s2-ethl -
- 100 Mbps .
:\‘ H 40ms N
N S
h4 h8
AN
S b S

1.1 Credentials
The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type jpassword|.

Exercise 7: Setting the Pacing Rate

Terminal

Miniedit

Step 2. Load the topology located at /home/admin/NTP_Exercises/Exercises7/.

- MiniEdit

Edit Run Help

New

b m open - ox]
Save

Export Level 2 Script Directory: | /home/admin/NTP_Exercises/Exercise7| _.| @|
Quit Eltopology.mn I

Al [¥]

File name: |topo|ogy.mn | gpenl
Files of type: Mininet Topology (¥.mn) 4| Cancel |

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

il < —

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

sudo B MiniEdit

Exercise 7: Setting the Pacing Rate

Step 5. Navigate into the following directory ~/NTP_Exercises/Exercise7/ by issuing the
command below.

cd ~/NTP_Exercises/Exercise7/

admin@admin-pc: ~/NTP_Exercises/Exercise?
File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise?

admin@admin-pc:~$| cd ~/NTP_Exercises/Exercise7/

admin@admin-pc: S

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

admin@admin-pc: ~/NTP_Exercises/Exercise7

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise?

admin@admin-pc: $|sudo ./set_env.sh
[sudo] pa ord for admin:
Setting E ronment .

link: 100 Mbps

Ims

admin@admin-pc:

The script sets the bottleneck link to 100 Mbps and the latency to 40ms. Now, you can
start with the exercise.

3 Deliverables

Follow the steps below to complete the exercise.

a) Inspect and modify the TCP and switch’s buffer sizes to fully utilize the link and
maximize the throughput.

b) Run four iPerf3 tests simultaneously (one TCP connection from host h1 to host h5,
another from host h2 to host h6, another from host h3 to host h7 and from host
h4 to host h8) for 240 seconds and explain the results.

c) Set the senders’ pacing rate to ensure a fairness index greater than 0.92 and
repeat b).

d) Run three iPerf3 tests simultaneously (one TCP connection from host hl to host
h5, another from host h2 to host h6, and from host h3 to host h7) for 240 seconds
and explain the results. Is the bottleneck link fully utilized?

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 13: Impact of MSS on Throughput

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 13: Impact of MSS on Throughput

Contents
OVEIVIBW ...ttt ettt ettt et e e e e et e e et et e e e e e e e e e e e e e e e e eeeeeees 3
(0] o) 1101 4 V7= PSR PP 3
(1Y Y=Y i T =P UPUPPRRUPTRPR 3
(1Y o o - o [g T- T T PP UPPRUPPPPR 3
1 INTrodUCHION tO IMISS...ooiiiiee ettt s e e s e e e e e s bbe e e e ssasaaeesenns 3
1.1 Maximum transmission UNit (MTU)coecueeeriieiniee e s 3
1.2 Maximum SegmeNt SiZ€ (IMSS) ...uiiieiieieiee et e e e e eaaee e 4
P IF- | o I o] o Yo Lo -1V 20U SRR PUPRPRUPTPPR 5
2.1 Starting hosts h1 and h2 ..o 6
2.2 Emulating 10 Gbps WAN with packet [0SSccccveeiiiiiiiiiiniiiie e 7
3 Modifying maximum transmission unit (MTU).........ceeiviiiieeeiiiiee e, 10
3.1 Identifying interface’s current MTU.......cccooiieiiiiiiii e 10
3.2 Modifying MTU values on all interfacesccccccvueeeeeiiee e 11
REFEIENCES ...t e e st e e e s et e e e s bbeeeesareeeessanreeesanns 14

Page 2

Lab 13: Impact of MSS on Throughput

Overview

This lab introduces Maximum Transmission Unit (MTU), Maximum Segment Size (MSS),
and their effect on network throughput in a high-bandwidth Wide Area Networks (WAN)
with packet losses. Throughput measurements are conducted in this lab to compare the
observed throughput while using a higher MSS against a normal MSS value.

Objectives
By the end of this lab, students should be able to:

Understand Maximum Transmission Unit (MTU).

Define Maximum Segment Size (MSS).

Identify interfaces’ default MTU value.

Modify the MTU of an interface.

Understand the benefit of using a high MSS value in a WAN that incurs packet
losses.

6. Emulate WAN properties in Mininet and achieve full throughput with high MSS.

uhwWwnN e

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap
This lab is organized as follows:

1. Section 1: Introduction to MSS.

2. Section 2: Lab topology.
3. Section 3: Modifying maximum transmission Unit (MTU) and analyzing
results.
1 Introduction to MSS

1.1 Maximum transmission unit (MTU)

Page 3

Lab 13: Impact of MSS on Throughput

The Maximum Transmission Unit (MTU) specifies the largest packet size (in bytes),
including headers and data payload, that can be transmitted by the link-layer technology?®.
Even though data rates have dramatically increased since Ethernet standardization, the
MTU remains at 1500 bytes. A frame carrying more than 1500 bytes is referred to as a
jumbo frame and can allow up to 9000 bytes.

Standard Frames, 1500 MTU

/N

Payload Overhead

Figure 1. Standard Ethernet Frame’s MTU

Figure 1 illustrates the standard Ethernet frame which has 1500 bytes MTU. Although
most gigabit networks run with no impact while using the standard MTU, large numbers
of frames increase CPU loads and overheads. In such cases jumbo frames can be used to
mitigate excess overhead, as demonstrated in figure 2.

Jumbo Frame, 9000 MTU

l \J
Payload Overhead
Figure 2. Jumbo Ethernet Frame’s MTU

As shown in figure 2, jumbo frames impose lower overheads than normal frames (1500
MTU) by reducing the overall number of individual frames sent from source to destination.
Not only does this reduce the number of headers needed to move the data, CPU load is
also lessened due to a decrease in packet processing by routers and end devices.

1.2 Maximum segment size (MSS)

The Maximum Segment Size (MSS) is a parameter of the options field of the TCP header
that specifies the largest amount of data, specified in bytes, that a computer or
communications device can receive in a single TCP segment3. This value is specified in the
TCP SYN packet during TCP’s three-way handshake and is set permanently for the current
session.

The MSS must be set to a value equal to the largest IP datagram (minus IP and TCP

headers) that the host can handle in order to avoid fragmentation. Note that lowering the
MSS will remove fragmentation, however it will impose larger overhead.

Page 4

Lab 13: Impact of MSS on Throughput

With highspeed networks, using half a dozen or so small probes to see how the network
responds wastes a huge amount of bandwidth. Similarly, when packet loss is detected,
the rate is decreased by a factor of two. TCP can only recover slowly from this rate
reduction. The speed at which the recovery occurs is proportional to the MTU. Thus, it is
recommended to use large frames.

In this lab, we show and compare the effect of jumbo frames versus standard frames in a
WAN that incurs packet losses.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

hl sl s2 h2

10 Gbps
h1-ethO sl-ethl sl-eth2 s2-eth2 s2-ethl h2-ethO

10.0.0.1 10.0.0.2
Figure 3. Lab topology.

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password|.

Tenminal

Miniedit

Figure 4. Miniedit shortcut.

Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 13.mn topology file and click on Open.

Page 5

Lab 13: Impact of MSS on Throughput

MiniEdit

New

|Open|

Save
Export Level 2 Script
Directory: /home/admin/lab_topologies = ‘

|E] tab 2.mn [£] Lab 8.mn [£] Lab 14.mn [] Lab 20.mn
|[E] Lab3.mn [£] Lab 9.mn [5] Lab 15.mn
|[F] Lab 4.mn [5] Lab 10.mn [5] Lab 16.mn
|] Lab 5.mn [] Lab 11.mn [-] Lab 17.mn
|[£] Lab 6.mn [C] Lab 12.mn [-] Lab 18.mn

\[] Lab 7.mn DD Lab 19.mn

File name: |Lab 13.mn | Open |

Files of type: Mininet Topology (*.mn) 4' Cancel |

Edit Run Help

’\

‘|ﬁo
c
-

Bz

Figure 5. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of Miniedit’s window
to start the emulation.

Stop l.ﬂ_]i

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting hosts hl and h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Page 6

Lab 13: Impact of MSS on Throughput

File Edit Run Help

h2

Host Options | @ ‘

Terminal

Figure 7. Opening a terminal on host h1l.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2]. This command tests the connectivity between host
hl and host h2. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"
root@admin
2) (84) bytes of data.
from icmp ttl=64 S
from 2 i eq=.
from
s Trom
from
s Trom

6 packets tr itted, 6 i 0% packet lo time 91ms
rtt min/avg/m 0 0.260/1.327/0.477
root@admin-pc:~#

Figure 8. Connectivity test using command.

2.2 Emulating 10 Gbps WAN with packet loss

This section emulates a WAN with packet loss. We will first set the bandwidth between
host 1 and host h2 to 10 Gbps. Then, we will emulate a 1% packet loss and measure the
throughput.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 7

Lab 13: Impact of MSS on Throughput

Terminal

Miniedit

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a

command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type

and hit Enter. This command introduces 1% packet loss on switch S1’s s1-eth2
interface.

sudo tc gdisc add dev sl-eth2 root handle 1: netem loss 1%

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ <]
admin@admin-pc: t i

admin@admin-pc:

Figure 10. Adding 1% packet loss to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The parameters are the following:

e [rate]: 10gbit
e [purst]: 5,000,000
e [limit] 15,000,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2:

tbf rate 10gbit burst 5000000
limit 15000000

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ [<]

admin@admin-pc:~$ ev sl-eth2 parent 1: handle 2:
burst 1 C

admin@admin-pc:-~%

Figure 11. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Page 8

Lab 13: Impact of MSS on Throughput

Step 4. The user can now verify the rate limit configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, run the command in
host h2’s terminal:

iperf3 -s

"Host: h2"

root@admin-pc:~#|iperf

stening on 5201

Figure 12. Host h2 running iPerf3 as server.

Step 5. Now to launch iPerf3 in client mode again by running the command
in host h1’s terminal:

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.0.2

Connecting to host 10.0.0.2, port 5201

[15] local 10.0.0.1 port 36164 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 1.03 GBytes 8.87 Gbits/sec 7118 156 KBytes
15] .00-2.00 sec 846 MBytes .10 Gbits/sec 5787 60.8 KBytes
15] .00-3.00 sec 894 MBytes .50 Gbits/sec 6209 663 KBytes
15] .00-4.00 sec 872 MBytes .32 Gbits/sec 6605 154 KBytes
15] .00-5.00 sec 890 MBytes .47 Gbits/sec 6095 167 KBytes
15] .00-6.00 sec 900 MBytes .55 Gbits/sec 6631 87.7 KBytes
15] .00-7.00 sec 1.10 GBytes .46 Gbits/sec 7751 112 KBytes
15] .00-8.00 sec 1.07 GBytes .22 Gbits/sec 8085 82.0 KBytes
15] .00-9.00 sec 880 MBytes .38 Gbits/sec 7307 144 KBytes
15] .00-10.00 sec 956 MBytes .02 Gbits/sec 6602 59.4 KBytes

O ONOUVSHE WN -
TOON O O NNNNN

ID] Interval Transfer Bitrate Retr
15] 0.00-10.00 9.30 GBytes 7.99 Gbits/sec 68190 sender
15] 0.00-10.04 9.29 GBytes 7.95 Gbits/sec receiver

iperf Done.
root@admin-pc:~# |

Figure 13. iPerf3 throughput test.

Note the measured throughput now is approximately 7.99 Gbps, which is different than
the value assigned in the rule (10 Gbps). In the next section, the test is repeated but
using a higher MSS.

Step 6. In order to stop the server, press in host h2’s terminal. The user can see

the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

Page 9

Lab 13: Impact of MSS on Throughput

3 Modifying maximum transmission unit (MTU)

As explained previously, jumbo frames offer throughput improvements in networks
incurring packet losses. In this section, the user will change the MTU of a network
interface in Linux.

3.1 Identifying interface’s current MTU

Step 1. To identify the MTU of a network interface of a device, the is used. On
host h1’s terminal, type in the following command:

ifconfig

"Host: h1"

min-pc:~#|ifconfig
[flags=4163<UP,BROADCAST,RUNNING,MULTICAST> |mtu]
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
inet6 fe80::d011:f8ff:fe@4:1ab2 prefixlen 64 scopeid 0x20<link>
ether d2:11:f8:04:1a:b2 txqueuelen 1000 (Ethernet)
RX packets 224882 bytes 14942450 (14.9 MB)
RX errors © dropped © overruns @ frame 0
TX packets 294732 bytes 10095401018 (10.0 GB)
TX errors © dropped © overruns © carrier © collisions ©

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1O<host>
loop txqueuelen 1000 (Local Loopback)
RX packets © bytes 0 (0.0 B)
RX errors © dropped @ overruns @ frame ©
TX packets 0 bytes 0 (0.0 B)
TX errors © dropped © overruns © carrier © collisions ©

root@admin-pc:~# [}

Figure 14. Identifying interface’s MTU.

As shown in Figure 14, the interface h1-ethO has an MTU of 1500 bytes. The same steps
can be performed on host h2’s interface.

Step 2. In order to identify the MTU on the switches’ interfaces, launch the Client’s
terminal located on the Desktop, and type in the following command:

ifconfig

Page 10

Lab 13: Impact of MSS on Throughput

admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~

mtu 1500
prefixlen 64 scopeid @
txqueuelen 1000 (Ethernet)
) (0.0 B)
dropped @ overruns @ frame 0
343 byt g)
TX errors 0 dropped 0 ove carrier @ collisions 0
device interrupt 19)%200

67 y
X errors & dropped
TX packe 167 by z
TX errors 0)) collisions

g > |mtu 1500
inet6 fe8 59 afixlen 64 scopeid 0x2
ether 6a:b2:68 que on 10 (Ethernet)

RX error dropped 0
TX packe 1044079 bytes
TX errors © dropped

sl-eth2: 3ROADCAST, G mtu 1500
i i i en 64 scopeid 0
txqueuel (Ethernet)
1330 9. B)

X errors 0 dropped @ ov
(packe 1176682 bytes 23] 2 GB)
(errors @ dropped 0 overru)) collisions

mtu 1500
scopeid @
(Ethernet)
B)
dropped @ over
1176718 bytes > .
TX errors O dropped O overruns 0 arrier 0 collisions

flags=4163<UP,BROADCAST, RUNM MULTICAST> |mtu 1560
ineté6 x1 Ffzf i pre len 64 scopeid
] en 1000 (Ethernet)
ytes 2
RX error dropped 0
TX packets 1044043 bytes) .0 MB)
TX errors ® dropped 0 overruns @ carrier @ collisions

admin@admin-pc:~3$ [J
Figure 15. Identifying switches’ interfaces” MTU.

Each switch in the topology has two interfaces: switch S1 has s1-eth1 and s1-eth2, switch
S2 interfaces are s2-eth1 and s2-eth2. The MTU value on all interfaces are 1500 bytes.
3.2 Modifying MTU values on all interfaces

To modify the MTU of a network interface use the following command:

Page 11

Lab 13: Impact of MSS on Throughput

ifconfig <iface> mtu <bytes>

Step 1. To change the MTU to 9000 bytes, on host h1l’s terminal, type in the following
command:

ifconfig hl-eth0 mtu 9000

"Host: h1"

Figure 17. Changing host h1’s interface MTU.

Step 2. To change the MTU to 9000 bytes, on host h2’s terminal, type in the following
command:

ifconfig h2-eth0 mtu 9000

"Host: h2"

min-pc:~#|ifconfig h2-eth® mtu 2000
dadmin-pc:~#

Figure 18. Changing host h2’s interface MTU.

Step 3. Similarly, the MTU values of switch S1 and switch S2’s interfaces must be changed
to 9000 bytes. In order to modify the MTU values, type the following command on the
Client’s terminal. When prompted for a password, type and hit Enter.

sudo ifconfig sl-ethl mtu 9000
sudo ifconfig sl-eth2 mtu 9000
sudo ifconfig s2-ethl mtu 9000

sudo ifconfig s2-eth2 mtu 9000

s admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ £

admin@admin-pc:
admin@admin-pc:

admin@admin-pc:

admin@admin-pc:

admin@admin-pc:
Figure 1

© b

. Changing MTU values on the switches.

Page 12

Lab 13: Impact of MSS on Throughput

Step 4. The user can now verify the effect of modifying the MTU values on the switches
and the effect of MSS by using the tool to measure throughput. To launch iPerf3
in server mode, run the command in host h2’s terminal:

iperf3 -s

"Host: h2"

roo

Server listening on 5201

Figure 20. Host h2 running iPerf3 as server.

Step 5. To launch iPerf3 in client mode type the command below. The -4 option is used
to specify the MSS to be sent in the TCP handshake.

iperf3 -c 10.0.0.2 -M 9000

"Host: hl"

root@dmin-pc:~# |[iperf3 -c 10.0.0.2 -M 9000

Connecting to host 18.6 2, port 5201
15] local 10.0.0.1 port 36 connected to 10.0.0.2 port 5201

[ID] Interval "3 g Bitrate Retr Cwnd
15] 0.00-1.00 10.0 Gbi :
15] e 3
15]
15]
15]
15]
15]
15]
15]
15]

w
441
~

m
=
~+
D
w

-k : 1432
930 = . ' 1168
1.15 € .92 : 1341
1.16 5 .93 Gb : 1276

w
44}
e

oot oo
M M M M M

sls sz lEs]

oo momom
T M D D
+ + ~+ ~+ ~+
M M M M D D
T]

w
44}
=2

b
~+

w

b D (D

m
L
—+

w

W

ID] er Transfer
15] p.00-10.00 sec 11.1 GBytes
15] 0.00-10.04 sec 11.0 GBytes

iperf Done.
root@admin-pc:~# ||

Figure 21. iPerf3 throughput test with a 9000 MSS value.

Notice the measured throughput now is approximately 10 Gbps, which is similar to the
value assigned in the rule (10 Gbps).

Step 6. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar

to that of the client side’s and must be interpreted in the same way.

This concludes Lab 13. Stop the emulation and then exit out of MiniEdit.

Page 13

Lab 13: Impact of MSS on Throughput

References

1. Huh, Eui-Nam, and Hyunseung Choo, “Performance enhancement of TCP in high-
speed networks,” Information Sciences 178, no. 2 (2008), 352-362

Page 14

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 14: Router’s Bufferbloat

Document Version: 07-07-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 14: Router’s Bufferbloat

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 Introduction to bufferbloat.........coociiiiiiiiii 3
O R - Yol = o 1] 1 1Y PURPR 4
1.2 BUFFEIDIOAt oo e 4
P2 - o B o o To] Uo Y =AY 2P PPPPRR 6
2.1 Starting host hl, host h2, and host h3.......ccoooiiiiiie e, 8
2.2 Emulating high-1atency WANccooi et e e 8
PR S =Y d o T=A olo T o | o T=Tot { o] o [N PSR 9
3 Testing throughput on a network with a small buffer-size switch.........ccccvvveeeee. 10
3.1 Setting switch S1’s buffer size t0 100-MTUccceeeeiiiiiieiiiiiiee e 10
3.2 Bandwidth-delay product (BDP) and hosts’ buffer size.........ccccccovveeeciinnennnee. 11
S 700 T I T o TN =4 ¥ TV B L] S SRR 13
4 Testing throughput on a network with a 1-BDP buffer-size switch.......................... 13
4.1 Setting switch S1’s buffer Size t0 1:BDP.....ccovcveeeiieiiiieeeeeee e 13
4.2 Throughput and [ateNCy tESTS ..ccivuiiiie i 14
5 Testing throughput on a network with a large buffer-size switchcccccvvveeee.o. 19
5.1 Setting switch S1’s buffer size t0 10-BDP......cccovciieeivciiieieiiee e 19
5.2 Throughput and [atency teStSccevcuiiiiiiiiiieicceee e 20
2] =T =Y g Tl PSPPSR 25

Page 2

Lab 14: Router’s Bufferbloat

Overview

This lab discusses bufferbloat, a condition that occurs when a router or network device
buffers too much data, leading to excessive delays. The lab describes the steps to conduct
throughput tests on switched networks with different buffer sizes. Note that as the
buffering process is similar in routers and switches, both terms are used interchangeably
in this lab.

Objectives
By the end of this lab, students should be able to:

Identify and describe the components of end-to-end delay.

Understand the buffering process in a router.

Explain the concept of bufferbloat.

Visualize queue occupancy in a router.

Analyze end-to-end delay and describe how queueing delay affects end-to-end
delay on networks with large routers’ buffer size.

6. Modify routers’ buffer size to solve the bufferbloat problem.

auhwWwnN R

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to bufferbloat.

2. Section 2: Lab topology.

3. Section 3: Testing throughput on a network with a small buffer-size switch.

4. Section 4: Testing throughput on a network with a 1-BDP buffer-size switch.

5. Section 5: Testing throughput on a network with a large buffer-size switch.
1 Introduction to bufferbloat

Page 3

Lab 14: Router’s Bufferbloat

1.1 Packet delays

As a packet travels from a sender to a receiver, it experiences several types of delays at
each node (router / switch) along the path. The most important of these delays are the
processing delay, queuing delay, transmission delay, and propagation delay (see Figure
1)L

Buffer Bottleneck bandwidth link (btlbw)
Sender y Router [Receiver
(00, ggE . 0 @
L Il 1o
T —‘ Trénsmission I‘Dropagation S
Processing Queueing (waiting for

transmission)

Figure 1. Delay components: processing, queueing, transmission, and propagation delays.

e Processing delay: The time required to examine the packet’s header and
determine where to direct the packet. For high-speed routers, this delay is on the
order of microseconds or less.

e Transmission delay: The time required to put the bits on the wire. It is given by the
packet size (in bits) divided by the bandwidth of the link (in bps). For example, for
a 10 Gbps and 1,500-byte packet (12,000 bits), the transmission time is T = 12,000
/ 10x10° = 0.0012 milliseconds or 1.2 microseconds.

e Queueing delay: The time a packet waits for transmission onto the link. The length
of the queuing delay of a packet depends on the number of earlier-arriving packets
that are queued and waiting for transmission onto the link. Queuing delays can be
on the order of microseconds to milliseconds.

e Propagation delay: Once a bit is placed into the link, it needs to propagate to the
other end of the link. The time required to propagate across the link is the
propagation delay. In local area networks (LANs) and datacenter environments,
this delay is small (microseconds to few milliseconds); however, in Wide Area
Networks (WANs) / long-distance connections, the propagation delay can be on
the order of hundreds of milliseconds.

1.2 Bufferbloat

In modern networks composed of high-speed routers and switches, the processing and
transmission delays may be negligible. The propagation delay can be considered as a
constant (i.e., it has a fixed value). Finally, the dynamics of the queues in routers results
in varying queueing delays. Ideally, this delay should be minimized.

Page 4

Lab 14: Router’s Bufferbloat

An important consideration that affects the queuing delay is the router’s buffer size.
While there is no consensus on how large the buffer should be, the rule of thumb has
been that the amount of buffering (in bits) in a router’s port should equal the average
Round-Trip Time (RTT) (in seconds) multiplied by the capacity C (in bits per seconds) of
the port?3:

Router’s buffer size = C - RTT [bits]

A large-enough router’s buffer size is essential for networks transporting big flows, as it
absorbs transitory packet bursts and prevents losses. However, if a buffer size is
excessively large, queues can be formed and substantial queueing delay be observed. This
high latency produced by excess buffering of packets is referred to as bufferbloat.

The bufferbloat problem is caused by routers with large buffer size and end devices
running TCP congestion control algorithms that constantly probe for additional
bandwidth*. Consider Figure 2, where RTrop refers to the end-to-end propagation delay
from sender to receiver and then back (round-trip), and BDP refers to the bandwidth-
delay product given by the product of the capacity of the bottleneck link along the path
and RTprop. RTprop is @ constant that depends on the physical distance between end devices.
In the application limited region, the throughput increases as the amount of data
generated by the application layer increases, while the RTT remains constant. The
pipeline between sender and receiver becomes full when the inflight number of bits is
equal to BDP, at the edge of the bandwidth limited region. Note that traditional TCP
congestion control (e.g., Reno, Cubic, HTCP) will continue to increase the sending rate
(inflight data) beyond the optimal operating point, as they probe for more bandwidth.
This process is known as TCP additive increase rule. Since no packet loss is noted in the
bandwidth limited region despite the increasing TCP rate (which is absorbed by the
router’s buffer), TCP keeps increasing the sending rate / inflight data, until eventually the
router’s buffer is full and a packet is drop (the amount of bits in the network is equal to
BDP plus the buffer size of the router). Beyond the application limited region, the increase
in queueing delay causes the bufferbloat problem.

Page 5

Lab 14: Router’s Bufferbloat

App. limited Bandwidth limited Buffer limited

N Bufferbloat starts:
gueueing delay increases
at router’s queue

Packet loss

RTT

Operating point of
traditional algorithms
RTprop 9

.'R """""""""""""""""""""""
Optimal operating point

A /
btlbw

Sl

. '
5
Q.
=
(@]
>
o
=
|_
i v Inflight data
BDP = RTprop - btlbw BDP + buffer size

@ Optimal operating point
@ Operating point of traditional congestion control algorithms

Figure 2. Throughput and RTT as a function of inflight data®.
In this lab, the reader will conduct experiments and measure the throughput and RTT

under different network conditions. By modifying a router’s buffer size, the bufferbloat
problem will be observed.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1

h1-eth0

h3
51

s1-eth1
1Gbps
s1-eth2 h3-eth0

10.0.0.3

10.0.0.2

Figure 3. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 6

Lab 14: Router’s Bufferbloat

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password].

Terminal

Miniedit

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 14.mn topology file and click on Open.

MiniEdit

Edit Run Help

New
|Open|
Save
Export Level 2 Script
g Directory: /home/admin/lab_topologies 4| @
Quit Cltab2.mn []Labs.mn [I[ELREREY [Lab20.mn

] tab 3.mn [£] Lab 9.mn [] Lab 15.mn
[] Lab 4.mn [5] Lab 10.mn [C] Lab 16.mn
] Lab5.mn [£] Lab 11.mn [C] Lab 17.mn
[F] Lab 6.mn [] Lab 12.mn] Lab 18.mn
[l tab 7.mn [5] Lab 13.mn [7] Lab 19.mn

[4] ¥

File name: |Lab 14.mn I Open I

Files of type: Mininet Topology (*.mn) —:I Cancel ‘

"'”'k i %

Figure 5. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between end hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start

the emulation.

Stop ‘Iﬁ
Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 7

Lab 14: Router’s Bufferbloat

2.1 Starting host hl, host h2, and host h3

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

File Edit Run Help

X
.
[}

h1
Host Options

— N
s =
Pt 2. s1 |

,\‘ E]/

h3

h2
Figure 7. Opening a terminal on host h1l.
Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.3] This command tests the connectivity between host
h1l and host h3. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
bytes from 10.0.0.3: icmp seq=1 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=2 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=3 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=4 ttl=64 time=0.

bytes from 10.0.0.3: icmp seq=5 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=6 ttl=64 time=0.

10.0.0.3 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time
rtt min/avg/max/mdev = 0.063/0.111/0.340/0.102 ms
root@admin-pc:~#

Figure 8. Connectivity test using command.

2.2 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1's s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 8

Lab 14: Router’s Bufferbloat

Terminal

o
Miniedit
Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
and hit Enter. This command introduces 10ms delay to switch S1’s s1-eth2
interface.

sudo tc gdisc add dev sl-eth2 root handle 1: netem delay 20ms

$_ admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (%]

admin@admin-pc:
| ',‘,,14\7 [).-=, worag

admin@admin-pc:

Figure 10. Adding delay of 10ms to switch S1’s s1-eth2 interface.

2.4 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type ping 10.0.0.3]. To stop the test, press [Ctrl+d|.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

"Host: h1"

root@admin-pc:~# |ping 10.0.0.

PING 10.0.0.3 (10.0.0.3) 56(8

64 bytes from 10.0. : icmp t

64 bytes from 10.0. icmp se tt1=64 tim
64 bytes from 10.¢€ icmp s

icmp seq

wwww

64 bytes from 10.0.
& o

10.0.0.3 ping statistics
4 packets t tted, 4 received, 0% packet loss, time 7ms
rtt min/avg/ma> 20.080/25.390/41.266/9.166 ms

Figure 11. Output of [ping 10.0.0.3]command.

Page 9

Lab 14: Router’s Bufferbloat

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type jping 10.0.0.3]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

"Host: h2"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from .0.0.3: icmp seq=1 ttl=64 time=40.7

64 bytes from .0.0.3: icmp seq=2 ttl=64 time=20.1

64 bytes from .0.0.3: icmp seg=3 ttl=64 time=20.1
S b

64 bytes from .0.0.3: icmp seq=4 ttl=64 time=20
i

- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 20.090/25.257/40.745/8.943 ms
root@admin-pc:~# [

Figure 12. Output of ping 10.0.0.3/command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing throughput on a network with a small buffer-size switch

In this section, you are going to change the switch S1’s buffer size to 100-MTU and
emulate a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter ([tb£]). Then,
you will test the throughput between host h1 and host h3. In this section, the MTU is 1600
bytes, thus the limit value will be set to 100 - MTU = 160,000 bytes.

3.1 Setting switch S1’s buffer size to 100-MTU

Step 1. Apply rate limiting rule on switch S1’s sI-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [rate] 1gbit
e [purst]: 500,000
e [Limit]: 160,000

sudo tc gdisc add dev sl-eth2 parent 1: handle 2: tbf rate lgbit burst 500000
limit 160000

Page 10

Lab 14: Router’s Bufferbloat

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ S

admin@admin-pc:~$ |sudo tc qdisc add dev sl-eth2 parent 1: handle 2: tbf
1gbit burst 500000 limit 160000

admin@admin-pc: S |

Figure 13. Limiting rate to 1 Gbps and setting the buffer size to 100-MTU on switch S1’s interface.

3.2 Bandwidth-delay product (BDP) and hosts’ buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

1 Mbyte = 10242 bytes
BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to 10-BDP. To ensure that the bottleneck is not the hosts’ buffers, we
configure the buffers to 10-BDP (26,214,400).

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host hl’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled (2:10-BDP) as Linux only allocates
half of the assigned value.

sysctl -w net.ipv4.tcp rmem=’10240 87380 52428800’

"Host: h1"

root@admin-pc:~# |sysctl -w net.ipv4.tcp rmem='10240 87380 52428800'
=1

net.ipv4.tcp rmem 0240 87380 52428800

root@admin-pc:~# |j

Figure 14. Receive window change in [sysct1].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when

Page 11

Lab 14: Router’s Bufferbloat

applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: h1"
root@admin-pc:~# |[sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800

root@admin-pc:~# [
Figure 15. Send window change in[sysctl].

Step 3. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipvé4.tcp wmem='10240 87380 52428800’

"Host: h3"

ctl -w net.i .tcp rmem='10240 8

10240 F B

Figure 16. Receive window change in[sysctl].

Step 4. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipvé4.tcp wmem='10240 87380 52428800’

"Host: h3"
root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# [j

Figure 17. Send window change in [sysct1].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Page 12

Lab 14: Router’s Bufferbloat

3.3 Throughput test
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

dadmin-pc:~# |iperf3 -s

Figure 18. Starting iPerf3 server on host h3.

Step 2. Type the following iPerf3 command in host h1’s terminal.
iperf3 -c 10.0.0.3

"Host: h1"

root@admin-pc:~# |iperf3 -c 10.0.0.3
Connecting to host 10.0.0.3, port 5201
[15] local 10.0.0.1 port 47136 connected to 10.0.0.3 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
15] 0.00-1.00 sec 12.6 MBytes 106 Mbits/sec 322 167 KBytes
15] .00-2.00 sec 3.79 MBytes 31.8 Mbits/sec 75 303 KBytes
15] .00-3.00 sec .71 MBytes 64.6 Mbits/sec 145 175 KBytes
15] .00-4.00 sec .54 MBytes 38.1 Mbits/sec 20 148 KBytes
15] .00-5.00 sec .45 MBytes 70.9 Mbits/sec 0 187 KBytes
15] .00-6.00 sec .63 MBytes 80.8 Mbits/sec 157 KBytes
7 2
8 9
9 5
i ¢}

-

15] .00-7.00 sec .02 MBytes 67.2 Mbits/sec 191 KBytes
15] .00-8.00 sec Mbits/sec 228 KBytes
15] .00-9.00 sec Mbits/sec 264 KBytes
15] .00-10.00 sec Mbits/sec 218 KBytes

MBytes 83.

.0
.7 MBytes 98.
.8 MBytes 99.

0O NOOUMBEWN
= 00 W00 SN

ID] Interval Transfer }Bltrate ,w
15] 0.00-10.00 88.3 MBytes |74.1 Mbits/sec| sender

|
15] 0.00-10.04 86.5 MBytes 172.2 Mblts/sec{ receiver

iperf Done.
root@admin-pc:~# |

Figure 19. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 74.1 Mbps (sender) and 72.2 Mbps (receiver), and the number of retransmissions is 582.
Note that the maximum throughput (1 Gbps) was not achieved. This is due to having a
small buffer on the switch (100 - MTU).

4 Testing throughput on a network with a 1-BDP buffer-size switch

In this section, you are going to change the switch S1’s buffer size to 1-BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter ([cb£]). Then, you will
test the throughput between host hl and host h3. The BDP is 2,621,440 bytes, thus the
limit value will be set to 2,621,440.

4.1 Setting switch S1’s buffer size to 1-BDP

Page 13

Lab 14: Router’s Bufferbloat

Step 1. Apply rate limiting rule on switch S1’s sI-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [tatd: 1gbit
e [uzst} 500,000
e [imit} 2,621,440

sudo tc gdisc change dev sl-eth2 parent 1: handle 2: tbf rate lgbit burst 500000
limit 2621440

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ X

admin@admin-p D EC c change dev si1-eth2 parent 1: handle 2: tbf rate
1gbit burst)0 .

admin@admin-pc:

Figure 20. Limiting rate to 1 Gbps and setting the buffer size to 1-BDP on switch S1’s interface.

4.2 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

"Host: h3"

Figure 21. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh sl-eth2

File Actions Edit View Help

admin@admin-pc: ~ (X

admin@admin-pc:~$|sudo plot q.sh s

Figure 22. Plotting the queue occupancy on switch S1’s s1-eth2 interface.
A new window opens that plots the queue occupancy as shown in the figure below. Since

there are no active flows passing through s1-eth2 interface on switch S1, the queue
occupancy is constantly 0.

Page 14

Lab 14: Router’s Bufferbloat

| Gnuplot -0 X

1 T T T T T
"gq_out" using 1:2 ——

0.5 .

-1 1 1 1 1 L
0 50 100 150 200 250 300

Figure 23. Queue occupancy on switch S1’s s1-eth2 interface.

Step 3. In host h1, create a directory called 1_BDP and navigate into it using the following
command:

mkdir 1 BDP && cd 1 BDP

"Host: h1"
mkdir 1 BDP && cd 1 BDP

-/1 _BDOP# i

Figure 24. Creating and navigating into directory 1_BDP.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1"

root@admin-pc:~/1BDP# |iperf3 -c 10.8.8.3 -t 98 -] > out.json

Figure 25. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

"Host: h2"

root@admin-pc:~# |ping 10.0.0.3 -c 90f
Figure 26. Typing command on host h2.

Page 15

Lab 14: Router’s Bufferbloat
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

2,5x10
.
|
J
: f
2x10 + I ———
lijp |
| 1 71 ,
J J J Il J
! I A || | b
f | A
6 | | ~) 1 "
1,5x10° | (/ (L
| Jt | 1)
UL f
v—'l II l I (f
k' ‘ | |
_‘I |l J J
1x108 - |
500000 -
0 1 1 1
0 50 100 150 200
Figure 27. Queue occupancy on switch S1’s s1-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 - 10°, which is the

maximum buffer size we configure on the switch.
Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting

the queue.
Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot iperf.sh out.json && cd results
"Host: h1"

ts

&6 cd results

root@admin-pc:~/1BDP# |plot_iperf.sh out.json
@admin-pc:~/1BDP/results# |
Figure 28. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf
"Host: h1"

root@admin-pc:~/1BDP/results#|xdg-open throughput.pdf

Figure 29. Opening the throughput.pdf file.

Page 16

Lab 14: Router’s Bufferbloat

1000
900
800
700
600
500
400
300
200
100

Mbps

Throughput over time

| 1 I I L I I |

0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 30. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is approximately 900 Mbps. We can see now that the maximum
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 1BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using

the command below.

xdg-open RTT.pdf

"Host: h1"

RTT.pdf

45000 : : P . u | .
40000 '
35000
30000

RTT

15000 1) X
10000 | v _ .
B0 !|ovuossd snasmmalmncn; oo ; i

20000 : : : -

Figure 31. Opening the RTT.pdf file.

RTT over time

0 i i i i i i i i
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 32. Measured round-trip time.

Page 17

Lab 14: Router’s Bufferbloat

The graph above shows that the RTT was between 25000 microseconds (25ms) and 40000
microseconds (40ms). The output shows that there is no bufferbloat problem as the
average latency is slightly greater than the configured delay (20ms).

Step 11. Close the RTT.pdf window then open the congestion window (cwnd) file using
the command below.

xdg-open cwnd.pdf

“"Host: h1"

root@admin-pc:~/1BDP/results# [xdg-open cwnd.pdf

Figure 33. Opening the cwnd.pdf file.

Sent Cwnd over time
5000 . : ! ! . ! ! .
4500 | | | : : | |
4000
3000 et s SIS NS PR
L e s M.
L T TSR, S S S— S (- —
1500 b oo S S — U T i

Cwnd

11104 J RN SRR R s S R s -

500 et e . esasnasies Lo FEITREPRRES st i Seanseasi —

Time (sec)
Figure 34. Congestion window evolution.

The graph above shows the evolution of the congestion window which peaked at 4.5
Mbytes. In the next test, we see how buffer size on the switch affect the congestion

window evolution.

Step 12. Close the cwnd.pdf window then go back to h2’s terminal to see the output.

Page 18

Lab 14: Router’s Bufferbloat

"Host: h2"

bytes from 10.0.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 16.
bytes from 10.
3 bytes from 16.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.

icmp seq=72 ttl=64 time=32.8
icmp seq=73 ttl=64
icmp seq=74 ttl=64
icmp seq=75 ttl=64
icmp seq=76 ttl=64
icmp seq=77 ttl=64
icmp seq=78 ttl=64
icmp seq=79 ttl=64
icmp seq=80 ttl=64
icmp seq=81 ttl=64
icmp seq=82 ttl=64
icmp seq=83 ttl=64
icmp seq=84 ttl=64
icmp seq=85 ttl=64
icmp seq=86 ttl=64
icmp seq=87 ttl=64
icmp seq=88 ttl=64
icmp seq=89 ttl=64
icmp seq=90 ttl=64

0.
0.
0.
0.
0.
0.

0.
.0
.0.
.0.

0.

0.

0

0

0.

0.

0.

0.

0

0.

0.

0.

0.

0.

0.

o
WWwwwwwuwwwwwwwwwwwww

(oMo NN RNl

10.0.0.3 ping statistics
90 packets transmitte ° 't _loss, time 211lms
rtt min/avg/max/mdev 5.630/32.669/64.126/4.359

root@admin-pc:~# [j
Figure 35. test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 25.630, 32.669, 64.126, and 4.359 milliseconds, respectively. The output
also verifies that there is no bufferbloat problem as the average latency (32.669) is slightly
greater than the configured delay (20ms).

Step 13. To stop iperf3 server in host h3 press[Ctrl+d]

5 Testing throughput on a network with a large buffer-size switch

In this section, you are going to change the switch S1’s buffer size to 10-BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter ([cb£]). Then, you will
test the throughput between host hl and host h3. The BDP is 2,621,440 bytes, thus the
limit value will be set to 26,214,400.

5.1 Setting switch S1’s buffer size to 10-BDP
Step 1. Apply rate limiting rule on switch S1’s sI-eth2 interface. In the client’s

terminal, type the command below. When prompted for a password, type and
hit Enter.

o [ratd: 1gbit
e [ourst} 500,000
o [limit} 26,214,400

Page 19

Lab 14: Router’s Bufferbloat

sudo tc gdisc change dev sl-eth2 parent 1: handle 2: tbf rate 1lgbit burst
500000 limit 26214400

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$ [sudo : sl-eth2 parent 1: handle 2: tbf rate
1gbit burst 500000 i :

[sudo] password for
admin@admin-pc:~$ [

Figure 36. Limiting rate to 1 Gbps and setting the buffer size to 10-BDP on switch S1’s interface.

5.2 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

root@admin-pc:~# |iperf3 -

Figure 37. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh sl-eth2

File Actions Edit View Help
admin@admin-pc: ~ S

admin@admin-pc:~$|sudo plot q.sh sl-eth2

]

Figure 38. Plotting the queue occupancy on switch S1’s s1-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s1-eth2 interface on switch S1, the queue
occupancy is constantly 0.

Page 20

Lab 14: Router’s Bufferbloat

| Gnuplot -0 X

1 T T T T T
"gq_out" using 1:2 ——

0.5 .

-1 1 1 1 1 L
0 50 100 150 200 250 300

Figure 39. Queue occupancy on switch S1’s s1-eth2 interface.

Step 3. Exit from 1BDP/results directory, then create a directory 10BDP and navigate into
it using the following command.

cd ../../ && mkdir 10BDP && cd 10BDP

"Host: h1"

& mkdir 18BDP &% cd 10BDP

Figure 40. Creating and navigating into directory 1BDP.
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1"

dmin-pc:~/10BDP#|iperf3 -c 10.0.E€

Figure 41. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.
ping 10.0.0.3 -c 90

"Host: h2"

root@dmin-pc:~# |ping 10.0.0.3 -cC 9(-).
Figure 42. Typing command on host h2.

Page 21

Lab 14: Router’s Bufferbloat

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

2,5x10

7
2x10

1.5x10

ixiOT

5x10

0

—F

1
"g_out" using 132 ——

.l'lfjl

50

100

150

200

250

Figure 43. Queue occupancy on switch S1’s s1-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5-107, which is the
maximum buffer size we configure on the switch. Note that the buffer is almost always
fully occupied, which will lead to an increase in the latency as demonstrated next.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

f.sh out.json

Figure 44. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

"Host: h1"

root@admin-pc:~/10BDP/results#|xdg-open throughput.pdf

Figure 45. Opening the throughput.pdf file.

Page 22

Lab 14: Router’s Bufferbloat

Throughput over time
1000 T T T T T T T T
9 P

1) ARSI T PR RS RIS SBIREE RN SOSRS S
700 [, : S SN, —
600 | » : oo
500 oo , ; : , .
ST oo e eomenss oo howeeees et owessa e sl
300 F o : : 1
200 . - I e . . N . pu

Mbps

100 — I A ISYREE LA <A, B —

Time (sec)
Figure 46. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also
achieved (1 Gbps) when we set the switch’s buffer size to 10-BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:~/10BDP/results#|xdg-open RTT.pdf

Figure 47. Opening the RTT.pdf file.

RTT over time
250000 T T T T T T

200000

150000

RTT

100000

50000

0 i i i i i i j i
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 48. Measured Round-Trip Time.

Page 23

Lab 14: Router’s Bufferbloat

The graph above shows that the RTT increased from approximately 50000 microseconds
(50ms) to 230000 microseconds (230ms). The output above shows that there is a
bufferbloat problem as the average latency is significantly greater than the configured
delay (20ms). Since the buffer on the switch is accommodating a large congestion window,
latency is increased as new incoming packets have to wait in the highly occupied queue.

Step 11. Close the RTT.pdf window then open the congestion window (cwnd) file using
the command below.

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/10BDP/results#|xdg-open cwnd.pdf

Figure 49. Opening the cwnd.pdf file.

Sent Cwnd over time
30000

25000

20000

15000

Cwnd

10000

5000

0 i i i i i \ i 1
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 50. Congestion window evolution.

The graph above shows the evolution of the congestion window. Note how the
congestion window peaked at 25.2 Mbytes compared to the previous test where it
peaked at approximately 4.5 Mbytes. Since the queue size was configured with a large

value, TCP continued to increase the congestion window as no packet losses were inferred.

Step 12. Close the cwnd.pdf window then go back to h2’s terminal to see the output.

Page 24

Lab 14: Router’s Bufferbloat

"Host: h2"

bytes from 10.
from 10.

from 16.

from 10.

from 16.

) from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 16.
bytes from 160.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 10.
bytes from 16.
bytes from 10.

icmp seq=68 ttl=64 time=219
icmp seq=69 ttl=64 time=219
icmp seq=70 ttl=64 time=219
icmp seq=71 ttl=64 time=219
icmp seq=72 ttl=64 time=219
icmp seq=73 ttl=64 time=220
icmp seq=74 ttl=64 tim 19
icmp seq=75 ttl=64 time=219
icmp seq=76 ttl=64 time=219
icmp seq=77 tt1l=64 time=219
icmp seq=78 ttl=64 time=219
icmp seq=79 ttl=64 time=219
icmp seq=80 ttl=64 time=219
icmp seq=81 ttl=64 time=219
icmp seq=82 ttl=64 time=219
icmp seq=83 ttl=64 time=220
icmp seq=84 ttl=64 time=219
icmp seq=85 ttl=64 time=219
icmp seq=86 ttl=64 time=219
icmp seq=87 ttl=64 time=219
icmp seq=88 ttl=64 time=219
icmp seq=89 ttl=64 time=219
icmp seq=90 time=219

(oo ooNoNoRoNoRoRNoRo oo RoRNoRo

lcloloNooNoNoNoNooooBoNoooBoolollololfollol
(o)

WWwWwwwwwuwwwwwuwwwwwuwwwwww

lo o Mo B o R o)

10.0.0.3 ping statistics
90 packets transmitted, . 0% | . ime 206ms
rtt min/avg/max/mdev
root@admin-pc:~# l

Figure 51. test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 34.239, 167.046, 219.647, and 73.715 milliseconds, respectively. The
output also verifies that there is a bufferbloat problem as the average latency (167.046)
is significantly greater than the configured delay (20ms).

Step 13. To stop iperf3 server in host h3 press[ctrl+d]

This concludes Lab 14. Stop the emulation and then exit out of MiniEdit.

References

1. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

2. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

3. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

4. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

Page 25

Lab 14: Router’s Bufferbloat

5. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Page 26

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Exercise 8: Router’s Bufferbloat

Document Version: 08-25-2021

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Exercise 8: Router’s Bufferbloat

Contents

1 EXercise deSCriPLioN ...uueiiiiiiiie ittt e e s e e s st e e e e s bre e e s snaraaeeeenas

1.1 Credentials o e s e e e aaaee s
2 Setting the eNVIFONMENT.......iiiiiiee e e e e e s bae e e s ssaaeeeenes
3 DlIVEIADIES. .ot e s e e e s e araeeeea

Exercise 8: Router’s Bufferbloat

1 Exercise description

In this exercise, you will observe the router’s bufferbloat effects using different
congestion controls.

Senders

hl

Receiver
h3
sl-eth3 }\
1 Gbps S
50ms

h2

\(\’

1.1 Credentials

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access the Client’s virtual machine.

Device Account Password
Client admin password
2 Setting the environment

Follow the steps below to set the problem’s environment.

Step 1. Open MiniEdit by doble-clicking the shortcut on the Desktop. If a password is
required type jpassword|.

Exercise 8: Router’s Bufferbloat

Terminal

Miniedit

Step 2. Load the topology located at /home/admin/NTP_Exercises/Exercises8/.

- MiniEdit

Edit Run Help
New

[open] m open - x|
Save

Export Level 2 Script

Directory: I,.fhome..fadmin,.fNTP_ExercisestxerciseBI _.‘ @‘

Quit Eftopology.mn

KT

]

File name: |topology.mn |gpen|

Files of type: Mininet Topology (*.mn) _.‘ Cancel ‘

Step 3. Run the emulation by clicking on the button located on the lower left-hand side.

il < —

Step 4. Open the Linux terminal by clicking on the icon in the taskbar.

sudo B MiniEdit

Exercise 8: Router’s Bufferbloat

Step 5. Navigate into the following directory ~/NTP_Exercises/Exercise8/ by issuing the
following command:

cd ~/NTP_Exercises/Exercise8/

admin@admin-pc: ~/NTP_Exercises/Exercise8

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise8

admin@admin-pc:~5|cd ~/NTP_Exercises/Exe

admin@admin-pc:

Step 6. Run the command below. If a password is required, type password|.

sudo ./set_env.sh

admin@admin-pc: ~/NTP_Exercises/Exercise8

File Actions Edit View Help
admin@admin-pc: ~/NTP_Exercises/Exercise8
c:
rd for admin:
onment ...
: 1 Gbps

admin@admin-pc:

The script sets the bottleneck link to 1 Gbps and the latency to 50ms. Now, you can start
solving the problem.
3 Deliverables
Follow the steps below to complete the exercise.
a) Set switch’s s1 buffer size to BDP.

b) Start a connectivity test from one of the senders using the ping command. Do
not stop the test.

c) From another sender, run an iPerf3 test for 120 seconds and explain the results.
Report the throughput and the RTT.

d) Change switch’s s1 buffer size to 10-BDP and repeat c).
e) Set the sender’s congestion control to BBR and repeat c).

f) Setthe sender’s congestion control to Reno and repeat c).

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 15: Analyzing the Impact of Hardware
Offloading on TCP Performance

Document Version: 04-11-2020

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTFOAUCTION ceeeee ettt e e st e e s st e e e s s bbb e e e ssanraeeenans 3
1.1 Introduction to hardware offloadingcccceeevciiiiiieciiieeee e, 3
1.2 The ethtool COMMANG.......ooiiiiiiiiii e e 5
P2 - o B o o To] Uo Y =AY 2P PPPPRR 5
2.1 Startinghost h1 and hoSt h2 ..o 7
3 Emulating a high-1atency WAN ..o e e e e 8
3.1 Adding delay to switch s1 egress interface.........ccocceeevcieeeiccciiie e 8
R IV =T\] o T=AoloT o] T=Tot { o] o [N 9
3.3 Limiting the rate on switch S2 egress interface......ccccccevvieccciieee e, 9
3.4 Modifying end-hosts’ buffer Sizeccooeiiieicccee e, 10
3.5 Performing a throughput testccccuieiiiiiiiieic e 12
4 Disabling hardware offloading........c.eeiieciiiiiicie e 13
4.1 Disabling TSO in the SENAErcciiiiiiie e 13
4.2 Disabling GRO iN the rECEIVET ...cccuviiie et e e 13
4.3 Performing a throughput teStccueviiiieiiiiie e 13
2] =T =Y g Tl PP 14

Page 2

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Overview

The lab aims to explain how to tune the parameters of a Network Interface Controller
(NIC) in order to reduce CPU overhead of TCP flows. These parameters rely on the NIC to
segment the data and then add the TCP, IP and data link layer protocol headers to each
segment. During this lab the user will conduct throughput tests under different network
conditions in order to evaluate the performance.

Objectives

By the end of this lab, students should be able to:

1. Understand network drivers and hardware setting

N

Modify NIC parameters using ethtool.

3. Evaluate the impact of disabling TCP Segmentation Offload (TSO) in the sender
and General Segmentation Offload (GRO) in the receiver.

4. Conduct evaluation tests under different network conditions.

5. Analyze the results after disabling hardware offloading parameters.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

PwnNPE

1 Introduction

Section 1: Introduction.

Section 2: Lab topology.

Section 3: Emulating a high-latency WAN.
Section 4: Disabling hardware optimization.

1.1 Introduction to hardware offloading

Page 3

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Consider Figure 1. It illustrates two scenarios. Figure 1la presents a situation where
hardware offloading is disabled in the sender host. Therefore, the application data is
segmented in the transport layer, in this example in five segments then, these segments
are individually encapsulated by the corresponding layers. Finally, the packets are sent.
Similarly, when hardware offloading is disabled in receiver, the link layer (i.e. Ethernet),
which is implemented in the Network Interface Controller, sends to the upper layers all
the packets as it is received, that is, without grouping the frames in a larger set of data.

On the other hand, Figure 1b shows a scenario where hardware offloading is enabled, in
this case, it is observed that the application data consists in a single data set all the way
down up to the link layer. When the IP datagram reaches the link layer, the NIC performs
data segmentation before they are sent to the destination.

In summary, when hardware offloading is disabled, the Operating System (OS) uses the
CPU to segment TCP packets however, when hardware offloading is enabled, it allows the
NIC to use its own processor to perform the segmentation. This saves on the CPU and
importantly cuts down on the bus communications to/from the NIC. Nevertheless,
offloading does not change what is sent over the network. In other words, offloading to
the NIC can produce performance gains within the sender host, but not across the
network3.

e
User space Application data
__________ TCP
Software TCP segment
3 = i .
0s

|IP datagram
IElI Bl El Bl A

Ethernet frames

Hardware B ENED SRS -

Sent packets

(a)

Page 4

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Application data

TCP segment

Software <

IP datagram

Ethernet frames

Sent packets

(b)
Figure 1. Impact of TCP hardware offloading. (a) Hardware offloading disabled. (b)
Hardware offloading enabled.

1.2 The ethtool command

The is a utility for configuration of Network Interface Controllers (NICs). This
utility allows querying and changing settings such as speed, port, auto-negotiation, PCl
locations and checksum offload on many network devices, especially ethernet devices.
The syntax of the command is as follows:

ethtool <options> <interface> <parameters> on|off

e [ethtooll: query or control network driver and hardware settings.
® [options|: used to specify read or write operation.

e [interface] specifies the network interface where should operate.
e [parameters|: specifies the parameter that will be enabled or disabled.

In this lab, we will use the to modify the sender and receiver NIC configuration.
2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 5

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

sl s2 s3
X 20ms <~ 1 Gbps
\ sl-eth2 s2-ethl s2-eth2 s3-eth2
sl-ethl s3-ethl
h1-ethQ h2-eth0
h1 10.0.0.1 10.0.0.2 h2

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type fpassword|.

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 15.mn topology file and click on Open.

MiniEdit

Edit Run Help

New
m open - x|
Save
Export Level 2 Script Directory: /home/admin/lab_topologies —'| |

[]Lab2.mn [] Lab8.mn [I] Lab 14.mn [] Lab 20.mn
] Lab 3.mn [Z] Lab 9.mn D
[] Lab4.mn [Lab 10.mn [£] Lab 16.mn
] tab5s.mn [] Lab11.mn [] Lab 17.mn
] Lab6.mn [] Lab 12.mn [C] Lab 18.mn
] ab7.mn [] Lab 13.mn [£] Lab 19.mn

[7]

File name: |Lab 15.mn [Open|

Files of type: Mininet Topology @&.mn) —:l Cancel |

Figure 4. MiniEdit’s Open dialog.

Page 6

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Step 3. Before starting the measurements between host hl and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Stop |EJ__

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host hl and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

File Edit Run Help

R
== = ==
sl 52 53
——
Host Options B
————— h2
e——] Terminal

Figure 6. Opening a terminal on host h1l.
Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.2 This command tests the connectivity between host

h1 and host h2. To stop the test, press [ctrl+cd The figure below shows a successful
connectivity test.

Page 7

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

"Host: h1"

rom
from
from
from
from

from

Figure 8 indicates that there is connectivity between host h1 and host h2.

3 Emulating a high-latency WAN

In this section, you are going to tune the network devices in order to emulate a Wide
Area Network (WAN). Firstly, you will add 20ms latency to switch S1’s s1-eth1 egress
interface. Secondly you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 egress interface.

Then, you will set the hosts’ TCP buffers to 8-BDP therefore, the bottleneck is not in the
end-hosts. Finally, you will conduct throughput tests between host hl and h2.

3.1 Adding delay to switch s1 egress interface

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Miniedit

Figure 8. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a

command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Page 8

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Step 2. In the terminal, type the command below. When prompted for a password, type
and hit Enter. This command introduces 20ms delay to switch S1’s s1-eth2
interface.

sudo tc gdisc add dev sl-eth2 root netem delay 20ms

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~
admin@admin-pc:~$ |sudo tc gdisc add dev sl-eth2 root netem delay 20ms
[sudo] password for admin:
admin@admin-pc:~$ [

Figure 9. Adding delay of 20ms to switch S1’s s1-eth2 interface.

3.2 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.2]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from .0.0.2: icmp seg=1 ttl=64 time=41.
64 bytes from .0.0.2: icmp seq=2 ttl=64 time=20.
64 bytes from .0.0.2: icmp seq=3 ttl=64 time=20.

64 bytes from .0.0.2: icmp seq=4 ttl=64 time=20.
oC

- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.087/25.387/41.244/9.155 ms
root@admin-pc:~# |

Figure 10. Output of ping 10.0.0.2]command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.087, 25.387, 41.244, and 9.155 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3.3 Limiting the rate on switch S2 egress interface

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command depicted below. When prompted for a password, type
password and hit Enter.

o [rate]: 1gbit

Page 9

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

e [ourst}: 500,000
o [limit} 2,621,440

sudo tc gdisc add dev s2-eth2 root tbf rate 1lgbit burst 500000 limit 2621440

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ [

admin@admin-pc:~$|sudo tc gqdisc add dev s
[sudo] password for admin:

admin@admin-pc:~$ I
Figure 11. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface.

3.4 Modifying end-hosts’ buffer size

To perform the following calculation, the bottleneck bandwidth is considered as 1 Gbps,
and the Round-trip time delay 20m:s.

In order to have enough TCP buffer size, we will set the TCP sending and receiving
buffer to 8 - BDP in all hosts.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

The send and receive TCP buffer sizes should be set to 8 - BDP to ensure the bottleneck

is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP
instead of 2,500,000 bytes.

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

8 - BDP = 82,621,440 bytes = 20,971,520 bytes

Step 1. At this point, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal

type the command shown below. The values set are: 10,240 (minimum), 87,380 (default),
and 20,971,520 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 20971520’

Page 10

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

"Host: h1"

root@admin-pc:~# |sy -w net.ipv4.tcp rmem='10240 87380 20971520’

vd. tcp 20971520

Figure 12. Receive window change in[sysct1].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 20,971,520 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520’

"Host: h1"

roote) # |sysctl -w net.ipv4.tcp wmem='10240 87 20971520"

10240 8 20971520
root@admin-pc:

Figure 13. Send window change in[sysct1]

Next, the same commands must be configured on host h2, host h3, and host h4.
Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

20,971,520 (maximum).

sysctl -w net.ipvé4.tcp rmem='10240 87380 20971520’

"Host: h2"

971520'

Figure 14. Receive window change in|sysctl]
Step 4. To change the current send-window size value(s), use the following command on

host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520"

"Host: h2"

t.ipv4.tcp wmem='10240 2971520

20971520

Figure 15. Send window change in[sysct1].

Page 11

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

3.5 Performing a throughput test
Step 1. The user can now verify the previous configuration by using the tool to
measure throughput. To launch iPerf3 in server mode, in host h2’s terminal run the

command shown below:

iperf3 -s

"Host: h2"

Figure 16. Host h2 running iPerf3 as server.

Step 2. Now to launch iPerf3 in client mode again by running the following command in
host h1’s terminal.

iperf3 -c 10.0.0.2

"Host: h1"

root@admin-pc:~# |iperf3 -c 10.0.0.2

Connecting to host 10.0.0.2, port 5201

[27] local 10.0.0.1 port 48446 connected to 10.0.0.2 port 5201
ID] Interval Transfer Bitrate Retr Cwnd
27] 0.00-1.00 sec 111 MBytes 932 Mbits/sec 270 3.69 MBytes
27] .00-2.00 sec 114 MBytes 954 Mbits/sec .96 MBytes
27] .00-3.00 sec 114 MBytes 953 Mbits/sec .19 MBytes
27] .00-4.00 sec 114 MBytes 956 Mbits/sec .38 MBytes
27] .00-5.00 sec 114 MBytes 954 Mbits/sec .54 MBytes
27] .00-6.00 sec 115 MBytes 965 Mbits/sec .27 MBytes
271 .00-7.00 e 114 MBytes 954 Mbits/sec .44 MBytes
27] .00-8.00 sec 114 MBytes 954 Mbits/sec .59 MBytes
27] .00-9.00 sec 114 MBytes 954 Mbits/sec .70 MBytes
27] .00-10.00 sec 114 MBytes 954 Mbits/sec .79 MBytes

OLCONOOULHE WN =
WWwwwwasbsbhbw

ID] Interval Transfer IBitrate Retr
27] 0.00-10.00 1.11 GBytes 953 Mbits/sec| 309 sender
271 0.00-10.05 1.10 GBytes | 940 Mbits/sec| receiver

iperf Done.
root@admin-pc:~# [j

Figure 17. Performing a throughput test to verify the configuration.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 953 Mbps (sender) and 940 Mbps (receiver).

Step 3. In order to stop the server, press in host h2’s terminal. The user can see
the throughput results in the server side too.

Page 12

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

4 Disabling hardware offloading

In this section, the user will disable the Generic Segmentation Offload (TSO) in the sender,
and the Generic Receive Offload (GRO) in the receiver. Then, the user will conduct a
throughput test in order to evaluate the impact on the performance.

4.1 Disabling TSO in the sender

Step 1. In host h1 terminal type the following command to disable TSO feature in the
sender.

ethtool -K hl-eth0O tso off

"Host: h1"

root@admin-pc:~#|ethtool -K hl-eth® tso off

root@admin-pc:~# |j

Figure 18. Disabling in the sender.

4.2 Disabling GRO in the receiver

Step 1. In host h2 terminal type the following command to disable GRO feature in the
receiver.

ethtool -K h2-ethO gro off

"Host: h2"
ethtool -K h2-eth® gro off

Figure 19. Disabling in the receiver.

4.3 Performing a throughput test

Step 1. To launch iPerf3 in server mode, in host h2’s terminal run the command shown
below:

iperf3 -s

"Host: h2"

root@dmin-pc:~#

er listening on 5201

Figure 20. Host h2 running iPerf3 as server.

Page 13

Lab 15: Analyzing the Impact of Hardware Offloading on TCP Performance

Step 2. Now to launch iPerf3 in client mode again by running the following command in
host h1’s terminal.

iperf3 -c 10.0.0.2

"Host: h1"

| root@admin-pc:~# iperf3 -c 10.0.0.2

jConnecting to host 10.0.0.2, port 5201

27] local 10.0.0.1 port 48466 connected to 10.0.0.2 port 5201
[ID] Interval

27]
27]
27]
27]
27]
27]
27]
27]
27]
27]

ID] Interval
0.00-10.00
0.00-10.04

27]
27]

0.

LNV E WN -

00-
.00-
.00-
.00-
.00-
.00
.00-
.00-
.00-

.00-

|iperf Done.

| root@admin-pc:~# [

L
2.00
3.00
4.00
5.00

-6.
7
8
9
1

00

00

.00
.00
.00
0.00

sec
Sec
sec
Sec
sec
sec
sec
SecC
sec
SecC

sec
sec

Transfer

-
50.
51
52.
56.
5:7:-
58.
60.
57
56.

2

rNUO O ULNUNOG

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

Transfer

557 MBytes
546 MBytes

Bitrate
467 Mbits/sec
| 456 Mbits/sec

Bitrate

Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec

(o]

HOOOOOOO

Cwnd

1.13 MBytes
.20 MBytes
.25 MBytes
.28 MBytes
.30 MBytes
.30 MBytes
.31 MBytes
.32 MBytes
.35 MBytes
.01 MBytes

el

sender
receiver

Figure 21. iPerf3 throughput test after disabling hardware offloading features.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 467 Mbps (sender) and 456 Mbps (receiver). Results show a decrease in ~60% in the
performance in comparison to the previous test.

Step 3. In order to stop the server, press in host h2’s terminal. The user can see

the throughput results in the server side too.

This concludes Lab 15. Stop the emulation and then exit out of MiniEdit.

References

1. Journey to the center of the linux kernel: traffic Control, shaping and QoS.
[Online]. Available: http://wiki.linuxwall.info/doku.php/en:ressources:dossiers:n
etworking:traffic_control.

2. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

3. Segmentation and Checksum Offloading: Turning Off with ethtool. [Online].
Available: https://sandilands.info/sgordon/segmentation-offloading-with
-wireshark-and-ethtool

Page 14

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 16: Random Early Detection (RED)

Document Version: 10-10-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 16: Random Early Detection

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTFOAUCTION ettt et e e st e e s s sbe e e e s s areeeessnraeeenans 3
1.1 Random Early Detection mechanisSmcccccooeiciciiiiiee e, 4
P2 - o B o o To] Lo =AY 2P PPRPR 6
2.1 Starting host hl, host h2, and host h3 ..., 7
2.1 Emulating high-1atency WANcoooiieee et e e 8
PR S =Y\ a{ o T=Aolo T | o T=Tot { o] o [N 9
3 Testing throughput on a network using Drop Tail AQM algorithm.........ccccvvveeeen. 10
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size........cccccceecuvveeennnee. 10
3.2 Setting switch S2’s buffer size t0 10 BDP......cccvvieeeeciiee e 12
3.3 Throughput and 1atency teStS ..ccceeieiciiieeeee e 13
4 Configuring RED 0N SWItCh S2ccoiiiiiiiiiiiiee et e 18
4.1 Setting RED parameter on switch S2’s egress interfacecccccvcevevvciveeeennnenn. 19
4.2 Throughput and [ateNCy tESTS ..cievuviiie i 19
4.3 Changing the bandwidth to 100MDbBPScceeveiiiiiiiiiieeee e 24
4.4 Throughput and [ateNCy tESTS ..ccivuuiiie i 25
2] =T =Y g Tl PP 30

Page 2

Lab 16: Random Early Detection

Overview

This lab explains the Random Early Detection (RED) Active Queue Management (AQM)
algorithm. This algorithm is aimed to mitigate high end-to-end latency by controlling the
average queue length in routers’ buffers. Throughput, latency and queue length
measurements are conducted in this lab to verify the impact of the dropping policy
provided RED.

Objectives
By the end of this lab, students should be able to:

Identify and describe the components of end-to-end latency.

Understand the buffering process in a router.

Explain the impact of RED handling the queuing policy in a router egress port.
Visualize queue occupancy in a router.

Analyze how RED manages the queue length in order to allow end-hosts to achieve
high throughput and low latency.

6. Modify the network condition in order to evaluate the performance on RED’s
dropping policy.

auhwWwnN R

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing throughput on a network using Drop Tail AQM algorithm.
4. Section 4: Configuring RED on switch S2.
1 Introduction

Page 3

Lab 16: Random Early Detection

End-to-end-congestion control is widely used in the current Internet to prevent
congestion collapse. However, because data traffic is inherently bursty, routers are
provisioned with large buffers to absorb this burstiness and maintain high link utilization.
The downside of these large buffers is that if traditional drop-tail buffer management is
used, there will be high queuing delays at congested routers. Thus, drop-tail buffer
management forces network operators to choose between high utilization (requiring
large buffers), or low delay (requiring small buffers).

Random Early Detection (RED) was proposed by Floyd and Van Jacobson! to address
network congestion in a responsive rather than reactive manner. The main goal of RED is
to provide congestion avoidance by controlling the average queue size. Other goals are
the avoidance of global synchronization and introduce fairness to reduce the bias against
bursty traffic. TCP global synchronization happens to a TCP flow during periods of
congestion when each sender reduces and then increase their transmission rate at the
same time due to packet loss.

1.1 Random Early Detection mechanism

Figure 1(a) illustrates scenario where a router’s buffer is managed by Random Early
Detection. RED uses a low-pass filter with an exponential moving average to calculate the
average queue size. Then, the average queue size is compared to two thresholds, a
minimum threshold and a maximum threshold. Consequently, the packet drop probability
is determined by the function shown in the Figure 1(b). When the average queue size is
less than the minimum threshold, no packets are dropped. When the average queue size
is greater than the maximum threshold, every arriving packet is marked therefore, they
are dropped. When the average queue size is between the minimum and the maximum
threshold, each arriving packet is marked with drop probability. Thus, RED has two
separate algorithms. First, the algorithm for computing the average queue size that
determines the degree of burstiness allowed in the queue. Secondly, the algorithm for
calculating the packet marking probability, which determines how frequently the gateway
marks or drop packets, given the current level of congestion. The goal is for the gateway
to mark packets at evenly spaced intervals, in order to avoid biases global synchronization
by marking packets to control the average queue size.

Queue buffer

Incoming _— Qutgoing
—>
packet . 01 0] |] packet
A
Random ;jzie
d
rop length
Drop
probability
calculation

(a)

Page 4

Lab 16: Random Early Detection

¥

No drop ' Random drop ' Drop all '
I 1 1
i i i
I 1 1
I 1 1
I 1 1
i i i
100% l I 1
i |
> i i
= | !
s i i
@ | 1
o 1 r 1
[e] 1 ! 1
g : : :
1 r 1
S : : :
b= | 5 i
2 i i !
Q 1 y 1

& i : L .
1 : |
' Average queue length : !
I ' 1
- - v

Minimum Maximum Maximum

threshold threshold queue length

(b)
Figure 1. Behavior of Random Early Detection AQM. (a) Buffer managed by RED AQM. (b) RED
dropping function.

The basic syntax used with [cd]is as follows:

tc gdisc [add | ...] dev [dev id] root red limit [BYTES] max [BYTES] min
[BYTES] burst [BYTES] avpkt [BYTES] bandwidth [BPS] [probability
[RATE] |adaptative] ecn

e [t Linux traffic control tool.

e [gdisdl: A queuediscipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

e [[add | del | replace | change | showl]]: This is the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change| or [del],
respectively.

e [dev [dev id]]: This parameter indicates the interface is to be subject to
emulation.

e [red}: This parameter specifies the Random Early Detection algorithm.

e [limit [BYTES]: Hard limit on the real (not average) queue size in bytes. Further
packets are dropped. Should be set higher than max+purst].

e [max [BYTES]|: This parameter specifies the maximum average queue size. After
this value, the dropping probability is 100%. It is recommended to set this value
to [Limit]/4.

e [min [BYTES]|: This parameter specifies the minimum average queue size. Below
this value, no packet is dropped. Above this threshold, the dropping probability is

established by probability]or it increases linearly if the parameter

is set.
e [avpkt] Used with burst to determine the time constant for average queue size
calculations. It is suggested 1000 as good value.

Page 5

Lab 16: Random Early Detection

e furst [BYTES]: Used for determining how fast the average queue size is
influenced by the real queue size. Larger values make the calculation slower,
allowing longer bursts of traffic before the marking or dropping phase starts.
Empirical evaluations suggest the following guideline to set this value:
(2-mintHmax])/(3avpkt]).

e Dbandwidth [BPS]|: This value is optional and used to calculate the average queue
size after any idle time. It should be set to the bandwidth of the interface. This
parameter does not limit the rate. The default value is 10Mbps.

e [ecnl: This parameter enables RED to notify remote hosts that their rate exceeds
the amount of bandwidth available. Non-ECN capable hosts can only be notified
by dropping a packet.

e |probability] This value specifies the dropping probability after the average
gueue length surpass the min threshold. It is specified as a floating point from 0.0
to 1.0. Suggested values are 0.01 or 0.02 (1% or 2% respectively).

® [adaptative]: This parameter sets a dynamic value to the dropping probability.
This value varies from 1% to 50%.

In this lab, we will use the AQM algorithm to contain the queue size at the egress
port of a router.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1

h1-eth0

s2
1 Gbps
s1-eth1 s2-eth1 s2-eth2 h3-eth0

h2-eth0

Figure 2. Lab topology.
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Page 6

Lab 16: Random Early Detection

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 16.mn topology file and click on Open.

MiniEdit

Edit Run Help

New
Save = Open - O X
Export Level 2 Script

Directory: /home/admin/lab_topologies = | @
quk [lLab2.mn [JLab8.mn []Lab1l4.mn [Lab 20.mn

[E] Lab3.mn [C] Lab 9.mn [5] Lab 15.mn
[]Lab 4.mn [Lab 10.mn [/ [ERFCERY
[E] Lab5.mn [5] Lab 11.mn [5] Lab 17.mn
[£] Lab 6.mn [Z] Lab 12.mn [£] Lab 18.mn
[] Lab 7.mn [5] Lab 13.mn [£] Lab 19.mn

4] ¥

File name: |Lab 16.mn I Open I

Files of type: Mininet Topology (*.mn) —-l Cancel I

ﬂ

i
\

s

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Stop ‘F_Ii
Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, and host h3

Page 7

Lab 16: Random Early Detection

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

File Edit Run Help

| R
E |
Host Options
Lt 7“\ g E "
f?@@é?] 2

sl s2 h3

Figure 6. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.3]. This command tests the connectivity between host
hl and host h3. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
bytes from 10.0.0.3: icmp seq=1 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=2 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=3 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=4 ttl=64 time=0.

bytes from 10.0.0.3: icmp seq=5 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=6 ttl=64 time=0.

10.0.0.3 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time
rtt min/avg/max/mdev = 0.063/0.111/0.340/0.102 ms
root@admin-pc:~# |

Figure 7. Connectivity test using command.

2.1 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 8

Lab 16: Random Early Detection

Miniedit

Figure 8. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a

command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type

and hit Enter. This command introduces 20ms delay to switch S1’s s1-ethl
interface.

sudo tc gdisc add dev sl-ethl root netem delay 20ms

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ (%]

ladmin@admin-pc:
|[sudo] password for admin:
ladmin@admin-pc:

Figure 9. Adding delay of 20ms to switch S1’s s1-ethl1 interface.

2.4 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.3]. To stop the test, press[Ctrl+d|.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

"Host: hl1"

:~#|ping 10.0.0.3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp seq=1 ttl=64
64 bytes from 10.0.0.3: icmp seq=2 ttl=64
64 bytes from 10.0.0.3: icmp g=3 ttl=64

64 bytes from 10.0.0.3: icmp seq=4 ttl=64 time=20.
i

10.0.0.3 ping statistics
4 packets transmi ed eived, 0% packet loss, time 7ms
rtt min/avg/ de 0.080/25.390/41.266/9.166 ms
root@admin-pc:~

Figure 10. Output of ping 10.0.0.3]command.

Page 9

Lab 16: Random Early Detection

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type jping 10.0.0.3]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

"Host: h2"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from .0.0.3: seq=1 ttl=64 time=40.
64 bytes from .0.0.3: seq=2 ttl=64 time=20.
64 bytes from .0.0.3: seq=3 ttl=64 time=20.

64 bytes from .0.09.3: seq=4 ttl=64 time=20.
i

- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 20.090/25.257/40.745/8.943 ms
root@admin-pc:~# |j

Figure 11. Output of ping 10.0.0.3/command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing throughput on a network using Drop Tail AQM algorithm

In this section, you are going to change the switch S2’s buffer size to 10 - BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tb£]) as well as hosts’
h1l and h3 TCP sending and receiving windows. The AQM algorithm is Drop Tail, which
works dropping newly arriving packets when the queue is full therefore, the parameter
that is configured is the queue size which is given by the limit value set with the rule.
Then, you will test the throughput between host h1 and host h3. In this section, 10 - BDP
is 25 Mbytes, thus the limit value will be set to 10 - BDP = 26,214,400 bytes.

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits

Page 10

Lab 16: Random Early Detection

= 2,500,000 bytes = 2.5 Mbytes
1 Mbyte = 10242 bytes
BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to 10-BDP. In addition, to ensure that the bottleneck is not the hosts’
TCP buffers, we configure the buffers to 20-BDP (52,428,800).

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1l’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled (2-10-BDP) as Linux only allocates
half of the assigned value.

sysctl -w net.ipvé4.tcp rmem='10240 87380 52428800’

"Host: h1"

root@admin-pc:~# |sysctl -w net.ipv4.tcp rmem='10240 87380 52428800

net.ipv4.tcp rmem = 10240 87380 52428800

root@admin-pc:~#
Figure 12. Receive window change in[sysctl].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipvé4.tcp wmem='10240 87380 52428800’

"Host: h1"
root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800

root@admin-pc:~# [
Figure 13. Send window change in [sysctl].

Step 3. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and

Page 11

Lab 16: Random Early Detection

52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

"Host: h3"

rmem="10240 B8

Figure 14. Receive window change in[sysct1].

Step 4. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipvé4.tcp wmem='10240 87380 52428800’

"Host: h3"

root@admin-pc:~# sysctl -w net.ipv4.tcp wmem='10240 87380 52428800'

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# ||

Figure 15. Send window change in[sysct1]

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

3.2 Setting switch S2’s buffer size to 10 - BDP

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s

terminal, type the command below. When prompted for a password, type and
hit Enter.

o [rate] 1gbit
e [burst: 500,000
e [limit] 26,214,400

sudo tc gdisc add dev s2-eth2 root handle 1: tbf rate lgbit burst 500000 limit
26214400

Page 12

Lab 16: Random Early Detection

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~]

admin@admin-pc:
1gbit burst 5080

admin@admin-pc:

Figure 16. Limiting rate to 1 Gbps and setting the buffer size to 10 - BDP on switch S2’s interface.

3.3 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

“"Host: h3"

root@admin-pc:~# |iperf3 -

Figure 17. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

Figure 18. Plotting the queue occupancy on switch S2’s s2-eth2 interface.
A new window opens that plots the queue occupancy as shown in the figure below. Since

there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Page 13

Lab 16: Random Early Detection

| Gnuplot -0 X

1 T T T T

T
"gq_out" using 1:2 ——

0.5 .

-1 1 1 1 1 L
0 50 100 150 200 250 300

Figure 19. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. In host hl, create a directory called Drop_Tail and navigate into it using the
following command:

mkdir Drop Tail && cd Drop Tail

"Host: h1"

min-pc:~# | mkdir Drop Tail && cd Drop Tail
min-pc:~/Drop Tail# |}

Figure 20. Creating and navigating into directory Drop_Tail.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1l"

root@dmin-pc:~/Drop Tail#|iperf3 -c 186.8.0.3 -t 98 -] = @ut.jsonl

Figure 21. Running iPerf3 client on host h1.
Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

"Host: h2"

Page 14

Lab 16: Random Early Detection

Figure 22. Typing command on host h2.

Step 6. Press Enter to execute the commands, first in host hl terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

3X10 T T T T T T T T T
"qoout" using 1:2 ——
f .
2,5x10" | / yal 4
I/ v
f :;_. - _-_;/_ -
7 / -
210 / ;/ Vel -
; f
150" | / -
7
10" - / J
sa0” | / -
v
-
0 A 1 L L 1 L 1 1 L
0 20 40 £0 80 100 120 140 160 180 200

Figure 23. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 - 107, which is the
maximum buffer size we configure on the switch.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot iperf.sh out.json && cd results

"Host: h1"

dmin-pc:~/Drop Tail# plot iper
/Drop Tail/results# |

f.sh out.json && cd results

Figure 24. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1l.

xdg-open throughput.pdf

“"Host: h1"

root@admin-pc:~/Drop Tail/results# |xdg-open throughput.pdf I

Page 15

Lab 16: Random Early Detection

Figure 25. Opening the throughput.pdf file.

Throughput over time
1000 T | . T T I
900 : : : :
111 J SRR NSRS SRR SOOI PR AN M
e Jl EEEE : : § i
YL U U WO S U U S E——
500 [: § § : —

Mbps

200 e T U ST S .
0 I I i i I i 1 i
0 10 20 30 40 50 60 70 80 90
Time (sec)
Figure 26. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is approximately 900 Mbps. We can see now that the maximum
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 10 - BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:~/Drop Tail/results#|xdg-open RTT.pdf I

Figure 27. Opening the RTT.pdf file.

Page 16

Lab 16: Random Early Detection

250000

200000

150000

RTT

100000

50000

RTT over time

30 40
Time (sec)

50

60

Figure 28. Measured round-trip time.

70 80 90

The graph above shows that the RTT was approximately 200,000 microseconds (200ms)
The output shows that there is bufferbloat as the average latency is at least ten times
greater than the configured delay (20ms).

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the output.

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

10.0.

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

(<]

10.€

10.
10.
10.
10.
10.
10.
10.0.

oo NoNoNoNoNol

OO OCOCOCOOOCDOODOCDOOODODO O

icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp

0.3 ping statistics
90 packets transmitted

rtt min/avg/max/mdev
root@admin-pc:~# |}

seq=72
seq=73
seq=74
seq=75
seq=76
seq=77
seq=78
seq=79
seq=80
seq=81
seq=82
seq=83
seq=84
seqg=85
seq=86
seq=87
seq=88
seq=89
seq=90

"Host: h2"

tt1=64
tt1=64
ttl=64
tt1=64
tt1=64
tt1l=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
ttl=64
ttl=64
tt1=64

time=227
time=228
time=164
time=165
time=169
time=173
time=177

time=180

time=183
time=185
time=187
time=190
time=190
time=191
time=192
time=193

Figure 29. test result.

ms

ms
ms
ms
ms
ms
ms

time

103ms

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.083, 192.823, 228.407, and 26.954 milliseconds, respectively. The

Page 17

Lab 16: Random Early Detection

output also verifies that there is bufferbloat as the average latency (192.823) is
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/Drop Tail/results# xdg-open cwnd.pdfl

Figure 30. Opening the cwnd.pdf file.

Sent Cwnd over time
30000 T T T T

25000

20000

15000

Cwnd

10000

5000

0 i i i i i i i i
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 31. Congestion window evolution.

The graph above shows the evolution of the congestion window which peaked at 2.5
Mbytes. In the next section you will configure Random Early Detection on switch S2 and
observe how the algorithm controls the queue length.

Step 13. To stop iperf3 server in host h3 press[ctrl+d]

4 Configuring RED on switch S2
In this section, you are going to configure Random Early Detection in switch S2. Then, you

will conduct throughput and latency measurements between host hl and host h3. Note
that the buffer size is set to 10-BDP.

Page 18

Lab 16: Random Early Detection

4.1 Setting RED parameter on switch S2’s egress interface

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s

terminal, type the command below. When prompted for a password, type and
hit Enter.

e [Limit]: 26,214,400
o [uax; 8,738,133

e [uin} 2,184,533

e |[ourst] 2185

e [upkd: 1000

® [pandwidth]: 1gbit
.

sudo tc gdisc add dev s2-eth2 parent 1: handle 2: red limit 26214400 max
8738133 min 2184533 burst 2185 avpkt 1000 bandwidth lgbit adaptative

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ LX)

admin@admin-pc:~S
738133 min

admin@admin-pc:

Figure 32. Setting RED parameters on switch S2’s s2-eth2 interface.

4.2 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

root@dmin-pc:~# |iperf3 -

Figure 33. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

admin@admin-pc: ~
File Actions Edit View Help

admin@admin-pc: ~ (X

Page 19

Lab 16: Random Early Detection

Figure 34. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

1 T T T T

T
"q_out" using 1:2 ——

0.5 - i

- 1 1 1 1 L
0 50 100 150 200 250 300

Figure 35. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from Drop_Tail/results directory, then create a directory RED and navigate
into it using the following command.

cd ../../ && mkdir RED && cd RED

"Host: h1"

c:~/Drop Tail/results#|cd ../.. && mkdir RED && cd RED
~/RED#]

Figure 36. Creating and navigating into directory RED.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1"

root@admin-pc:~/RED# |iperf3 -c 10.0.0.3 -t 90 -] > out.]smnl

Figure 37. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Page 20

Lab 16: Random Early Detection

"Host: h2"

1-pc:~# [ping 10.0.0.3 -c 90l

Figure 38. Typing command on host h2.

Step 6. Press Enter to execute the commands, first in host h1l terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

410 T T T

"q_outl" uging 112 ——

3.540° | 4
30’ | 4
2‘5x108 . 1 i
2a0® | ‘ [,

o f“ﬂ M~/ ﬂ !

Sl VA 11 IV i I '
pac® || ' [I N

500000 1 -

0 i 1 1 i
0 50 100 150 200 250

Figure 39. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 3.5-10° bytes, which is
closer to a buffer of BDP size.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

:~/RED#|plot iperf.sh out.json && cd results
JRED/results# l

Figure 40. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Page 21

Lab 16: Random Early Detection

"Host: h1"

root@admin-pc:~/RED/results# |[xdg-open throughput.pdf l

Figure 41. Opening the throughput.pdf file.

Throughput over time
1000 | T T T T] T \

goow—’“ﬁw-’\—"—/\w-
8OO [
FOR) [U N ——
717 IR . S — —
L e o TRTN S e e
200 % VN SN S W
c1)) J PECE S AR ISP RSP s s P, S
SO NSV U A SAPNS SO AOTS AU AT SO
1" 1L IRIOUS NI SRUTROIOIS SOOI DU SO W8 . S

0 i i i i i i i i
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 42. Measured throughput.

Mbps

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also
achieved (1 Gbps) when we set RED at the egress port of switch S2.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT.pdf) file
using the command below.

xdg-open RTT.pdf

"Host: h1l"

root@admin-pc:~/10BDP/results#|xdg-open RTT.pdf

Figure 43. Opening the RTT.pdf file.

Page 22

Lab 16: Random Early Detection

RTT over time
45000 T T T T T

40000
35000
30000

25000 | S T—— - —

RTT

26000 |t : ‘ .
15000 | : ! -
10000 | : : : E
5000 | » .

0 i I 1 | 1 i i 1
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 44. Measured Round-Trip Time.

The graph above shows that the RTT was contained between 30ms and 40ms which is not
significantly greater that the configured delay (20ms) thus, there is not bufferbloat. Since
the AQM algorithm configured on the switch is applying a dropping policy to prevent
unnecessary delays.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the output.

"Host: h2"

bytes from 10.
bytes from 16.
bytes from 16.
bytes from 10.
bytes from 160.
bytes from 16.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 16.
bytes from 10.
bytes from 10.
bytes from 16.

icmp seq=72 ttl=64 time=34.
icmp seq=73 ttl=64 time=35.
icmp seg=74 ttl=64 time=37.
icmp seq=75 ttl=64 time=37.
icmp seq=76 ttl=64 time=27.
icmp seq=77 ttl=64 time=29.
icmp seq=78 ttl=64 time=31.
icmp seq=79 ttl=64 time=33.
icmp seq=80 ttl=64 time=34.
icmp seq=81 ttl=64 time=36.
icmp seq=82 ttl=64 time=34.
icmp seq=83 ttl=64 time=37.
icmp seq=84 ttl=64 time=27.
icmp seq=85 ttl=64 time=27.
icmp seq=86 ttl=64 time=29.
icmp seq=87 ttl=64 time=29.
icmp seq=88 ttl=64 time=31.
icmp seq=89 ttl=64 time=31.
icmp seq=90 ttl=64 time=31.

NOOOOODTWEsODOODOLOLULUEWWW

oNolloNoNoNoNoNoNoNoNoNoNoNoNoRoNoNo RO
olooNoNoNoNoNoNoNoNoNoNoRoNoRoNoRNo RO
WWWwWwwwwwwwwwwwwwwww

10.0.0.3 ping statistics ---
packets transmitted, 90 received acket loss, time 229ms
rtt min/avg/max/mdev =

root@admin-pc:~# [}

Figure 45. test result.

Page 23

Lab 16: Random Early Detection

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 26.833, 34.048, 38.824, and 3.311 milliseconds, respectively. The output
also verifies that there is not bufferbloat as the average latency (34.048) is not
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/RED/results#|xdg-open cwnd.pdf I

Figure 46. Opening the cwnd.pdf file.

Sent Cwnd over time
5000 T . T q T g
4500 : ' ' ' '
4000
3500 _ _ : : _
SO NS S S NN N G S B
SUSRY N N OV S SO SN SR N W
271 J WU SUSUR. SRUOUNS SPS. S R NV SO S
ool
500 [i » é f é ? J—

0 i i | i i i i i
0 10 20 30 40 50 60 70 80 a0

Time (sec)
Figure 47. Evolution of the congestion window.

Cwnd

The graph above shows the evolution of the congestion window which peaked around 5 Mbytes.
In the next section you will maintain the current parameters of Random Early Detection on switch
S2 however, you will change the link rate in order to verify if the algorithm performs well if the
network condition changes.

Step 13. To stop iperf3 server in host h3 press[ctrl+d]

4.3 Changing the bandwidth to 100Mbps

This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps while
RED is tuned to work with the previous network condition. The results will show that RED
requires a reconfiguration if the network conditions changes (i.e, latency, bandwidth, loss
rate). First, you will change the bandwidth to 100 Mbps then, you will observe the queue

Page 24

Lab 16: Random Early Detection

occupancy, RTT and congestion window in order to evaluate the performance of RED
when the network condition changes.

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [tate 100mbit
e [uzst} 50,000
e [[imit} 26,214,400

sudo tc gdisc change dev s2-eth2 root handle 1: tbf rate 100mbit burst 50000
limit 26214400

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

root handle 1: tbf rate 10@mbit burst

admin@admin-pc:-~$ |sudo tc gdisc change dev s2-eth2

50000 Llimit
admin@admin-pc:~$

Figure 48. Limiting rate to 100 Mbps and keeping the buffer size to 10-BDP on switch S2’s interface.

4.4 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

root@admin-pc:~# |iperf3 -

Figure 49. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

Figure 50. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

Page 25

Lab 16: Random Early Detection

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

1 T T T T

T
"q_out” using 1:2 ——

0.5 .

-1 1 1 1 1 L
0 50 100 150 200 250 300

Figure 51. Queue occupancy on switch S2’s s2-eth2 interface.
Step 3. Exit from RED/results directory using the following command:

cd ..

"Host: h1l"

root@admin-pc:~/RED/results# |cd
root@admin-pc:~/RED# [

Figure 52. Creating and navigating into directory 1BDP.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1"

root@admin-pc:~/RED# |iperf3 -c 10.0.0.3 -t 90 -] = out.]smnl

Figure 53. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Page 26

Lab 16: Random Early Detection

"Host: h2"

dadmin-pc:~# |ping 10.0.0.3 -cC E—..'Eiill

Figure 54. Typing command on host h2.

Step 6. Press Enter to execute the commands, first in host h1l terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

3x10 T T T T
“g_out" using 112 ——
Z.SxIUB H II.‘ .
i , -
(J F ""_/ }/ /] | /j\
2a0° | / ./ o |/ ‘ { -
V /| / I ‘
: Ly AP
1,510 + // - B
lxIUB - -
GOO000 + _
0 1 i 1
0 50 100 150 200 250

Figure 55. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked over 2.5-108, which is around
average queue length for a 1 Gbps link. However, in this case we set a 100 Mbps link when
RED is configured to operate for 1 Gbps link therefore, the point of operation changed.
Consequently, bufferbloat is experienced thus, it is necessary to reconfigure RED
parameters in order to mitigate the excessive queue length.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

~/RED# |plot iperf.sh out.json && cd results
-/RED/results# |

Figure 56. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

Page 27

Lab 16: Random Early Detection

xdg-open throughput.pdf

"Host: h1"

root@admin-pc:~/RED/results# |[xdg-open throughput.pdf l

Figure 57. Opening the throughput.pdf file.

Throughput over time
180 T T T

11| S — ; ‘ T 4
140 |
120
100

Mbps

80 -

60 -

0 1 l 1 | 1 1 I 1
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 58. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 100 Mbps.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:~/10BDP/results#|xdg-open RTT.pdf

Figure 59. Opening the RTT.pdf file.

Page 28

Lab 16: Random Early Detection

350000

300000

250000

200000

RTT

150000

100000

50000

RTT over time

1

1

I T

1 1

T

1

1 L 1

10

20

30 40 50

Time (sec)
Figure 60. Measured Round-Trip Time.

60 70 80 90

The graph above shows that the RTT increased from approximately ten times the default
latency (20ms). The output above shows that there is a bufferbloat problem as the
average latency is significantly greater. Since RED is configured to operate on a 1 Gbps
link, for this test the point of operation changed therefore, unnecessary delay is observed.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the output.

bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
16.
10.
10.
10.
10.
10.
10.
10.

[oNoNoNoNoNoNoNoNoNoNoNoNoRoNo oo NN
loloNoNoNoNoNoNoRoNoNoNoNoNBoNoNoRoRNoNo
WWWwWwwwwwwwwwwwwwwww

icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp

i-»- 10.0.0.3 ping statistics -
|90 packets transmitted, 90 received

|rtt min/avg/max/mdev =[148.914/186.175/468

| root@admin-pc:~#

Figure 61. test result.

seq=72
seq=73
seq=74
seq=75
seq=76
seq=77
seq=78
seq=79
seq=80
seq=81
seq=82
seq=83
seq=84
seq=85
seq=86
seq=87
seq=88
seq=89
seq=90

"Host: h2"

tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
ttl=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
ttl=64
tt1=64
tt1l=64
tt1=64
tt1=64

time=169
time=171
time=174
time=174
time=175
time=174
time=174
time=176
time=177
time=178
time=180
time=185
time=191
time=198
time=208
time=160
time=166
time=180
time=192

% packet loss, time 183ms

EERTTY

Page 29

Lab 16: Random Early Detection

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 148.914, 186.175, 468.728 and 33.481 milliseconds, respectively. The
output also verifies that there is a bufferbloat problem as the average latency (186.175)
is significantly greater than the configured delay (20ms).

Step 12. Close the RTT.pdf window then open the congestion window (cwnd.pdf) file using
the command below.

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/RED/results# |xdg-open cwnd.pdf I

Figure 62. Opening the cwnd.pdf file.

Sent Cwnd over time
3000 T T T T ;

2500

2000

1500

Cwnd

1000 [§ - ~ : : § o

0] i | | i i i i

0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 63. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 2.5 Mbytes.
Step 13. To stop iperf3 server in host h3 press[Ctrl+d]
This concludes Lab 16. Stop the emulation and then exit out of MiniEdit.
References
1. S. Floyd, V. Jacobson, “Random early detection gateways for congestion

avoidance”. IEEE/ACM Transactions on networking, 1993.

Page 30

Lab 16: Random Early Detection

2.

3.

4.

S. Floyd, R. Gummadi, S. Shenker. “Adaptive RED: An algorithm for increasing the
robustness of RED’s active queue management.” 2001.

J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Page 31

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 17: Stochastic Fair Queueing (SFQ)

Document Version: 11-12-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 17: Stochastic Fair Queuing

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTFOAUCTION ceeeee ettt e e st e e s st e e e s s bbb e e e ssanraeeenans 3
1.1 FIFO queueing diSCiPliNe.. ...t e e 3
1.2 SFQ queueing disCiPliNg.......ueieiiie i e e rrrrre e e 4
P2 - o B o o To Lo T =4V Z U PPPPR 5
2.1 Starting host hl, host h2, hosth3 and hosth4ccccoeviiiiici e, 7
2.2 Emulating high-1atency WAN.......ccoo it e 8
PSR =151 a1 o T olo T [o T=Tot { o] o TSRO PR 9
3 Testing the throughput of two competing TCP flows........ccoocoieiiiiiiieeeccieee e, 9
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer sizecccceeeeuuneee.. 10
3.2 Modifying hosts’ buffer Size ..o 10
3.3 Changing congestion control algorithm in host hl and host h2 13
3.4 Setting switch S2’s buffer $ize t0 BDPcccuviviieiieeieeee e, 14
3.5 ThroUughput TESTS oo e e e s 14
4 Configuring SFQ on SWitCh S2cccciiiiiiiiie e s 17
4.1 Setting SFQ parameter on switch S2’s egress interface.......cccccccceeevcveeeeennnee. 18
A 1 o1 (o TUT=d o o TU L = SR 18
2] =T =Y gVl TP 22

Page 2

Lab 17: Stochastic Fair Queuing

Overview

This lab introduces to Stochastic Fair Queuing (SFQ), which is a queueing discipline aimed
to ensure fairness between TCP flows. The lab describes the steps to conduct throughput
tests that shows the benefits of isolating the dynamic of competing TCP flows by applying

SFQ rules to a router egress’ interface.

Objectives

By the end of this lab, students should be able to:

PwnNPE

Identify and describe the components of end-to-end latency.
Understand the scheduling process in a router.

Explain the impact of using SFQ to isolate the dynamic of competing TCP flows.
Visualize the interaction of competing TCP flows after SFQ is configured on a

router’s interface.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

1.1

Section 1: Introduction.
Section 2: Lab topology.

PwnNPE

Introduction

FIFO queueing discipline

Section 3: Testing the throughput of two competing TCP flows
Section 4: Configuring SFQ on switch S2.

Page 3

Lab 17: Stochastic Fair Queuing

First-in, first-out (FIFO) queuing is the most basic queue scheduling discipline. It is also the
default queueing discipline in Linux and most of the routers?. In FIFO queuing, all packets
are treated equally by placing them into a single queue, and then delivering them in the
same order that they were placed into the queue (see Figure 1).

Incoming flows

Flow 1 -, —
Flow 2 [] — =z
Flow 3 TR > % FIFO queue
= - — Bl B [B —> Egress port
Flow 4 [] —> g
SEE———)
Flow 5 —> =
Flow 6 —>/

Figure 1. FIFO queuing discipline.

FIFO queuing presents advantages for software-based routers due to its low
computational load on the system when compared with other queueing disciplines.
Additionally, the behavior of a FIFO queue is very predictable, which means that packets
are not reordered, and the queue delay is determined by the maximum depth of the
gueue. If the queue depth remains short, FIFO queuing provides simple contention
resolution for network resources without adding significantly delay to the link.

However, a single FIFO queue does not allow routers to classify packets or set priorities.
If a router uses a single FIFO queue, it will impact all flows equally, this means that the
average queuing delay for all flows increases as congestion increases. As a result, FIFO
gueuing can result in increased delay, jitter, and loss for real-time applications. Another
limitation of FIFO queuing is that bursty TCP flows can consume the entire buffer space
of a FIFO queue, and that causes all other flows to be denied service until after the burst
is serviced. This can result in increased delay, jitter, and loss for the other coexistent TCP
flows

1.2 SFQ queueing discipline

Stochastic Fairness Queueing (SFQ) is a classless queueing discipline available for traffic
control. SFQ does not shape traffic but only schedules the transmission of packets, based
on classified flows?. The goal of the algorithm is to ensure fairness so that each flow can
send data in turn thus, preventing any single flow from drowning out the rest. This feature
may in fact have some effect in mitigating a Denial of Service attempts. SFQ is work-
conserving and therefore always delivers a packet if it has one available.

SFQ classifies flows in a fixed set of queues serviced in strict round-robin order. The
maximum number of queues is configurable (1024 by default in the Linux
implementation). In order to assign a queue to an ingress packet, a hash function is
applied to its 5-tuple determined by the IP source and destination, layer 4 port source
and destination and layer 4 protocol number. Packets with the same hash are assigned to
the same queue. Because of the hash, multiple sessions might end up in the same bucket,

Page 4

Lab 17: Stochastic Fair Queuing

which would halve each session is chance of sending a packet, thus halving the effective
speed available. To prevent this situation from becoming noticeable, SFQ changes its
hashing algorithm quite often so that any two colliding sessions will only do so for a small
number of seconds.

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

Flow 6

Incoming flows Hashed flows
A — ma i1 H I

| RN — mal H I |
[I | —> T
— — [

| e« — | |

Figure 2. SFQ queuing discipline.

Jaljisse|d
13|npayas

The basic syntax used with [td]is as follows:

Egress port

—>[N

tc gdisc [add | ...] dev [dev_id] root sfqg perturb [seconds] quantum

e [t Linux traffic control tool.

ladisdcl: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

[[add | del | replace | change | show]] thisis the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change] or [del],
respectively.

[dev [dev_id]]: this parameterindicates the interface is to be subject to emulation.
[s£q: this parameter specifies the Stochastic Fair Queueing algorithm.

perturb): It is used to specify the interval in seconds for queue algorithm
perturbation. If the value is set to 0 indicate that no perturbation occurs. It is
recommended avoiding low values to prevent packet reordering. Empirical
evaluations recommend this value set to 10 seconds.

[quantun: Denotes the number of bytes which a flow can dequeue during a round
of the round-robin process. It is recommended to set this value not less than the
Maximum Transmission Unit (MTU).

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology

uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 5

Lab 17: Stochastic Fair Queuing

h1 h3

h3-eth0

s1-eth1

h4-eth0

Figure 3. Lab topology.
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 17.mn topology file and click on Open.

o] MiniEdit

Edit Run Help

New

f

Save

rt Level i
St Directory: /home/admin/lab_topologies _‘l @

Quit

[JLtab2.mn [7]Lab8.mn [Lab14.mn [5] Lab 20.mn
[E]ab3.mn [[] Lab9.mn [] Lab 15.mn
[[] Lab4.mn [Lab 10.mn [£] Lab 16.mn
[JLab5.mn [tab 11.mn CI[ERERE
[£] Lab 6.mn [5] Lab 12.mn [Z] Lab 18.mn
[[] Lab 7.mn [£] Lab 13.mn [£] Lab 19.mn

[4] ¥

File name: |Lab 17.mn I gpenl

Files of type: Mininet Topology (*.mn) —ul Cancel |

-m%

Figure 5. MiniEdit’s Open dialog.

Page 6

Lab 17: Stochastic Fair Queuing

Step 3. Before starting the measurements between end hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Stop h‘\-li
Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, host h3 and host h4

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

- MiniEdit

File Edit Run Help

B

Host Options

ITerminaI I \
——

[
- ha

Figure 7. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command [ping 10.0.0.3] This command tests the connectivity between host
h1 and host h3. To stop the test, press [ctrl+cd The figure below shows a successful
connectivity test.

Page 7

Lab 17: Stochastic Fair Queuing

"Host: h1"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
bytes from 10.0.0.3: icmp seq=1 ttl=64 time=0.
bytes from 10.0.0.3: icmp
bytes from 10.0.0.3: icmp
bytes from 10.€ 3

tt1l=64 time=0.€
tt1l=64 time=0.
tt1=64 time=0.
tt1l=64 time=0.
6 tt1l=64 time=0.

(1]
o O
" n
N

0 : 1cmp
bytes from 10.0.0.3: icmp
bytes from 10.0 : icmp

m ® 0

L0 £ d
Inn

wm e Ww

nwuvunununn

(1)
L0
1]
(=)

10.0.0.3 ping statistics -
6 packets transmitted, 6 received, 0% packet loss, time 123ms
rtt min/avg/max/mdev = 0.063/0.111/0.340/0.102 ms
root@admin-pc:~# |

Figure 8. Connectivity test using command.

2.2 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Miniedit

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
fpassword and hit Enter. This command introduces 20ms delay to switch S1’s s1-ethl
interface.

sudo tc gdisc add dev sl-ethl root netem delay 20ms

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ (X

[sudo] password

ladmin@admin-pc:

Figure 10. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Page 8

Lab 17: Stochastic Fair Queuing

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, type ping 10.0.0.3]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

"Host: h1"

root@admin-pc:~#|ping 10.6.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from .0.0.3: seq=1 ttl=64 time=41.
64 bytes from .0.0.3: seq=2 ttl=64 time=20.
64 bytes from .0.0.3: icmp seq=3 ttl=64 time=20.

64 bytes from «8:8:3: 1 seq=4 ttl=64 time=20.
~C

- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.080/25.390/41.266/9.166 ms
root@admin-pc:~# |}

Figure 11. Output of ping 10.0.0.3command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type jping 10.0.0.3]. The ping output in this test
should be relatively similar to the results of the test initiated by host hl in Step 1. To stop

the test, press [Ctri+d.

"Host: h2"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from . .3: icmp seqg=1 ttl=64 time=40.7

64 bytes from g .3: icmp seq=2 ttl=64 time=20.1

64 bytes from : .3: icmp seqg=3 ttl=64 time=20.1
i i

0
0
0
0 icmp seq=4 ttl=64 time=20.1

0.
0.
0.
0.

64 bytes from
i ©

10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 20.090/25.257/40.745/8.943 ms
root@admin-pc:~# I

Figure 12. Output of ping 10.0.0.3/command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing the throughput of two competing TCP flows

Page 9

Lab 17: Stochastic Fair Queuing

In this section, you are going to tune the network devices in order to emulate a Wide Area
Network (WAN). First, you will set the hosts’ TCP buffers to 8:-BDP therefore, the
bottleneck is not in the end-hosts. Then, you will add 20ms latency to switch S1’s s1-ethl
interface. Additionally, you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 interface. Finally, you will conduct throughput tests between two competing TCP
flows which uses different congestion control algorithms (i.e. Cubic, BBR).

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to BDP. In addition, to ensure that the bottleneck is not the hosts’ TCP
buffers, we configure the buffers to 8-BDP (20,971,520).

3.2 Modifying hosts’ buffer size

For the following calculation, the bottleneck bandwidth is considered as 1 Gbps, and the
round-trip time latency as 20ms.

In order to have enough TCP buffer size, we will set the TCP sending and receiving
buffer to 8 - BDP in all hosts.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

Page 10

Lab 17: Stochastic Fair Queuing
The send and receive TCP buffer sizes should be set to 8 - BDP to ensure the bottleneck

is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP
instead of 2,500,000 bytes.

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

8 - BDP = 82,621,440 bytes = 20,971,520 bytes

Step 1. At this point, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal

type the command shown below. The values set are: 10,240 (minimum), 87,380 (default),
and 20,971,520 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 20971520’

"Host: h1"

root@admin-pc:~# sysc -w net.ipv4.tcp rmem='10240 87 20971520

net.ipv4.tcp i 20971520

Figure 13. Receive window change in[sysct]].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 20,971,520 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on

host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520’

"Host: hl"

ipv4.tcp wmem='10240 87380 20971520'

20971520

Figure 14. Send window change in [sysct1].

Next, the same commands must be configured on host h2, host h3, and host h4.
Step 3. To change the current receiver-window size value(s), use the following command

on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 20971520’

Page 11

Lab 17: Stochastic Fair Queuing

"Host: h2"

Figure 15. Receive window change in[sysct1].

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipvé4.tcp wmem=’10240 87380 20971520"

"Host: h2"

20971520 '

Figure 16. Send window change in [sysct1].
Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

20,971,520 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 20971520’

"Host: h3"

pv4.tcp rmem='10240 20971520"

Figure 17. Receive window change in[sysct1].

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520’

"Host: h3"

B 20971520

Figure 18. Send window change in[sysct1].
Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

20,971,520 (maximum).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 20971520’

Page 12

Lab 17: Stochastic Fair Queuing

"Host: h4"
tl -w net.ipv4.tcp rmem='108240

= 10240 3 20971520

Figure 19. Receive window change in[sysct1].
Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4d.tcp wmem=’'10240 87380 20971520’

"Host: h4"

-w net.ipvd.tcp wmem='10240 0 20971520

373 20971520

Figure 20. Send window change in[sysct1]

3.3 Changing congestion control algorithm in host hl and host h2
In this part, you will set different congestion control algorithms in the host h1 and host

h2 to cubic and BBR respectively. Consequently, you will have two TCP flows with
different dynamic sharing the same bottleneck link.

The default congestion avoidance algorithm in the following test is cubic thus, there is no
need to specify it manually.

Step 1. Verify that the congestion control algorithm is cubic by issuing the following
command in host h1 terminal:

sysctl net.ipvé4.tcp congestion control

"Host: hl1"

ctl net.ipv4.tcp congestion control

tion control = cubic
root

Figure 21. Verifying TCP congestion control algorithm in host h1.

Step 2. In host h2 terminal, type the following command to change the current TCP
congestion control algorithm to BBR.

sysctl -w net.ipv4.tcp congestion control=bbr

"Host: h2"

-w net.ipv4.tcp congestion control=bbr

tion control = bbr

Figure 22. Changing TCP congestion control algorithm in host h2.

Page 13

Lab 17: Stochastic Fair Queuing

3.4 Setting switch S2’s buffer size to BDP

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

o [cate 1gbit
e [Burst]: 500,000
o [[imit: 2,621,440

sudo tc gdisc add dev s2-eth2 root: handle 1: tbf rate lgbit burst 500000 limit
2621440

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ i
sudo tc qdisc add dev s2-eth2 root handle 1: tbf rate
1gbit burst 500000 limlt 2621440
admin@admin-pc:~5 i
Figure 23. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface.

3.5 Throughput tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

Figure 24. Starting iPerf3 server on host h3.
Step 2. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4a"

root@admin-pc:~#|iperf3 -s

Figure 25. Starting iPerf3 server on host h4.

Page 14

Lab 17: Stochastic Fair Queuing

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1l and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 7 without executing them next, in Step 8 you will press Enter in host h1 and host
h2 to execute them.

Step 3. In host hl, create a directory called h1_no_SFQ and navigate into it using the
following command:

mkdir hl no SFQ && hl no SFQ

"Host: hl"

Figure 26. Creating and navigating into directory h1_no_SFQ.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

"Host: hl"

root@admin-pc:~/hl no SFQ# iperf3 -c

Figure 27. Running iPerf3 client on host h1.

Step 5. In host h2, create a directory called h2_no_SFQ and navigate into it using the
following command:

mkdir h2 no SFQ && h2 no SFQ

"Host: h2"

~# mkdir h2 no SFQ && cd h2 no SFQ

root@admin-pc:~/h2_no SFQ# |

Figure 28. Creating and navigating into directory h2_no_SFQ.

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

Page 15

Lab 17: Stochastic Fair Queuing

"Host: h2"

root@dmin-pc:~/h2 no SFQ# | |iperf3 -c 10.0.0.4 -t 60 -] = out.jso I'il

Figure 29. Running iPerf3 client on host h2.

Step 7. Press Enter to execute the commands shown in step 4 and step 6, first in host h1
terminal then, in host h3 terminal.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot iperf.sh out.json && cd results

"Host: h1l"

erf.sh out.json && cd results

Figure 30. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.
xdg-open throughput.pdf

"Host: h1l"

root@admin-pc:~/hl no SFQ/results#|xdg-open throughput.pdf I

Figure 31. Opening the throughput.pdf file.

Throughput over time
900 T T T T

800
700
600
500

Mbps

400
300
200
100

. ; ;
0 10 20 30 40 50 60

Time (sec)
Figure 32. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is approximately 100 Mbps. It is observed that the Cubic flow
collapses significantly since the link is not fairly shared with the other TCP flow.

Page 16

Lab 17: Stochastic Fair Queuing

Step 10. Close the throughput.pdf window then, in host h2, proceed similarly by typing
the following command:

plot iperf.sh out.json && cd results

"Host: h2"

~/h2 no SFQ#|plot iperf.sh out.json && cd results
@admin-pc:~/h2 no SFQ/results#]

Figure 33. Generate plotting files and entering the results directory.
Step 11. In host h2 terminal, open the throughput file using the following command:

xdg-open throughput.pdf

"Host: h2"

root@admin-pc:~/h2 no SFQ/results#|xdg-open throughput.pdf I

Figure 34. Opening the throughput.pdf file.

Throughput over time
1000 ! ‘ !
900 '
800
700
600
500
400
300
200

Mbps

0 i i i i i
0 10 20 30 40 50 60

Time (sec)
Figure 35. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 850 Mbps. It is observed that the BBR flow takes over
almost the full link which upholds that the link is not fairly shared with the other TCP flow.
Step 12. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press[Ctrl+d|.

4 Configuring SFQ on switch S2

Page 17

Lab 17: Stochastic Fair Queuing

In this section, you are going to configure Stochastic Fair Queueing (SFQ) in switch S2’s
s2-eth2 interface. Then, you will conduct throughput and latency measurements between
host h1l and host h3.

4.1 Setting SFQ parameter on switch S2’s egress interface

Step 1. Apply rule on switch S2’s s2-eth2 interface. In the client’s terminal, type the
command below. When prompted for a password, type and hit Enter.

® foerturbf: 10

sudo tc gdisc add dev s2-eth2 parent 1: handle 2: sfqg perturb 10

admin@admin-pc: ~

File Actions Edit WView Help

admin@admin-pc: ~
admin@admin-pc:~$|sudo tc gqdisc add dev s2-eth2 parent 1: handle 2: sfgq
perturb 10
admin@admin-pc:-$ B

Figure 36. Setting SFQ parameters on switch S2's s2-eth2 interface.

4.2 Throughput tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

root@admin-pc:~# |iperf3 -s

Figure 37. Starting iPerf3 server on host h3.
Step 2. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: hg"

root@admin-pc:~#|iperf3 -s

Server listening on 5201

Figure 38. Starting iPerf3 server on host h4.

Page 18

Lab 17: Stochastic Fair Queuing

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1l and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 7 without executing them next, in Step 8 you will press Enter in host h1 and host
h2 to execute them.

Step 3. In host h1, create a directory called h1_SFQ and navigate into it using the following
command:

cd ../.. && mkdir hl SFQ && hl SFQ

"Host: h1"

.o/ .. && mkdir hl SFQ && cd hl SFOQ

Figure 39. Creating and navigating into directory h1_SFQ.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

"Host: h1l"

root@admin-pc:~/hl SFQ# |iperf3 -c 10.0.6.3 -t 60 -J = :::ut.js:::n'

Figure 40. Running iPerf3 client on host h1.

Step 5. In host h2, create a directory called h2_SFQ and navigate into it using the following
command:

cd ../.. && mkdir h2 SFQ && h2_SFQ

"Host: h2"

root@admin-pc:~/h2 no SFQ/results#|cd ../.. && mkdir h2 SFQ && cd h2 SFQ

root@admin-pc:~/h2 SFQ# I

Figure 41. Creating and navigating into directory h2_SFQ.

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

Page 19

Lab 17: Stochastic Fair Queuing

"Host: h2"

root@admin-pc:~/h2 SFQ# |iperf3 -c 10.0.0.4 -t 60 -] = out.j SCJI'il

Figure 42. Running iPerf3 client on host h2.

Step 7. Press Enter to execute the commands shown in step 4 and step 6, first in host hl
terminal then, in host h3 terminal.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot iperf.sh out.json && cd results

"Host: h1l"

oot@admin-pc:~/hl_SFQ#|plot_iperf.sh out.json && cd results

dmin-pc:~/hl SFQ/results#

Figure 43. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.
xdg-open throughput.pdf

"Host: hl"

root@admin-pc:~/hl SFQ/results#|xdg-open throughput.pdf I

Figure 44. Opening the throughput.pdf file.

Throughput over time
700 T T

600

500

400 f : : .

Mbps

0 i i I i i

0 10 20 30 40 50 60
Time (sec)

Figure 45. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is approximately 500 Mbps. It is observed that the Cubic flow uses

Page 20

Lab 17: Stochastic Fair Queuing

the half part of the link. Notice also that there are spikes every 10 seconds which is
consistent with the rehashing time specified by parameter.

Step 10. In host h2, proceed similarly by typing the following command:

plot iperf.sh out.json && cd results

"Host: h2"

iperf.sh out.json && cd results

Figure 46. Generate plotting files and entering the results directory.
Step 11. In host h2 terminal, open the throughput file using the following command:
xdg-open throughput.pdf

"Host: h2"

root@admin-pc:~/h2 SFQ/results#| xdg-open throughput.pdf|]]

Figure 47 Opening the throughput.pdf file.

Throughput over time
700 ! T T

600

500

400

Mbps

200 |- : ; 1

100 - : 4

0 | | I I 1
0 10 20 30 40 50 60

Time (sec)
Figure 48. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is approximately 500 Mbps. It is observed that the BBR can fairly
coexist with a Cubic flow since the dynamic of both flows do not interact as a result of
SFQ is configured in switch S2’s s2-eth2 interface.

Step 12. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press[ctrl+d.

Page 21

Lab 17: Stochastic Fair Queuing

This concludes Lab 17. Stop the emulation and then exit out of MiniEdit.

References

1. C. Semeria, “Supporting differentiated service classes: queue scheduling
disciplines,” Juniper networks, pp. 11-14, 2001.

2. P. McKenney. “Stochastic fairness queueing,” In Proceedings. IEEE INFOCOM9O0:
Ninth Annual Joint Conference of the IEEE Computer and Communications
Societies, pp. 733-740, IEEE, 1990.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

5. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

6. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

7. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Page 22

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 18: Controlled Delay (CoDel) Active Queue
Management

Document Version: 11-18-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 18: Controlled Delay (CoDel) Active Queue Management

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTFOAUCTION ceeeee ettt e e st e e s st e e e s s bbb e e e ssanraeeenans 4
1.1 CoDel active queue MaNAZEMENTuviiiiii it e e 4
1.2 Fair queueing CoDel active queue managementcccoeccviveeeeeeeeevcccineeeeenn, 6
P2 - o B o o To] Uo Y =AY 2P PPPPRR 8
2.1 Starting host hl, host h2, hosth3 and hosth4ccccoeviiiiici e, 9
2.2 Emulating high-1atency WAN.......co oo e 10
P2 T =151 d 1 o T oo T o T=Tot { o] o FSUU OO PP 11
3 Testing the throughput of two competing TCP flows........ccccocvveeeeciiieeecccieeecce, 12
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer sizecccceeeeuuneee.. 12
3.2 Modifying hosts’ buffer Size ..o 13
3.3 Changing congestion control algorithm in host hl and host h2 16
3.4 Setting switch S2’s buffer $ize t0 BDPcccuviviieiieeieeee e, 16
3.5 ThroUughput TESTS oo e e e s 17
4 Configuring CoDel 0N SWItCh S2uuiiiiiiiiie e 24
4.1 Setting CoDel parameter on switch S2’s egress interface........ccccceevcuvveeennee. 24
A 1 o1 (o TUT=d o o TU L = SR 25
5 Configuring Fg_CoDel on sWitCh S2ooviiiiiiiiiciee e e 31
5.1 Setting Fg_CoDel parameters on switch S2’s egress interface....................... 31
5.2 ThroUughput 185t ..cui it e e s 32
6 Changing the bandwidth to 100MDBPSuuvreeiiiiiiieiciireeee e 39
6.1 Throughput and 1atenCy teSTS.....cciiiiiiiiiieeeei e 39
20 =T =Y Vol PSPPI 46

Page 2

Lab 18: Controlled Delay (CoDel) Active Queue Management

Overview

This lab explains how Controlled Delay (CoDel) Active Queue Management (AQM)
algorithm is used to manage outgoing TCP traffic in order to achieve low end-to-end
latency and ensure fairness. Additionally, it is presented FQ_CoDel (Fair Queueing with
Controlled Delay) AQM, a combination of fair queuing and CoDel algorithms which is
aimed to mitigate bufferbloat and ensure fairness. Along this lab, throughput, latency and
gueue occupancy measurements are conducted in an emulated high-latency network
showing the features of both algorithms.

Objectives

By the end of this lab, students should be able to:

1. ldentify and describe the components of end-to-end latency.
Understand the features of AQM algorithms.

N

3. Explain how CoDel algorithm contains the queue length in order to avoid

bufferbloat.

4. Observe how FQ_CoDel ensures low end-to-end latency and fairness.
5. Visualize the benefits of isolating the dynamic of competing TCP flows.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

oA wWwNE

Section 1: Introduction.
Section 2: Lab topology.
Section 3: Testing the throughput of two competing TCP flows
Section 4: Configuring CoDel on switch S2.
Section 5: Configuring FQ_CoDel on switch S2.
Section 6: Changing the bandwidth to 100Mbps.

Page 3

Lab 18: Controlled Delay (CoDel) Active Queue Management
1 Introduction

The persistently problem of bufferbloat has been discussed since the early 80’s.
Bufferbloat is caused by oversizing router’s queues that hold traffic that cannot be
immediately forwarded consequently, unnecessary latency is experienced. The
deployment of Active Queue Management (AQM) algorithms started being notorious in
1998. The aim of those algorithms is to solve the increasing problem of bufferbloat.
Despite this awareness, the problem has only gotten worse as growth in memory density
per Moore's Law fueled an exponential increase in buffer pool size. Efforts to deploy AQM
algorithms have been frustrated by difficult configuration and negative impact on
network utilization. This bufferbloat problem has become more and more important
throughout the Internet but particularly at the consumer edge. Queue management has
become more critical due to increased consumer use of the Internet, mixing large video
transactions with time-critical VolP and gaming?.

Network buffers are designed to absorb the packet bursts that occur naturally in
statistically multiplexed networks. Buffers helpfully absorb the queues created by
reasonable packet network behavior such as short-term mismatches in traffic arrival and
departure. Unfortunately, other less useful network behaviors can cause queues to fill,
and their effects are not nearly as benign. Discussion of these issues and the reason why
the solution is not simply creating smaller buffers. To understand queue management, it
is critical to understand the difference between the necessary, useful "good" queue and
the counterproductive "bad" queue. An effective AQM algorithm remediates bufferbloat
at a bottleneck without affecting the hops where buffers are not bloated. However, the
development and deployment of AQM algorithms are frequently subject to
misconceptions about the cause of packet queues in network buffers.

1.1 CoDel active queue management

In order to mitigate the bufferbloat problem, it is presented Controlled Delay? (CoDel), an
innovative Active Queue Management (AQM) that adapts to changing links rates and it is
suitable for deployment and experimentation in Linux-based routers. The goal of CoDel?
is to contain the queuing latency while maximizing the throughput. CoDel does not
require any parameters tuning and it has been designed to work across a wide range of
conditions with different links and round-trip times. Figure 1 illustrate a scenario where
CoDel AQM is used to manage the queue. Firstly, a timestamp is added to every incoming
packet. Then, by measuring the departure time of every packet in the queue, it is
determined for how long a packet was waiting in the queue. Consequently, CoDel
algorithm determines whether the enqueued packets are going to be dropped or not.

Page 4

Lab 18: Controlled Delay (CoDel) Active Queue Management

Timestamp

Queue bhuffer

Incoming
packet

Outgoing
packet

Dropping Departure
State Time

CoDel
Algorithm

Figure 1. Buffer managed by CoDel AQM.

The algorithm depicted in Listing 1 show in more detail how CoDel works*: as mentioned
before, timestamp is added to each packet at the ingress side of the queue in order to
measure the packet departure time at the egress side when packets are dequeued. The
departure time is then compared to a target delay (5ms by default), if it is below
the target the packet is forwarded, otherwise the algorithm starts a timer and forwards
the packet. When packets are dequeued, CoDel checks the departure time, and if it gets
below the target, the timer is stopped. However, if the timer reaches the value of interval
(100ms by default), CoDel enters the dropping state which is left when the
departure time gets below the target delay. During this state, whenever the interval timer
expires a packet is dropped, the timer is reset, and the next timer duration is reconfigured.
Thus, the longer the departure time stays above the target delay, the higher the packet
dropping frequency. Finally, as soon as the measured departure time of an outgoing
packet gets below the target, the dropping state is left, and interval is restored to its
default value.

Paket p
StatefulObject s

if (p.gdelay < TARGET)
s.dropping = false
count = 0
if (s.dropping == false)
s.dropping = true
s.drop next packet = now + INTERVAL
if (s.dropping && s.drop next packet >= now)
drop ()
count++
s.drop_next packet = now + INTERVAL / sqgrt (now)

Listing 1. Simplified CoDel pseudocode.
In summary, CoDel algorithm considers three scenarios:

e If the queueing delay is below [TARGET], a packet is never dropped.

o If is exceeded by more than time units, the first packet will be
dropped.

e From now, the interval between dropping packets is getting smaller, until
delay is reached.

The complete algorithm considers other factors like the duration since the las dropping
phase. The Linux implementation used in this lab is based on the full algorithm.

Page 5

Lab 18: Controlled Delay (CoDel) Active Queue Management

The basic syntax used with [cdis as follows:

tc gdisc [add | ...] dev [dev_id] root codel limit [PACKETS] target [SECONDS]
interval [SECONDS] ecn|noecn ce_ threshold

1.2

[t Linux traffic control tool.

[adisd: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

[[add | del | replace | change | show]] thisis the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change] or [del],
respectively.

[dev [dev_id]]: this parameter indicates the interface is to be subject to emulation.
[codel]: this parameter enables the Controlled Delay (CoDel) algorithm.

[Limit]: this parameter specifies hard limit on the real queue size in packets. When
this limit is reached, incoming packets are dropped. If the value is lowered, packets
are dropped so that the new limit is met. The default value is 1000 packets.
[carget]: denotes the acceptable minimum standing/persistent queue delay. This
minimum delay is identified by tracking the local minimum queue delay that
packets experience. The default and recommended value is 5ms.

[intervall: this parameter is intended to ensure that the measured minimum
delay does not become too stale. The minimum delay must be experienced in the
last epoch of length [interval] It should be set on the order of the worst-case
RTT through the bottleneck to give endpoints sufficient time to react. The default
value is 100ms.

lecn|noecnl: it is used to mark packets instead of dropping them. If has been
enabled, can be used to turn it off and vice-a-versa. By default, is
turned off.

[ce _threshold]: sets a threshold above which all packets are marked with ECN
Congestion Experienced. This is useful for DCTCP-style congestion control
algorithms that require marking at very shallow queueing thresholds.

Fair queueing CoDel active queue management

FQ_CoDel (Fair Queuing Controlled Delay) is a queuing discipline that combines Fair
Queuing with the CoDel AQM scheme. FQ_CoDel uses a stochastic model to classify
incoming packets into different flows. It is aimed to provide a fair share of the bandwidth
to all the flows using the queue.

Figure 2 shows that FQ_CoDel consists of two logical parts: 1) the scheduler, which selects
which queue to dequeue a packet from, and 2) The CoDel AQM which works on each of
the queues. Since FQ_CoDel mixes packets from multiple flows, it reduces the impact of
bursty traffic. It also provides isolation for applications namely DNS, web and
videoconferencing traffic. Additionally, it improves network utilization by keeping the

Page 6

Lab 18: Controlled Delay (CoDel) Active Queue Management

qgueue lengths short and it can be implemented in a memory and CPU efficient fashion
across a wide range of hardware.

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

CoDel AQM

Incoming flows Hashed flows _
mm — |

SN > - HEEE |
T o YUsToem o omn | > Egress port

—_— Q > —_—
| RN 7 [l W I] % il 11 1|
NI — 7 > NS 5 T ——
L 1T —» > | |

L — —> | IHE] E

Figure 2. Buffer managed by FQ_CoDel AQM.

The basic [fq_codel] syntax used with [cd]is as follows:

tc gdisc [add | ...] dev [dev id] root fg codel limit [PACKETS] target
[SECONDS] flows [NUMBER] interval [SECONDS] quantum [BYTES] ecn|noecn
ce threshold

[t Linux traffic control tool.

[adisd: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

[[add | del | replace | change | show]] thisis the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change] or [del],
respectively.

[dev [dev_id]]: this parameterindicates the interface is to be subject to emulation.
[Eq_codel]: this parameter enables the Fair Queueing Controlled Delay (FQ_CoDel)
algorithm.

[Limit]: this parameter specifies hard limit on the real queue size in packets. When
this limit is reached, incoming packets are dropped. If the value is lowered, packets
are dropped so that the new limit is met. The default value is 1000 packets.
[carget]: denotes the acceptable minimum standing/persistent queue delay. This
minimum delay is identified by tracking the local minimum queue delay that
packets experience. The default and recommended value is 5ms.

[flows]: this parameter specifies the number of flows into which the incoming
packets are classified. Due to the stochastic nature of hashing, multiple flows may
end up being hashed into the same slot. Newer flows have priority over older ones.
This parameter can be set only at load time since memory has to be allocated for
the hash table. Default value is 1024.

[intervall: this parameter is intended to ensure that the measured minimum
delay does not become too stale. The minimum delay must be experienced in the
last epoch of length [interval] It should be set on the order of the worst-case

Page 7

Lab 18: Controlled Delay (CoDel) Active Queue Management

RTT through the bottleneck to give endpoints sufficient time to react. The default
value is 100ms.

® [quantun: denotes the number of bytes used as deficit in the fair queuing
algorithm. The default value is 1514 bytes which corresponds to the Ethernet MTU
plus the hardware header length of 14 bytes.

® lecn|noecn| it is used to mark packets instead of dropping them. If has been
enabled, can be used to turn it off and vice-a-versa. By default, is
turned off.

e [ce threshold]: sets a threshold above which all packets are marked with ECN
Congestion Experienced. This is useful for DCTCP-style congestion control
algorithms that require marking at very shallow queueing thresholds.

In this lab, we will use [codel]and [Eq _codel] AQM algorithms to control the queue size at

the egress port of a router.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h1 h3

h3-eth0

s2

h4-eth0

h2-eth0

Figure 3. Lab topology.
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 4. MiniEdit shortcut.

Page 8

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 18.mn topology file and click on Open.

[Fie] edit Run Help

e

Save

Expors Ll 2 Seoul Directory: /home/admin/lab_topologies =3 ’ B
[liab2.mn [Llab8mn [lab14.mn [Lab20.mn

[[JLab3.mn []Lab9.mn [7] Lab 15.mn
[£] Lab 4.mn [C] Lab 10.mn [£] Lab 16.mn

[]Lab5.mn [J] Lab 11.mn [£] Lab 17.mn

[El Lab 6.mn [E] Lab 12.mn I:I
[£] Lab 7.mn [5] Lab 13.mn 5] Lab 19.mn

& 8]

File name: |Lab 18.mn I Qpenl

Files of type: Mininet Topology (*.mn) 4‘ Cancel |

G o
|.'!k ‘,‘\ﬂ :

Figure 5. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between end hosts, the network must be

started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Stop ‘I\Ji
Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.
2.1 Starting host h1, host h2, host h3 and host h4

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Page 9

Lab 18: Controlled Delay (CoDel) Active Queue Management

File Edit Run Help

B

Host Options

|Termina| |

/
\

sl s2 s3
/ o
= h2 n

Figure 7. Opening a terminal on host h1l.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.3] This command tests the connectivity between host
hl and host h3. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
bytes from 10.0.0.3: icmp seq=1 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=2 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=3 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=4 ttl=64 time=0.

bytes from 10.0.0.3: icmp seq=5 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=6 ttl=64 time=0.

10.0.0.3 ping statistics
6 packets transmitted, 6 received, 0% packet loss, time
rtt min/avg/max/mdev = 0.063/0.111/0.340/0.102 ms
root@admin-pc:~

Figure 8. Connectivity test using command.

2.2 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 10

Lab 18: Controlled Delay (CoDel) Active Queue Management

Terminal

o
Miniedit
Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type

and hit Enter. This command introduces 20ms delay to Switch S1's s1-eth1
interface.

sudo tc gdisc add dev sl-ethl root netem delay 20ms

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (X

ladmin@admin-pc:
[sudo] password

ladmin@admin-pc:

Figure 10. Adding delay of 20ms to switch S1’s s1-eth1 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.3]. To stop the test, press[Ctrl+d|.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

"Host: h1"

root@admin-pc:~# |ping 10.6.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp seq=1 ttl=64

64 bytes from 10.0.0.3: icmp seq=2 ttl=64

64 bytes from 10.0.0.3: icmp seq=3 ttl=64

64 bytes from 10.0.0.3: icmp seq=4 ttl=64
*C

10.0.0.3 ping statistics ---
4 packets transmi ed, 4 received, 0% packe ss, time 7ms
20.080/25.390/41.266/9.166 ms

Figure 11. Output of [ping 10.0.0.3]command.

Page 11

Lab 18: Controlled Delay (CoDel) Active Queue Management

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type jping 10.0.0.3]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

"Host: h2"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from .0.0.3: icmp seqg=1 ttl=64 time=40.7

64 bytes from .0.0.3: icmp seq=2 ttl=64 time=20.1

64 bytes from .0.0.3: icmp seg=3 ttl=64 time=20.1
S b

64 bytes from .0.0.3: icmp seq=4 ttl=64 time=20
i

- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 20.090/25.257/40.745/8.943 ms
root@admin-pc:~# |j

Figure 12. Output of ping 10.0.0.3/command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing the throughput of two competing TCP flows

In this section, you are going to tune the network devices in order to emulate a Wide Area
Network (WAN). First, you will set the hosts’” TCP buffers to 20-BDP therefore, the
bottleneck is not in the end-hosts. Then, you will add 20ms latency to switch S1’s s1-ethl
interface. Additionally, you will set the bottleneck bandwidth to 1Gbps in switch S2’s s2-
eth2 interface however, the buffer will be intentionally oversized to 20-BDP therefore,
you should expect bufferbloat. Finally, you will conduct throughput tests between two
competing TCP flows which uses different congestion control algorithms (i.e. Cubic, BBR).

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits

Page 12

Lab 18: Controlled Delay (CoDel) Active Queue Management

= 2,500,000 bytes = 2.5 Mbytes
1 Mbyte = 10242 bytes
BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes
The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to BDP. In addition, to ensure that the bottleneck is not the hosts’ TCP
buffers, we configure the buffers to 20-BDP (52,428,800).

3.2 Modifying hosts’ buffer size

For the following calculation, the bottleneck bandwidth is considered as 1 Gbps, and the
round-trip time latency as 20ms.

In order to have enough TCP buffer size, we will set the TCP sending and receiving
buffer to 20 - BDP in all hosts.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

The send and receive TCP buffer sizes should be set to 20 - BDP to ensure the bottleneck

is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP
instead of 2,500,000 bytes.

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

20 - BDP = 20- 2,621,440 bytes = 52,428,800 bytes

Step 1. At this point, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1l’s terminal

type the command shown below. The values set are: 10,240 (minimum), 87,380 (default),
and 52,428,800 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 52428800’

Page 13

Lab 18: Controlled Delay (CoDel) Active Queue Management

"Host: h1"

Figure 13. Receive window change in[sysct1].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: h1l"

ysctl -w ne :) 380 52

10240 8

Figure 14. Send window change in[sysct1]

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipvé4.tcp rmem='10240 87380 52428800’

"Host: h2"

Figure 15. Receive window change in[sysctl]

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipvéd.tcp wmem=’'10240 87380 52428800’

"Host: h2"

wmem="'10240 87380 5242

2]

Figure 16. Send window change in[sysctl].

Page 14

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

"Host: h3"

Figure 17. Receive window change in[sysct1].

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: h3"

wmem="'10240 8

Figure 18. Send window change in [sysctl].

Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipv4.tcp rmem=’10240 87380 52428800’

"Host: h4"

dmin-pc:~#|sysctl -w net 1[-"4 t: D rmem='10240 8738

vd.tcp rmem = 10240 87
dmin-pc:~# I

Figure 19. Receive window change in[sysct1].

Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: h4"

sctl -w net.ipv4.) wmem="'108240 87380 52428800

10240 8 52

Figure 20. Send window change in[sysct1]

Page 15

Lab 18: Controlled Delay (CoDel) Active Queue Management

3.3 Changing congestion control algorithm in host hl and host h2
In this part, you will set different congestion control algorithms in the host h1l and host

h2 to cubic and BBR respectively. Consequently, you will have two TCP flows with
different dynamic sharing the same bottleneck link.

The default congestion avoidance algorithm in the following test is cubic thus, there is no
need to specify it manually.

Step 1. Verify that the congestion control algorithm is cubic by issuing the following
command in host hl terminal:

sysctl net.ipv4.tcp congestion control

"Host: hl"

min-pc:~#|sys) estion control

4.tcp
root@admin-pc

Figure 21. Verifying TCP congestion control algorithm in host h1.

Step 2. In host h2 terminal, type the following command to change the current TCP
congestion control algorithm to BBR.

sysctl -w net.ipvé4.tcp congestion control=bbr

"Host: h2"

estion control=bbr

ion control = bbr

Figure 22. Changing TCP congestion control algorithm in host h2.

3.4 Setting switch S2’s buffer size to BDP

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [rate] 1gbit
e [purst]: 500,000
e [limit] 26,214,400

sudo tc gdisc add dev s2-eth2 root: handle 1: tbf rate lgbit burst 500000 limit
26214400

Page 16

Lab 18: Controlled Delay (CoDel) Active Queue Management

admin@admin-pc: ~

| File Actions Edit View Help

admin@admin-pc: ~

-
e

-admin@admin-pc: S |sudo tc gdisc add dev s2-eth2 root handle 1: tbf rate
1gbit burst 500000 limit 26214400

admin@admin-pc:~S |

Figure 23. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S2’s interface.

3.5 Throughput tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

"Host: h3"

Figure 24. Starting iPerf3 server on host h3.
Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

"Host: h4"
root@admin-pc:~# iperf3 -s

Figure 25. Starting iPerf3 server on host h4.

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4

and Step 6 without executing them next, in Step 7 you will press Enter in host h1 and host
h2 to execute them.

Step 3. In host h1, create a directory called h1_Drop_Tail and navigate into it using the
following command:

mkdir hl Drop Tail && cd hl Drop Tail

Page 17

Lab 18: Controlled Delay (CoDel) Active Queue Management

"Host: h1"

root :~#|mkdir hl Drop Tail && cd hl Drop Tail
root@admin-pc:~/hl Drop Tail# |

Figure 26. Creating and navigating into directory h1_no_SFQ.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

"Host: h1"

root@admin-pc:~/h1l Drop Tail# |iperf3 -c 10.8.06.3 -t 60 -J > out.jsonf]

Figure 27. Running iPerf3 client on host h1.

Step 5. In host h2, create a directory h1_Drop_Tail and navigate into it using the following
command:

mkdir h2 Drop Tail && h2 Drop Tail

"Host: h2"

dmin-pc:~# |mkdir h2 Drop Tail &% cd h2 Drop Tail
dadmin-pc:~/hZ2 Drop Tail#]

Figure 28. Creating and navigating into directory h2 _no_SFQ.

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

"Host: h2"

root@admin-pc:~/h2 Drop Tail# |iperf3 -c 4 -t 60 -J out.json|]

Figure 29. Running iPerf3 client on host h2.

Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

Page 18

Lab 18: Controlled Delay (CoDel) Active Queue Management

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

Figure 30. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

| Gnuplot -0 X
1 T T T T

"q_out" lIlSlhg 132 —

0.5 .

-0,5 =

_1 1 1 1 1 1
0 50 100 150 200 250 300

Figure 31. Queue occupancy on switch S2’s s2-eth2 interface.

Step 8. Press Enter to execute the commands, first in host hl terminal then, in host h2
terminal.

Page 19

Lab 18: Controlled Delay (CoDel) Active Queue Management

3x10 T T T T T

I I
“gqoout” using 132 ——

2.5x10" | / 1 —

7
2x10

7
1.5x10 F -

7
1x10 | -

5x105 - | -

! I 1 L 1 1 1 1

0 20 40 B0 80 100 120 140 160

Figure 32. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 - 107, which is the
maximum buffer size we configure on the switch.

Step 9. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 10. After the iPerf3 test finishes on host h1l, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

root@admin-pc:~/hl _Drop_Tail# plot_iperf.sh out.json && cd results
root@admin-pc:~/hl Drop Tail/results# |

Figure 33. Generate plotting files and entering the results directory.
Step 11. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

"Host: h1"

root@admin-pc:~/hl Drop Tail/results# |xdg-open throughput.pdf I

Figure 34. Opening the throughput.pdf file.

Page 20

Lab 18: Controlled Delay (CoDel) Active Queue Management

Throughput over time
1000 : : :

200 : :
800
700
600
500
400
300
200

Mbps

0 i i
0 10 20 30 40 50 60

Time (sec)
Figure 35. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 250 Mbps. It is observed that the Cubic flow collapses
significantly since the link is not fairly shared with the other TCP flow.

Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:~/hl Drop Tail/results# g-open RTT.pdf I

Figure 36. Opening the RTT.pdf file.

Page 21

Lab 18: Controlled Delay (CoDel) Active Queue Management

RTT over time
350000 T T T T

300000

250000

200000

RTT

150000

100000

50000

0 I 1 I 1 |
0 10 20 30 40 50 60

Time (sec)
Figure 37. Measured round-trip time.

The graph above shows that the RTT was approximately 200,000 microseconds (200ms).
The output shows that there is bufferbloat as the average latency is at least ten times
greater than the configured delay (20ms).

Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the
following command:

plot iperf.sh out.json && cd results

"Host: h2"

Drop Tail#| | plot iperf.sh out.json && cd results
Drop Tail/

Figure 38. Generate plotting files and entering the results directory.
Step 14. In host h2 terminal, open the throughput file using the following command:

xdg-open throughput.pdf

"Host: h2"

root@admin-pc:~/h2 Drop Tail/results#|xdg-open throughput.pdf I

Figure 39. Opening the throughput.pdf file.

Page 22

Lab 18: Controlled Delay (CoDel) Active Queue Management

Throughput over time

1000 _ !
900 : :
800
700
600
500
400
300
200 |- i i i -
0 i i i i i
0 10 20 30 40 50 60

Time (sec)
Figure 40. Measured throughput.

Mbps

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 700 Mbps. It is observed that the BBR flow uses the major
part of the available bandwidth which shows that the link is not fairly shared with the
other TCP flow.

Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h2"

root@admin-pc:~/h2 Drop Tail/results#|xdg-open RTT.pdf I

Figure 41. Opening the RTT.pdf file.

Page 23

Lab 18: Controlled Delay (CoDel) Active Queue Management

RTT over time
800000 ; T T

700000

600000

500000

400000

RTT

300000

200000

100000

0 \ i i i i
0 10 20 30 40 50 60
Time (sec)
Figure 42. Measured round-trip time.

The graph above shows that the RTT was approximately 200,000 microseconds (200ms)
as well. The output shows that there is bufferbloat as the average latency is at least ten
times greater than the configured delay (20ms).

Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press[Ctrl+d.

4 Configuring CoDel on switch S2

In the previous section you have observed bufferbloat, due to oversizing switch S2’s s2-
eth2 interface. In this section, you are going to configure CoDel AQM in switch S2’s s2-
eth2 interface. Then, you will conduct throughput and latency measurements between
the hosts.

4.1 Setting CoDel parameter on switch S2’s egress interface

Step 1. Apply rule on switch S2’s s2-eth2 interface. In the client’s terminal, type
the command below. When prompted for a password, type and hit Enter.

e [imit} 17476
o [Earget) 5ms
o [ntervall 100ms

sudo tc gdisc add dev s2-eth2 parent 1: handle 2: codel limit 17476 target b5ms
interval 100ms

Page 24

Lab 18: Controlled Delay (CoDel) Active Queue Management

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

&

admin@admin-pc:~$ |sudo tc qdisc add dev s2-eth2 parent 1: handle 2: codel
limit 17476 target 5ms interval 100ms
admin@admin-pc:~5 [

Figure 43. Setting CoDel parameters on switch S2’s s2-eth2 interface.

4.2 Throughput tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

Figure 44. Starting iPerf3 server on host h3.

Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

"Host: h4a"

root@admin-pc:~#|iperf3 -s

er listening on 5201

Figure 45. Starting iPerf3 server on host h4.

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host hl and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 6 without executing them next, in Step 7 you will press Enter in host h1l and host
h2 to execute them.

Step 3. In host h1, exit from the previous folders then, create a directory called h1_CoDel
and navigate into it using the following command:

cd ../.. && mkdir hl CoDel && cd hl CoDel

Page 25

Lab 18: Controlled Delay (CoDel) Active Queue Management

"Host: h1" - 00X

min-pc:~/hl Drop Tail/results#|cd ../.. && mkdir hl CoDel && cd hl CoDel

min-pc:~/h1 cobel# |

Figure 46. Creating and navigating into directory h1_CoDel.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [>is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

"Host: h1"

root@admin-pc:~/hl CoDel#|iperf3 -c 10.0.8.3 -t 60 -J > out.jsonl]

Figure 47. Running iPerf3 client on host h1.

Step 5. In host h2, exit from the previous folders then, create a directory called h2_CoDel
and navigate into it using the following command:

cd ../.. && mkdir h2 CoDel && cd h2 CoDel

"Host: h2" - O X

min-pc:~/h2 Drop Tail/results#|cd ../.. && mkdir h2 CoDel && cd h2 CoDel

min-pc:~/h2 CoDel# |}

Figure 48. Creating and navigating into directory h2_CoDel.

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

"Host: h2"

root@admin-pc:~/h2 CoDel# iperf3 -c 10.0.0.4 -t 60 -J > out.jsonl

Figure 49 Running iPerf3 client on host h2.

Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

Page 26

Lab 18: Controlled Delay (CoDel) Active Queue Management

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

Figure 50. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

| Gnuplot -0 X

1 T T T T T
"q_out" using 132 ——

0.5 .

_1 1 1 1 1 1
0 50 100 150 200 250 300

Figure 51. Queue occupancy on switch S2’s s2-eth2 interface.

Step 8. Press Enter to execute the commands, first in host hl terminal then, in host h2
terminal.

Page 27

Lab 18: Controlled Delay (CoDel) Active Queue Management

300000 T T T T T

T T
"g_out" uzing 138 ——

800000 - -
FO0000 - -
BOOOOG - -

S00000 - -

400000 - -

300000 - -

200000 - -

100000 - -

0 1 1 1 1 1 1 1
0 20 40 B0 80 100 120 140 160

Figure 52. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 900,000 bytes, which
is below the maximum buffer size we configure on the switch 26,214,400 bytes (10 -BDP).

Step 9. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 10. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

Figure 53. Generate plotting files and entering the results directory.
Step 11. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

"Host: h1"

root@dmin-pc:~/hl CoDel/results#|xdg-open throughput.pdf I

Figure 54. Opening the throughput.pdf file.

Page 28

Lab 18: Controlled Delay (CoDel) Active Queue Management

Throughput over time

1000 T T
200
800
700
600
500
400
300
100 - ' ? : : : =

Mbps

0 10 20 30 40 50 60

Time (sec)
Figure 55. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 400 Mbps. It is observed that the Cubic flow collapses
significantly since the link is not fairly shared with the other TCP flow.

Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"
root@admin-pc:~/hl CoDel/results# -open RTT.pdf I

Figure 56. Opening the RTT.pdf file.

RTT over time
30000 T T T

25000

20000

RTT

15000

10000

5000

0 i i i i i
0 10 20 30 40 50 60
Time (sec)
Figure 57. Measured round-trip time.

Page 29

Lab 18: Controlled Delay (CoDel) Active Queue Management

The graph above shows that the RTT was approximately 25,000 microseconds (25ms). The
output shows that there was not bufferbloat as the average latency is not exceeding the
configured delay (20ms).

Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the
following command:

plot iperf.sh out.json && cd results

"Host: h2"

'h2 CoDel#|plot iperf.sh out.json && cd results

Figure 58. Generate plotting files and entering the results directory.
Step 14. In host h2 terminal, open the throughput file using the following command:

xdg-open throughput.pdf

"Host: h2"

root@admin-pc:~/h2 CoDel/results#|xdg-open throughput.pdf I

Figure 59. Opening the throughput.pdf file.

Throughput over time
800 T T

700

600

500

400

Mbps

300

0 | | I | I
0 10 20 30 40 50 60

Time (sec)
Figure 60. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 400 Mbps. It is observed that the BBR flow takes the major
part of the available bandwidth which shows that the link is not fairly shared with the
other TCP flow.

Page 30

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h2"

root@admin-pc:~/h2 CoDel/results#|xdg-open RTT.pdf I

Figure 61. Opening the RTT.pdf file.

RTT over time
30000 T T

25000

20000

RTT

10000

5000

0 i i i | i

0 10 20 30 40 50 60
Time (sec)

Figure 62. Measured round-trip time.

The graph above shows that the RTT was approximately 25,000 microseconds (25ms). The
output shows that there was not bufferbloat as the average latency is not exceeding the
configured delay (20ms).

Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press[ctrl+d.

5 Configuring Fq_CoDel on switch S2

In the previous section, you have observed that despite getting low queue occupancy and,
consequently mitigating bufferbloat, the link share was not fair between the two TCP
flows. In this section, you are going to configure Fq_CoDel in switch S2’s s2-eth2 interface

to mitigate bufferbloat and at the same time to ensure fairness. Then, you will conduct
throughput and latency measurements between the hosts.

5.1 Setting Fq_CoDel parameters on switch S2’s egress interface

Page 31

Lab 18: Controlled Delay (CoDel) Active Queue Management
Step 1. Delete the previous [cd| rule by issuing the command shown below.

sudo tc gdisc del dev s2-eth2 parent 1: handle 2:

L admin@admin-pc: ~
File Actions Edit WView Help

admin@admin-pc: ~

admin@admin-pc:~$ |sudo tc gdisc del dev s2-eth2 parent 1: handle 2

admin@admin-pc:~5 |

Figure 63. Deleting previous rule on switch S2’s s2-eth2 interface.

Step 2. Apply[fq_codel]rule on switch S2’s s2-eth2 interface. In the client’s terminal, type
the command below. When prompted for a password, type and hit Enter.

o [[imit) 17476

e [target]: 5ms

e [intervall 100ms
o [FTous:?2

sudo tc gdisc add dev s2-eth2 parent 1: handle 2: fqg codel limit 17476 target
S5ms interval 100ms flows 2

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$ |sudo tc qdisc add dev s2-eth2 parent 1: handle 2: fg_codel

Limit 17476 target 5ms interval 100ms flows 2
admin@admin-pc:~S |

Figure 64. Setting Fq_CoDel parameters on switch S2’s s2-eth2 interface.

5.2 Throughput test
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

Figure 65. Starting iPerf3 server on host h3.

Step 2. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

Page 32

Lab 18: Controlled Delay (CoDel) Active Queue Management

"Host: hg"

Figure 66. Starting iPerf3 server on host h4.

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1l and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 6 without executing them next, in Step 7 you will press Enter in host hl and host
h2 to execute them.

Step 3. In host h1, exit from the previous folders then, create a directory called h1_CoDel
and navigate into it using the following command:

cd ../.. && mkdir hl fqg CoDel && cd hl fqgq CoDel

"Host: h1"

@admin-pc:~#|cd ../.. && mkdir hl fg CoDel && cd hl Tg CoDel
min-pc:/hl fq CoDel# |}

Figure 67. Creating and navigating into directory h1_ fq_CoDel.
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The

option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

"Host: hl1l" - 0 X

root@dmin-pc:/hl fq CoDel# | iperf3 -c 10.0.0.3 -t 68 -] > out.jsonf]

Figure 68. Running iPerf3 client on host h1.

Step 5. In host h2, exit from the previous folders then, create a directory called h2_CoDel
and navigate into it using the following command:

cd ../.. && mkdir h2 fg CoDel && cd h2 fqg CoDel

"Host: h2"

c:~/h2 CoDel/results# cd ../.. && mkdir h2 fq CoDel && cd h2 fq CoDel
~/h2 =

Figure 69. Creating and navigating into directory h2_fq CoDel.

Page 33

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

"Host: h2"

root@dmin-pc:~/h2 fq CoDel# iperf3 -c 10.0.0.4 -t 60 -] > :::I.|t.j5:::|'||

Figure 70. Running iPerf3 client on host h2.

Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

admin@admin-pc: ~
File Actions Edit View Help
admin@admin-pc: ~ Q

Figure 71. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

| Gnuplot -0 X
1 T T T T

"q_out" Llnsmg 132 —

-0,5 =

_1 1 1 1 1 1
0 50 100 150 200 250 300

Figure 72. Queue occupancy on switch S2’s s2-eth2 interface.

Page 34

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 8. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal.

1,4:10 T T T T T T T
"gout" using 1:2 ——
1,2)(108 - B
1)(10B + -
00000+ —
BOOOOY B
400000 B
200000 -
0 1 1 1 1 1 1 1
0 20 40 B 80 100 120 140 160

Figure 73. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 1,200,000 bytes, which
is below the maximum buffer size we configure on the switch 26,441,00 bytes (10 -BDP).

Step 9. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 10. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1" -

Figure 74. Generate plotting files and entering the results directory.
Step 11. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

"Host: h1"

root@admin-pc: /hl fq CoDel/results#|xdg-open throughput.pdf I

Figure 75. Opening the throughput.pdf file.

Page 35

Lab 18: Controlled Delay (CoDel) Active Queue Management

Throughput over time
1000 ‘

900
800
700
600
500

Mbps

300 - o
200 - =

O | | | | |
0 10 20 30 40 50 60

Time (sec)
Figure 76. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 450 Mbps. It is observed that the Cubic flow uses the half
part of the available bandwidth.

Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:/hl fq CoDel/results#|xdg-open RTT.pdf I

Figure 77. Opening the RTT.pdf file.

Page 36

Lab 18: Controlled Delay (CoDel) Active Queue Management

RTT over time
30000 ! ! ! ! .

25000

20000

RTT

15000 | j : j : .

10000

5000

Time (sec)
Figure 78. Measured round-trip time.

The graph above shows that the RTT was approximately 25,000 microseconds (25ms). The

output shows that there was not bufferbloat as the average latency is not considerably
exceeding the configured delay (20ms).

Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the
following command:

plot iperf.sh out.json && cd results

"Host: h2"

? fgq CoDel#|plot iperf.sh out.json && cd results

> fg CoDel/results# |

Figure 79. Generate plotting files and entering the results directory.
Step 14. In host h2 terminal, open the throughput file using the following command:

xdg-open throughput.pdf

"Host: h2"

root@admin-pc:~/h2 fq CoDel/results#|xd

g-open throughput.pdf I

Figure 80. Opening the throughput.pdf file.

Page 37

Lab 18: Controlled Delay (CoDel) Active Queue Management

Throughput over time

500 T
450 _ _
3 : 5 :
E : g g
150 - Q Q Q 1
0 | | 1 | 1
0 10 20 30 40 50 60

Time (sec)
Figure 81. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 450 Mbps. It is observed that the BBR flow uses the half
part of the available bandwidth thus, it is fairly sharing the link with the other flow.

Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h2"

root@admin-pc:~/h2 Tq CoDel/results#|xdg-open RTT.pdf I

Figure 82. Opening the RTT.pdf file.

RTT over time

30000 . :
25000
20000
E 15000 | .
10000 | il
5000 | i
5 | . | i ﬁ
0 10 20 30 40 50 60

Time (sec)
Figure 83. Measured round-trip time.

Page 38

Lab 18: Controlled Delay (CoDel) Active Queue Management

The graph above shows that the RTT was around 25,000 microseconds (25ms). The output
shows that there was not bufferbloat as the average latency is not considerably exceeding
the configured delay (20ms).

Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press[Ctrl+d.

6 Changing the bandwidth to 100Mbps

This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps while
Fg_Codel is configured to work considering the previous network condition. The results
will show Fg_CoDel does not requires a reconfiguration if the network conditions changes
(i.e, latency, bandwidth, loss rate). In this section, you will change the bandwidth to 100
Mbps then, you will observe the throughput, queue occupancy and, Round-Trip Time.

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [fate: 100mbit
o [ourst} 50,000
o [[imit] 26,214,400

sudo tc gdisc change dev s2-eth2 root: handle 1: tbf rate 100mbit burst 50000
limit 26214400

admin@admin-pc: ~

File Actions Edit View Help

(%

admin@admin-pc: ~

admin@admin-pc:~S |sudo tc - change dev s2-eth2 root handle 1: tbf rate 100mbit burst
50000 Limit 26214400

a&mtnn@édm{r;-[;;: =
Figure 84. Limiting rate to 100 Mbps and keeping the buffer size to 100-BDP on switch S2’s
interface.

Notice that the link rate is changed to 100 Mbps however, the buffer size is maintained
at 26,214,400 bytes which for this case corresponds to 100-BDP

6.1 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Page 39

Lab 18: Controlled Delay (CoDel) Active Queue Management

"Host: h3"

root@dmin-pc:~# |iperf3 -

Figure 85. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~ &

Figure 86. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

| Gnuplot -0 X
1 T T T

T
“q_out" using 132 ——

0.5 .

- 1 1 L 1 1 1
0 50 100 150 200 250 300

Figure 87. Queue occupancy on switch S2’s s2-eth2 interface.

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1 and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 4
and Step 6 without executing them next, in Step 7 you will press Enter in host h1 and host
h2 to execute them.

Page 40

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 3. In host hl, exit from the previous folders then, create a directory called
h1 100 Mbps and navigate into it using the following command:

cd ../.. && mkdir hl 100 Mbps && cd hl 100 Mbps

"Host: h1"

. && mkdir hl 100 Mbps && cd hl 100 Mbps

Figure 88. Creating and navigating into directory h1_100_Mbps.
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The

option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 60 -J > out.json

"Host: h1"

root@admin-pc:/home/hl 100 Mbps# |[iperf3 -c 10.0.0.3 -t 60 -] > mut.jsmnl

Figure 89. Running iPerf3 client on host h1l.

Step 5. In host h2, exit from the previous folders then, create a directory called
h2_ 100 _Mbps and navigate into it using the following command:

cd ../.. && mkdir h2 100 Mbps && cd h21 100 Mbps

"Host: h2"

/.. && mkdir h2 fq CoDel cd h2 fq CoDel

Figure 90. Creating and navigating into directory h2_100_Mbps.
Step 6. Type the following iPerf3 command in host h2’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.4 -t 60 -J > out.json

"Host: h2"

root@admin-pc:/home/h2 fq CoDel# iperf3 -c 10.0.0.4 -t 60 -] = out.jsonl

Figure 91. Running iPerf3 client on host h2.

Step 7. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

Page 41

Lab 18: Controlled Delay (CoDel) Active Queue Management

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

Figure 92. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

| Gnuplot -0 X

1 T T T T T
"q_out" using 132 ——

0.5 .

_1 1 1 1 1 1
0 50 100 150 200 250 300

Figure 93. Queue occupancy on switch S2’s s2-eth2 interface.

Step 8. Press Enter to execute the commands, first in host hl terminal then, in host h2
terminal.

Page 42

Lab 18: Controlled Delay (CoDel) Active Queue Management

1x10 T T T T T T

"q_olut " using i 12

SOO000 |- ,
800000 - -
700000 + 4
B00000 - 4
SO0000 |- _
400000 4
300000 - J
200000 |- _

100000 | r _
T YRy AR A Am s et
r\ﬁﬂf" WAy \ W) Wy I,I,}-yfu.f\»)\(_'v\ % .v_\ {l\u'"\‘, SN ‘L '{.V |

1
0 20 40 B0 80 100 120 140 160 180

0

Figure 94. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked at 1 - 10°, which is below the
maximum buffer size we configure on the switch 26,214,400 bytes.

Step 9. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 10. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

rf.sh out.json && cd results

Figure 95. Generate plotting files and entering the results directory.
Step 11. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

"Host: h1"

root@admin-pc:/home/hl 100 Mbps/results#|xdg-open throughput.pdf I

Figure 96. Opening the throughput.pdf file.

Page 43

Lab 18: Controlled Delay (CoDel) Active Queue Management

Throughput over time
160 T T

120 i S S R TS
100 .

Mbps

0 1 | 1 | 1

0 10 20 30 40 50 60

Time (sec)
Figure 97. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 50 Mbps. It is observed that the Cubic flow uses the half
part of the available bandwidth.

Step 12. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:/home/hl 100 Mbps/results#|xdg-open RTT.pdf I

Figure 98. Opening the RTT.pdf file.

RTT over time
45000 T T T T T

40000 k.- .”; SIS SR S S, -
35000 ' :
30000
25000

RTT

20000 [: : : : -
15000 | : : : ‘ -
10000 |- = = . e o]
5000 |- f : o : : ; .

0 i i \ . J
0 10 20 30 40 50 60
Time (sec)
Figure 99. Measured round-trip time.

Page 44

Lab 18: Controlled Delay (CoDel) Active Queue Management

The graph above shows that the RTT was around 25,000 microseconds (25ms). The output
shows that there was not bufferbloat as the average latency is not considerably exceeding
the configured delay (20ms).

Step 13. Close the RTT.pdf window then, in host h2, proceed similarly by typing the
following command:

plot iperf.sh out.json && cd results

"Host: h2"

root@admin-pc:/home/h2 fq CoDel# plot iperf.sh out.json && cd results
root@admin-pc: /home/h2 fq CoDel/results# |

Figure 100. Generate plotting files and entering the results directory.
Step 14. In host h2 terminal, open the throughput file using the following command:
xdg-open throughput.pdf

"Host: h2"

root@admin-pc:/home/h2 fq CoDel/results# -open throughput.pdf I

Figure 101. Opening the throughput.pdf file.

Throughput over time
80 T T T T

Mbps

20 | .

10 | 1 .

0 1 1 1 | 1
0 10 20 30 40 50 60

Time (sec)
Figure 102. Measured throughput.

The figure above shows the iPerf3 test output report for the last 60 seconds. The average
achieved throughput is around 50 Mbps as well. It is observed that the BBR flow uses the
half part of the available bandwidth thus, it is fairly sharing the link with the other flow.
One of the most remarkable features of Fq_CoDel is that it works well even if the network
condition changes.

Page 45

Lab 18: Controlled Delay (CoDel) Active Queue Management

Step 15. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h2"

root@admin-pc:~/h2 fq CoDel/results#|xdg-open RTT.pdf I

Figure 103. Opening the RTT.pdf file.

RTT over time
30000 T T T

25000

20000

RTT

10000 | § , .

0 i i i i i
0 10 20 30 40 50 60

Time (sec)
Figure 104. Measured round-trip time.

The graph above shows that the RTT was around 25,000 microseconds (25ms). The output
shows that there was not bufferbloat as the average latency is not considerably exceeding
the configured delay (20ms).

Step 16. Close the throughput.pdf window then, to stop iperf3 server in host h3 and host
h4 press[ctrl+d.

This concludes Lab 18. Stop the emulation and then exit out of MiniEdit.

References

1. K. Nicolas, E. Lochin, O. Mehani. “Revisiting old friends: is CoDel really achieving
what RED cannot?,” (2014).

2. K. Nichols, V. Jacobson, “Controlling queue delay”. ACM Queue, (2012).

3. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, (2012).

4. K. Nichols, V. Jacobson, A. McGregor, and A. lyengar, “Controlled delay active
gueue management,” Internet engineering task force, Request for comments
8289, 2018

Page 46

Lab 18: Controlled Delay (CoDel) Active Queue Management

5. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

6. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

7. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

8. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

9. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Page 47

A

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 19: Proportional Integral Controller-Enhanced
(PIE)

Document Version: 11-23-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTFOAUCTION ceeeee ettt e e st e e s st e e e s s bbb e e e ssanraeeenans 3
P2 - o B o o To] Uo Y =AY 2SR UPPPR 5
2.1 Starting host hl, host h2, and host h3.......cccooiiiiii e, 7
2.1 Emulating high-1atency WANccooi et e e 8
PR S =Y\ o T=Aolo T 0 | o T=Tot { o] o [N PSR TT 9
3 Testing throughput on a network using Drop Tail AQM algorithm..........cccevveeeen. 10
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size........ccccceeecvvveeenneee. 10
3.2 Setting switch S2’s buffer size t0 10 BDP......cccvvieeeeciiee e 12
3.3 Throughput and l1atency teStS ...cceeie e 12
4 Configuring PIE 0N SWItCh S2.....ccoiiiiiie e 17
4.1 Setting PIE parameter on switch S2’s egress interface.......ccccoeeveeevvciveeecnnnenn. 17
4.2 Throughput and [ateNCy tESTS ..ciivuiiiii i 18
4.3 Changing the bandwidth to 100MDbBPScoooviiiiiiiiiiiecee e 23
4.4 Throughput and [ateNCY tESTS ..eiiiuiiiie i 24
2] =T =Y gVl TP 29

Page 2

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Overview

This lab introduces to Proportional Integral Controller-Enhanced (PIE) Active Queue
Management (AQM) algorithm. This algorithm is aimed to mitigate high end-to-end
latency by controlling the average queue length. PIE manages the queue length by using
a Proportional Integral (PI) controller which is known for removing steady state errors.
Throughput, latency and queue length measurements are conducted in this lab to verify

the impact of the dropping policy provided PIE.

Objectives

By the end of this lab, students should be able to:

uhwWwnN e

Identify and describe the components of end-to-end latency.
Understand the buffering process in a router.
Explain the impact of PIE handling the queuing policy in a router egress port.
Visualize queue occupancy in a router.
Analyze how PIE manages the queue length in order to allow end-hosts to achieve

high throughput and low latency.

6. Modify the network condition in order to evaluate the performance on PIE’s

dropping policy.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device

Account

Password

Clientl

admin

password

Lab roadmap

This lab is organized as follows:

PwnhpE

1 Introduction

Section 1: Introduction.
Section 2: Lab topology.
Section 3: Testing throughput on a network using Drop Tail AQM algorithm.
Section 4: Configuring PIE on switch S2.

Lab 19: Proportional Integral Controller-Enhanced (PIE)

The increasing number of time-sensitive applications in the Internet brings a set of
challenges to control end-to-end delay. To avoid packet loss, many service providers or
data center operators require vendors to increase router’s buffer as much as possible.
Due to the decrease in memory chip prices, these requests are easily satisfied assuring
low packet loss and high TCP throughput however, it suffers from a major downside. The
TCP protocol continuously increases its sending rate and causes network buffers to fill up.
TCP cuts its rate only when it receives a packet drop or mark that is interpreted as a
congestion signal. Nevertheless, drops and marks usually occur when network buffers are
full or almost full. As a result, excess buffers, initially designed to avoid packet drops,
would lead to highly elevated queueing latency and latency variation. The design of a
gueue management scheme should not only should allow short-term burst to smoothly
pass, but also should control the average latency in the presence of bursty TCP flows.

Active queue management (AQM) algorithms are designed to tackle the aforementioned
problem. New algorithms are beginning to emerge to control queueing latency directly to
address the bufferbloat problem?®. In this lab, it is presented Proportional Integral
Controller-Enhanced AQM algorithm (PIE). PIE randomly drops an incoming packet at the
onset of the congestion. The congestion detection, however, is based on the queueing
latency instead of the queue length. Furthermore, PIE also uses the derivative (rate of
change) of the queueing latency to help determine congestion levels and an appropriate
response. The design parameters of PIE are chosen via control theory stability analysis.
While these parameters can be fixed to work in various traffic conditions, they could be
made self-tuning to optimize system performance.

11 The PIE algorithm

As illustrated in Figure 1, PIE is comprised of three simple basic components: a) random
dropping at enqueueing; b) periodic drop probability update; c) latency calculation?.
When a packet arrives, a random decision is made regarding whether to drop the packet.
The drop probability is updated periodically based on how far the current latency is away
from the target and whether the queueing latency is currently trending up or down. The
gueueing latency can be obtained using direct measurements or using estimations
calculated from the queue length and the dequeue rate.

Queue buffer

Ingress port —» [[[N N —> Egress port
Queue
Random length
drop

Dro
p.. Latency
probability ;
. calculation
calculation

Figure 1. Buffer managed by PIE AQM.

The basic syntax used with [td]is as follows:

Page 4

Lab 19: Proportional Integral Controller-Enhanced (PIE)

tc gdisc [add | ...] dev [dev_id] root pie limit [PACKETS] target [SECONDS]
tupdate [SECONDS] alpha [0-32] beta [0-32] ecn|noecn bytemode|nobytemode

e [td): Linux traffic control tool.

® [gdisd: A queuediscipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

e [[add | del | replace | change | showl]| Thisis the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change| or [del],
respectively.

e [dev [dev id]]: This parameter indicates the interface is to be subject to
emulation.

e [pief: This parameter specifies the Proportional Integral Controller-Enhanced AQM
algorithm.

e [limit [BYTES]|: Limitonthe queue size in packets. Incoming packets are dropped
when this limit is reached. Default is 1000 packets.

e [target] Denotes the expected queue delay. The default value is 15ms.

e [tupdate]: Specifies the frequency at which the system drop probability is
calculated. The default value is 15ms.

® [alpha/beta]: Alpha and beta are parameters chosen to set the proportional and
integral gain in the controller. With these values the drop probability is calculated.
These values should be in the range between 0 and 32.

® lecn/noecn]: Is used to mark packets instead of dropping [ecn|to turn on ecn mode,
to turn off ecn mode. By default, ecn is turned off.

e pbytemode/nobytemodel]: Is used to scale drop probability proportional to packet

size to turn on bytemode, to turn off bytemode. By default,

bytemode is turned off.

In this lab, we will use the AQM algorithm to control the queue size at the egress port
of a router.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Page 5

Lab 19: Proportional Integral Controller-Enhanced (PIE)

The above

h1

h1-eth0

h3

s1-eth1
s1-eth3

1 Gbps S
s2-eth2 h3-eth0 |
&

s1-eth1 s2-eth1

h2-eth0

Figure 2. Lab topology.

topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by

clicking on

Step 2. On

MiniEdit’s shortcut. When prompted for a password, type fpassword]

Terminal

Miniedit

Figure 3. MiniEdit shortcut.

MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate

the Lab 19.mn topology file and click on Open.

MiniEdit

File Edit Run Help

New

|0pen|
Save | Open -0 X
Export Lavel 2 Scopt Directory: /home/admin/lab_topologies — ‘ m

Quit

[l ab2.mn [] Lab 8.mn [Lab 14.mn [] Lab 20.mn

ﬂ%

[JLab3.mn [[]Lab9.mn []Lab 15.mn
[[] Lab 4.mn [C] Lab 10.mn [] Lab 16.mn
[Lab5.mn [] Lab 11.mn [£] Lab 17.mn
[[] Lab 6.mn [] Lab 12.mn [£] Lab 18.mn
[l tab 7.mn [Lab 13.mn CEREEE

[]

File name: |Lab 19.mn

Files of type: Mininet Topology (*.mn) -_:| Cancel |

Figure 4. MiniEdit’s Open dialog.

Page 6

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Stop h‘\-li
Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, and host h3

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

File Edit Run Help

o

Host Options

b4 ! ITermmaI I |\

/

h2

sl s2 h3

Figure 6. Opening a terminal on host h1.
Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.3]. This command tests the connectivity between host

hl and host h3. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

Page 7

Lab 19: Proportional Integral Controller-Enhanced (PIE)

"Host: h1"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
bytes from 10.0.0.3: icmp seq=1 ttl=64 time=0.340
bytes from 10.0.0.3: icmp
bytes from 10.0.0.3: icmp
bytes from 10.€ 3

tt1l=64 time=0.072
tt1l=64 time=0.065
tt1l=64 time=0.067
tt1l=64 time=0.063
6 tt1l=64 time=0.064

(1]
o O
" n
N

0 : 1cmp
bytes from 10.0.0.3: icmp
bytes from 10.0 : icmp

m ® 0

L0 £ d
Inn

wm e Ww

nwuvunununn

(1)
L0
1]
(=)

10.0.0.3 ping statistics -
6 packets transmitted, 6 received, 0% packet loss, time 123ms
rtt min/avg/max/mdev = 0.063/0.111/0.340/0.102 ms
root@admin-pc:~# |

Figure 7. Connectivity test using command.

2.1 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Miniedit

Figure 8. Shortcut to open a Linux terminal.
The Linux terminal is a program that opens a window and permits you to interact with a

command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type

fpassword and hit Enter. This command introduces 20ms delay to switch S1’s s1-ethl
interface.

sudo tc gdisc add dev sl-ethl root netem delay 20ms

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (X

[sudo] password

ladmin@admin-pc:

Figure 9. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Page 8

Lab 19: Proportional Integral Controller-Enhanced (PIE)

2.4 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.3]. To stop the test, press[ctrl+d.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

"Host: h1"

root@admin-pc:~# |ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from 10.0.0.3: icmp seq=1 ttl=64 time=41.3
bytes from 10.0.0.3: icmp seq=2 ttl=64 time=20.1
bytes from 10.0.0.3: icmp seq=3 ttl=64 time=20.1

bytes from 10.0.0.3: icmp seq=4 ttl=64 time=20.1

10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 20.080/25.390/41.266/9.166 ms
root@admin-pc:~#

Figure 10. Output of ping 10.0.0.3command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type jping 10.0.0.3]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctri+d.

"Host: h2"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from .0.0.3: seq=1 ttl=64 time=40.7
64 bytes from .0.0.3: seq=2 ttl=64 time=20.1
64 bytes from .0.0.3: seq=3 ttl=64 time=20.1

64 bytes from .0.0.3: p seq=4 ttl=64 time=20.1
& <

10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 20.090/25.257/40.745/8.943 ms
root@admin-pc:~# |

Figure 11. Output of ping 10.0.0.3/command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20mes.

Page 9

Lab 19: Proportional Integral Controller-Enhanced (PIE)

3 Testing throughput on a network using Drop Tail AQM algorithm

In this section, you are going to change the switch S2’s buffer size to 10 - BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf]) as well as hosts’
h1l and h3 TCP sending and receiving windows. The AQM algorithm is Drop Tail, which
works dropping newly arriving packets when the queue is full therefore, the parameter
that is configured is the queue size which is given by the limit value set with the rule.
Then, you will test the throughput between host hl and host h3. In this section, 10 - BDP
is 25 Mbytes, thus the limit value will be set to 10 - BDP = 26,214,400 bytes.

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

1 Mbyte = 10242 bytes
BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to 10-BDP. In addition, to ensure that the bottleneck is not the hosts’
TCP buffers, we configure the buffers to 20-BDP (52,428,800).

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1l’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled (2-10-BDP) as Linux only allocates
half of the assigned value.

sysctl -w net.ipvéd.tcp rmem=’10240 87380 52428800’

"Host: h1"
root@admin-pc:~# |sysctl -w net.ipv4.tcp rmem='10240 87380 52428800

10240 87380 52428800

Figure 12. Receive window change in[sysct1]

net.1ipv4.tcp rmem
root@admin-pc:~# |}

Page 10

Lab 19: Proportional Integral Controller-Enhanced (PIE)

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp wmem=’10240 87380 52428800’

"Host: h1"

root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800

root@admin-pc:~#
Figure 13. Send window change in[sysctl]

Step 3. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4d.tcp rmem=’10240 87380 52428800’

"Host: h3"

rmem="'10240 8

Figure 14. Receive window change in[sysctl].

Step 4. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipvé4.tcp wmem='10240 87380 52428800’

"Host: h3"
root@admin-pc:~# |sysctl -w net.ipv4.tcp wmem='10240 87380 52428800

net.ipv4.tcp wmem = 10240 87380 52428800
root@admin-pc:~# [

Figure 15. Send window change in [sysct1].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Page 11

Lab 19: Proportional Integral Controller-Enhanced (PIE)

3.2 Setting switch S2’s buffer size to 10 - BDP

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

e [tate: 1gbit
e [uzst} 500,000
e [[imit} 26,214,400

sudo tc gdisc add dev s2-eth2 root handle 1: tbf rate lgbit burst 500000 limit
26214400

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ (%]

admin@admin-pc:~S |sudo tc qdisc add dev s2-eth2 root
1gbit burst 50 Limit 26214400

admin@admin-pc:

Figure 16. Limiting rate to 1 Gbps and setting the buffer size to 10 - BDP on switch S2’s interface.

3.3 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

root@dmin-pc:~# |iperf3 -

Figure 17. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time.

sudo plot g.sh s2-eth2

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

Figure 18. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

Page 12

Lab 19: Proportional Integral Controller-Enhanced (PIE)

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

1 T T T T

T
"q_out” using 1:2 ——

0.5 .

-1 1 1 1 1 L
0 50 100 150 200 250 300

Figure 19. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. In host hl, create a directory called Drop_Tail and navigate into it using the
following command:

mkdir Drop Tail && cd Drop Tail

"Host: h1"

root@admin-pc:~# mkdir Drop Tail && cd Drop Tail
dmin-pc:~/Drop Tail# |}

Figure 20. Creating and navigating into directory Drop_Tail.
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The

option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1"

root@admin-pc:~/Drop Tail#|iperf3 -c 3 -t 90 -1 > :::l.|t.j5=::|'||

Figure 21. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Page 13

Lab 19: Proportional Integral Controller-Enhanced (PIE)

"Host: h2"

root@admin-pc:~# ping 10.0.0.3 -c 90

Figure 22. Typing command on host h2.

Step 6. Press Enter to execute the commands, first in host hl terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

3x10 T T T T T T T T T
"qoout" using 1:2 ——
7 1 -
2,5:0 | / yal g
N /
[/ Uy
20 | j ;/ e .
I.-.. rj
; f
1.540 / —
7
110’ | / i
5o | / -
e
0 1 1 L L 1 1 1 1 L
0 20 40 B0 20 100 120 140 160 180 200

Figure 23. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 - 107, which is the
maximum buffer size we configure on the switch.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot iperf.sh out.json && cd results

"Host: h1"

rf.sh out.json && cd results

Figure 24. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Page 14

Lab 19: Proportional Integral Controller-Enhanced (PIE)

"Host: h1l"

root@admin-pc:~/Drop Tail/results# xdg-open throughput.pdf I

Figure 25. Opening the throughput.pdf file.

Throughput over time
1000 T .] T T T
- , . : .

700 oo : 5 : :
ST o PN WU N NN ARG U GONSN N S—
500 : , J—
408 f f f T
°J1)1] T—_— B0 N —— AT -
100 [‘ ? ; —

0 1 1] 1 1 I 1 I
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 26. Measured throughput.

Mbps

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is approximately 900 Mbps. We can see now that the maximum
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 10 - BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1l"

root@admin-pc:~/Drop Tail/results#|xdg-open RTT.pdf I

Figure 27. Opening the RTT.pdf file.

Page 15

Lab 19: Proportional Integral Controller-Enhanced (PIE)

250000

200000

150000

RTT

100000

50000

RTT over time

30 40 50

Time (sec)

60 70

Figure 28. Measured round-trip time.

80

90

The graph above shows that the RTT was approximately 200,000 microseconds (200ms)
The output shows that there is bufferbloat as the average latency is at least ten times
greater than the configured delay (20ms).

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the output.

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

(o)

10.€

10.
10.
10.
10.
10.
10.0.

[cloNoNoNoNoNoRoNo Moo

oo oMo NoNoRNoRoNo oo RN R Ro oo Ro Rl

icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp
icmp

10.0.0.3 ping statistics
90 packets transmittec
rtt min/avg/max/mdev =

Figure 29. test result.

root@admin-pc:~# |j

seq=72
seq=73
seq=74
seq=75
seq=76
seq=77
seq=78
seq=79
seq=80
seq=81
seq=82
seq=83
seq=84
seq=85
seq=86
seq=87
seq=88
seq=89

"Host: h2"

tt1=64
tt1=64
ttl=64
tt1=64
ttl=64
tt1l=64
tt1=64
ttl=64
ttl=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
tt1=64
ttl=64

0% packet loss,

time=227
time=228
time=164
time=165
time=169
time=173
time=177
time=180
time=183
time=185
time=187
time=190
time=190
time=191
time=192
time=193
time=194
time=194

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

time=20.1 ms

time

103ms

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.083, 192.823, 228.407, and 26.954 milliseconds, respectively. The

Page 16

Lab 19: Proportional Integral Controller-Enhanced (PIE)

output also verifies that there is bufferbloat as the average latency (192.823) is
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

Sent Cwnd over time
30000 T T T T T

25000

20000

15000

Cwnd

10000

5000

0 i i i i i i i i
0 10 20 30 40 50 60 70 80 90

Time (sec)
Figure 30. Congestion window evolution.

The graph above shows the evolution of the congestion window which peaked at 2.5

Mbytes. In the next section you will configure Random Early Detection on switch S2 and
observe how the algorithm controls the queue length.

Step 13. To stop iperf3 server in host h3 press[Ctrl+d]

4 Configuring PIE on switch S2

In this section, you are going to configure PIE in switch S2’s s2-eth2 interface. Then, you
will conduct throughput and latency measurements between host hl and host h3. Note
that the buffer size is set to 10-BDP.

4.1 Setting PIE parameter on switch S2’s egress interface

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s

terminal, type the command below. When prompted for a password, type and
hit Enter.

Page 17

Lab 19: Proportional Integral Controller-Enhanced (PIE)

e [[imit: 17476
o [Eazget: 22ms
* [Eupdate} 5ms

o EIpna2
o Petdi25

sudo tc gdisc add dev s2-eth2 parent 1: handle 2: pie limit 17476 target 22ms
tupdate 5Sms alpha 2 beta 25

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~$|sudo tc qdisc add dev s2-eth2 parent 1: handle 2: pie limit 17476
target 22ms tupdate 5ms alpha 2 beta 25

admin@admin-pc:~$ |

Figure 31. Setting PIE parameters on switch S2’s s2-eth2 interface.

4.2 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

root@admin-pc:~# |iperf3 -

Figure 32. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type and hit Enter.

sudo plot g.sh s2-eth2

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~
admin@admin-pc:~5 |sudo plot_q.sh
Figure 33. Plotting the queue occupancy on switch S2’s s2-eth2 interface.
A new window opens that plots the queue occupancy as shown in the figure below. Since

there are no active flows passing through s2-eth2 interface on switch S2, the queue
occupancy is constantly 0.

Page 18

Lab 19: Proportional Integral Controller-Enhanced (PIE)

1 T T T T

T
"q_out" using 112 ——

0.5 .

= 1 1 1 1 L
0 50 100 150 200 250 300

Figure 34. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from Drop_Tail/results directory, then create a directory PIE and navigate
into it using the following command.

cd ../../ && mkdir PIE && cd PIE

"Host: h1"
roo - .o/ .. && mkdir PIE && cd PIE

root@adm

Figure 35. Creating and navigating into directory RED.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: hl1"

root@admin-pc:~/PIE#|iperf3 -c 10.0.0.3 -t 90 -] = Dut.jsonl

Figure 36. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Page 19

Lab 19: Proportional Integral Controller-Enhanced (PIE)

"Host: h2"

root@admin-pc:~# ping 10.0.0.3 -c 90

Figure 37. Typing command on host h2.

Step 6. Press Enter to execute the commands, first in host hl terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

1.6x10 T T T T T T T T
"gout" using 1:2 ——
1.4)(108 F —
12)(108 F =
B
110 | —
800000 - —
BOOOO0 - —
400000 + —
200000 b W i
0 1 1 1 1 1 1 1 1 1
0 20 40 Ei) a0 100 120 140 160 180 200

Figure 38. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 1.6-10° bytes, which is
closer to a buffer of BDP size.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

erf.sh out.json && cd results

Figure 39. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Page 20

Lab 19: Proportional Integral Controller-Enhanced (PIE)

"Host: h1"

root@admin-pc:/PIE/results#|xdg-open throughput.

Figure 40. Opening the throughput.pdf file.

Throughput over time
1000 T T T T T
900 i 4 o z

800 | ? ? e]
Y OUER VNS T A TURNR O SRS SN
600 b]
L e s L S S e e
P e S - — T -

Mbps

300 - ﬁ ﬁ — :
200 biinians e e SRl st i s ey
100 e LI .

Time (sec)
Figure 40. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also

achieved (1 Gbps) when we set PIE at the egress port of switch S2.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT.pdf) file
using the command below.

xdg-open RTT.pdf

"Host: h1"

root@admin-pc:~/PIE/results# xdg-open RTT.pdf I

Figure 41. Opening the RTT.pdf file.

Page 21

Lab 19: Proportional Integral Controller-Enhanced (PIE)

60000

50000

40000

30000

RTT

20000

10000

RTT over time

10

20

30

40 50
Time (sec)

60 70

Figure 42. Measured Round-Trip Time.

80

90

The graph above shows that the RTT was contained between 30ms and 40ms which is not
significantly greater that the configured delay (20ms) thus, there is not bufferbloat. Since
the AQM algorithm configured on the switch is applying a dropping policy to prevent

unnecessary delays.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the output.

bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[cloloNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
WWwWWwwwwwwwwwwwwwwwww

icmp

icmp

icmp
icmp
icmp

icmp

icmp
icmp
icmp
icmp
icmp
icmp
icmp

icmp

icmp
icmp
icmp

icmp

icmp

0.3 ping statistics

90 packets transmitted,

rtt min/avg/max/mdev
root@admin-pc:~# |j

"Host: h2"

ttl=64
ttl=64
tt1l=64
ttl=64
ttl=64
ttl=64
tt1=64
tt1l=64
ttl=64
tt1l=64
ttl=64
ttl=64
ttl=64
tt1l=64
ttl=64
ttl=64
ttl=64
tt1l=64
ttl=64

acket loss; time:2600ms
367/70.417 ms|

time=31.
time=33.
time=24.
time=25.
time=26.
time=27.
time=27.
time=28.
time=28.
time=28.
time=28.
time=28.
time=29.
time=28.
time=28.
time=28.
time=29.
time=29.
time=30.

Figure 43. test result.

VMU UOOWOWOOOUUEODWODDO W

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Page 22

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Time (RTT) were 20.078, 64.165, 217.367, and 70.417 milliseconds, respectively. The
output also verifies that there is not bufferbloat as the average latency (34.048) is not
significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below.

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:~/PIE/results#|xdg-open cwnd.pdf I

Figure 44. Opening the cwnd.pdf file.

Sent Cwnd over time
7000 T T T T

6000

5000

4000

Cwnd

3000

P10, USRS AR SRR SRS SRS SRS S S, S—

T [PPN S SO WU TS R R S

D | 1 1 1 1 | 1 |

0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 45. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 5 Mbytes.
In the next section you will maintain the current parameters of Random Early Detection on switch
S2 however, you will change the link rate in order to verify if the algorithm performs well if the
network condition changes.

Step 13. To stop iperf3 server in host h3 press[ctrl+d]

4.3 Changing the bandwidth to 100Mbps

This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps while
RED is tuned to work with the previous network condition. The results will show that RED
requires a reconfiguration if the network conditions changes (i.e., latency, bandwidth,
loss rate). First, you will change the bandwidth to 100 Mbps then, you will observe the
gueue occupancy, RTT and congestion window in order to evaluate the performance of
RED when the network condition changes.

Page 23

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Step 1. Apply rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type and

hit Enter.

e [tate 100mbit
e [Burst}: 50,000
o [[imit: 26,214,400

sudo tc gdisc change dev s2-eth2 root handle 1: tbf rate 100mbit burst 50000
limit 26214400

s admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~
root handle 1: tbf rate 10@mbit b

admin@admin-pc:-~$ |sudo tc - change dev s2-eth2

50008 limit 262
admin@admin-pc:~5$

Figure 46. Limiting rate to 100 Mbps and keeping the buffer size to 10-BDP on switch S2’s interface.

4.4 Throughput and latency tests
Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

"Host: h3"

root@admin-pc:~# |iperf3 -

Figure 47. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time.

sudo plot g.sh s2-eth2

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

Figure 48. Plotting the queue occupancy on switch S2’s s2-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s2-eth2 interface on switch S2, the queue

occupancy is constantly 0.

Page 24

Lab 19: Proportional Integral Controller-Enhanced (PIE)

| Gnuplot -0 X
1 T T T T T
"gq_out" using 1:2 ——
0,5 | 4
0 4
-0,5 | B
_1 1 1 1 1 1
0 50 100 150 200 250 300

Figure 49. Queue occupancy on switch S2’s s2-eth2 interface.

Step 3. Exit from PIE/results directory, then create a directory PIE_100Mbps and navigate
into it using the following command.

cd ../.. && mkdir PIE 100Mbps && cd PIE 100Mbps

"Host: h2"

min-pc:~#|cd ../.. mkdir PIE 100Mbps && cd PIE 100Mbps
dmin-pc:/PIE 100Mbps#

Figure 50. Creating and navigating into directory PIE_100Mbps.
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The

option is used to display the output in JSON format. The redirection operator [is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

"Host: h1"

root@admin-pc:/PIE 100Mbps# |iperf3 -c 3 -t 90 -J = out.json I

Figure 51. Running iPerf3 client on host h1.

Step 5. Type the following command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

"Host: h2"

root@admin-pc:~#|ping 10

Figure 52. Typing command on host h2.

Page 25

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

1.8x10 T T T

T
"g_out" using 1:2 ——

Zl;Exlli)E F B
6

Loadxlo | -
6

12«10 | B
3

klo 4

BOOOOD - 4

EOO00G - 4

400000 -

= 0 Mgl

0 100 150 200 250
Figure 53. Queue occupancy on switch S2’s s2-eth2 interface.

The graph above shows that the queue occupancy peaked around 1.7-108. In this case we
set a 100 Mbps link when PIE is configured to operate for 1 Gbps link therefore, the point
of operation changed. However, bufferbloat is not experienced because PIE controller
configuration does not depend on the network condition, it depends on the queue length
and latency as shown in section 1.1.

Step 7. In the queue plotting window, press the [s| key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot iperf.sh out.json && cd results

"Host: h1"

&% cd results

Figure 54. Generate plotting files and entering the results directory.
Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Page 26

Lab 19: Proportional Integral Controller-Enhanced (PIE)

"Host: h1"

root@admin-pc: /PIE 100Mbps/results#|xdg-open throughput.pdf I

Figure 55. Opening the throughput.pdf file.

Throughput over time
120 T T !

100

T — s

Mbps

0 i I i
0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 55. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 100 Mbps.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

"Host: h1"
root@admin-pc:/PIE 100Mbps/results#|xdg-open RTT.pdf I

Figure 56. Opening the RTT.pdf file.

Page 27

Lab 19: Proportional Integral Controller-Enhanced (PIE)

RTT over time
160000 T T T T T T

140000
120000
100000
E 80000

60000

40000

20000

0 1 I | I 1 1 I 1
0 10 20 30 40 50 60 70 80 90

Time (sec)

Figure 57. Measured Round-Trip Time.

The graph above shows that the RTT peaked at 10 seconds up to 140ms then, the latency
went down and stabilize around 40ms which is closer to the default latency (20ms). This
output shows that there is not bufferbloat as the average latency is not significantly
greater as in the previous section. Since PIE is configured to operate on a 1 Gbps link, for
this test the point of operation changed therefore, this change does not affect the queue
management policy.

Step 11. Close the RTT.pdf window then go back to h2’s terminal to see the output.

"Host: h2"

icmp seq=72 ttl=64 time=29.
icmp seq=73 ttl=64 time=32.
icmp seq=74 ttl=64 time=34.
icmp seqg=75 tt1=64 time=35.
icmp seq=76 ttl=64 time=35.
icmp seq=77 ttl=64 time=35.
icmp seq=78 ttl=64 time=37.
icmp seq=79 ttl=64 time=39.
icmp seq=80 ttl=64 time=39.
icmp seq=81 ttl=64 time=32.
icmp seq=82 ttl=64 time=26.
icmp seq=83 ttl=64 time=27.
icmp seq=84 ttl=64 time=29.
icmp seq=85 ttl=64 time=31.
icmp seq=86 ttl=64 time=33.
icmp seq=87 ttl=64 time=35.
icmp seq=88 ttl=64 time=37.
icmp seq=89 ttl=64 time=38.
icmp seq=90 ttl=64 time=41.

bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.

[

bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.
bytes from 10.

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[cNcNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo Mol
WWWwWwwwwwwwwwwwwwwww

OO NWHAEMFOONNOW

| 0.3 ping statistics

190 packets transmitted, 90 received, 0% packet loss, time 191ms
jrtt min/avg/max/mdev = |

| root@admin-pc:/PIE 100Mbps# [g

Figure 58. test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Page 28

Lab 19: Proportional Integral Controller-Enhanced (PIE)

Time (RTT) were 22.073, 37.541, 139.705 and 16.828 milliseconds, respectively. The
output also verifies that there is a bufferbloat problem as the average latency (186.175)
is significantly greater than the configured delay (20ms).

Step 12. Close the RTT.pdf window then open the retransmissions (retransmits) file using
the command below.

xdg-open cwnd.pdf

"Host: h1"

root@admin-pc:/PIE 108Mbps/results# -open cwnd.pdf I

Figure 59. Opening the cwnd.pdf file.

Sent Cwnd over time
1800 T T T T T

1600
1400
1200
1000

Cwnd

800
600
400

v 1| OV T TR SIS U T T D R

IS I S N SR S S S
0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 60. Evolution of the congestion window.

The graph above shows the evolution of the congestion window which peaked around 1.8 Mbytes.
Step 13. To stop iperf3 server in host h3 press[ctrl+d]

This concludes Lab 19. Stop the emulation and then exit out of MiniEdit.

References

1. Bufferbloat project, “Bufferbloat” [Online]. Available:
https://www.bufferbloat.net/projects/

2. |ETF draft, “PIE: A lightweight control scheme to address the bufferbloat problem,”
[Online]. Available: https://tools.ietf.org/html/draft-ietf-agm-pie-10

Page 29

Lab 19: Proportional Integral Controller-Enhanced (PIE)

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

5. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

6. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

7. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Page 30

A
’f AN
) (Tl
I7aINSY

UNIVERSITY OF

SOUTH CAROLINA

NETWORK TOOLS AND PROTOCOLS

Lab 20: Classifying TCP traffic using Hierarchical
Token Bucket (HTB)

Document Version: 11-28-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput
Networks for Big Science Data Transfers”

Lab 20: Hierarchical Token Bucket

Contents
OVEIVIBW ..ttt ettt e e ettt e e e e e e s e an bttt eeeeeeeesanse b e et e eeeeesaannsaeeeeeeeeeesannnnaeeaaaeens 3
(@ T =T ox a1V 3
1] o TR =] 1T =P URR 3
1] o I o = To [4=« J PSR 3
1 INTFOAUCTION ceeeee ettt e e st e e s st e e e s s bbb e e e ssanraeeenans 3
P2 - o B o o To] Uo Y =AY 2SR UPPPR 6
2.1 Starting host hl, host h2, hosth3 and hosth4ccccoeeiiiiic e, 7
2.2 Emulating high-1atency WAN.......ccoo i e 8
PSR =151 a1 o T olo T | o T=Tot { o] o TSRO OO 9
3 Emulating a high latency wide area network (WAN)........ccooeeiiiie e, 10
3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer sizecccceeeeuuneee. 10
3.2 Modifying hosts’ bUffer Sizeoeoiviiiieeeciee e 11
3.3 Setting switch S1’s buffer $ize to BDPcccuvveeeeiiiiiieeee e, 14
3.4 Throughput tests of two TCP competing flowsccccovveeiriiiieeiciieeeceee, 14
4 Setting HTB at switch s2 egress interface........ccocvieiiiieiiiciiee e 17
4.1 DefiNiNgG CIaSSES ..uuvviiiiiiiiie ittt e e e e s e e e 17
4.2 DefinNiNg fIlLEIS oo e s 18
4.3 Throughput tests of two TCP competing flows using HTBccccecvvveeeneee. 19
2] =T =Y gVl TP 22

Page 2

Lab 20: Hierarchical Token Bucket

Overview

This lab is aimed to introduce the reader to Hierarchical Token Bucket (HTB). This
gueueing discipline controls the use of the outbound bandwidth on a given link by
classifying different kinds of traffic into several slower links. Throughput tests are
conducted to evaluate the impact of dividing a physical link according to a given policy.

Objectives

By the end of this lab, students should be able to:

Understand the concept of link-sharing.

Define classes to allocate a maximum bandwidth to a TCP flow.

Associate a class to a specific flow using filters.
Evaluate the effects of HTB when two TCP are using the same link.

PwnNPE

Lab settings
The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Clientl machine.

Device Account Password

Clientl admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Emulating a high latency wide area network (WAN).
4. Section 4: Setting HTB at switch s2 egress interface.
1 Introduction

On a network, the management of upstream link requires the implementation of a
link-sharing mechanism. Without such mechanism the default behavior of the
gateways routers does not necessarily lead to a fair Internet bandwidth sharing among
the endpoints. The Internet is mostly based on TCP/IP which provides few features
that allow network administrators to implement traffic control rules, TCP/IP does not

Page 3

Lab 20: Hierarchical Token Bucket

know the link capacity between two hosts so that, TCP protocols compete sending
packets faster, when packets start getting lost it will slow down.

In summary, network resource management involves two types of services: services
for real-time traffic and link-sharing services'. However, in a congested network,
resource management mechanism is required at the gateway router. The main
functions of the link-sharing mechanism are:

e Enable routers to control the distribution of traffic on local links according to
the local demand therefore, each organization has a guaranteed bandwidth.

e Enable gateways to redistribute available bandwidth among organizations.

e Specify the bandwidth according the type of traffic.

e Accommodate the available bandwidth as new services are added.

All these requirements lead to the design of a hierarchical link-sharing structure.
Figure 1 depicts the relationship between classes filters and queueing disciplines. In
this structure, the traffic is classified according to a class. Classes and filters are tied
together to the queuing discipline. A queuing discipline can be associated with several
classes. Every class must have a queuing discipline associated it. Filters are used by the
gueuing discipline to assign incoming packets to one of its classes. Different types of filters
can be employed, for example route classifiers and u32 filters. These filters usually classify
the traffic based on the source IP, destination IP, source port, destination port, TOS byte
and protocol. The universal 32bit (u32) filter allows to match arbitrary bitfields in the
packet.

Incoming packet Outgoing packet
Ep - Filter/Policer EONg P -

Classifier

Figure 1. Linux kernel traffic control.

11 HTB algorithm

HTB controls the use of the outbound bandwidth on a given link by simulate several
slower links. The user specifies how to divide the physical link into simulated links and
how to decide which simulated link to use for a given packet to be sent. HTB shapes traffic
based on the Token Bucket Filter (TBF) algorithm, which does not depend on interface
characteristics and so does not need to know the underlying bandwidth of the outgoing
interface.

Page 4

Lab 20: Hierarchical Token Bucket

Figure 2 illustrates a basic structure of HTB. The classes are configured as a tree according
to relationships of traffic aggregations. Only leaf classes have queue to buffer the packets
belong to the class. Children classes borrow bandwidth from their parents when their
packet flow exceeds the configured rate. A child will continue to attempt to borrow
bandwidth until it reaches ceil, which is the maximum bandwidth available for that class.
Under each class, the user can specify other queueing disciplines namely Token Bucket
Filter (TBF), Stochastic Fair Queueing (SFQ), Controlled Delay (CoDel), etc. It will depend
on the service that such class is intended to provide. The default queueing discipline is
First-in, First-out (FIFO).

HTB root

Figure 2. Hierarchical Token Bucket Structure.

The basic syntax used with [cd]is as follows:

tc gdisc [add | ...] dev [dev_id] root handle 1: htb default [DEFAULT-ID]

tc

[td: Linux traffic control tool.

[adisd: A queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

[[add | del | replace | change | show]]: Thisis the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change| or [del],
respectively.

lhth: enables Hierarchical Token Bucket queuing discipline.

[default]: unclassified traffic will be enqueued under this class.

class [add | ...] dev [dev id]

[t Linux traffic control tool.

[class]: defines a class. Classes have a host of parameters to configure their
operation.

[[add | del | replace | change | showl]]: This is the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be [add. To change or remove it, the operation will be [change| or [del],
respectively.

[rate]: specifies the maximum rate this class and all its children are guaranteed.
This parameter is mandatory.

Page 5

Lab 20: Hierarchical Token Bucket

e [ceil]: determines the maximum rate at which a class can send, if its parent has
available bandwidth. The default configuration is set to the configured rate, which
implies no borrowing.

e purst]: denotes the number of bytes that can be burst at ceil speed, in excess of
the configured rate. It should be at least as high as the highest burst of all children.

In this lab, we will use the [htil AQM algorithm to control the queue size at the egress port
of a router.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

h3

h3-eth0

h4-eth0

Figure 3. Lab topology.
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password|.

Terminal

Miniedit

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 20.mn topology file and click on Open.

Page 6

Lab 20: Hierarchical Token Bucket

- MiniEdit

File Edit Run Help

New

Export Level 2 Script Directory: /home/admin/lab_topologies gl
[JLab2.mn [JLab8.mn [Lab 14.mn (] [EREREE
[JLtab3.mn [[]Lab9.mn [I] Lab 15.mn

[£] Lab 4.mn [] Lab 10.mn [] Lab 16.mn
[l Lab5.mn [[]Lab 11.mn [[] Lab 17.mn
[[] tab 6.mn [] Lab 12.mn [] Lab 18.mn
[£] tab 7.mn [£] Lab 13.mn [5] Lab 19.mn

[} ¥

File name: Lab 20.mn '

Files of type: Mininet Topology (*.mn) Al Cancel |

a1k

Figure 5. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start

the emulation.

Stop |I‘\J7

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, host h3 and host h4

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Page 7

Lab 20: Hierarchical Token Bucket

File Edit Run Help

B

Host Options

|Termina| |

/
\

sl s2 s3
/ o
= h2 n

Figure 7. Opening a terminal on host h1l.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the command. On host h1,
type the command ping 10.0.0.3] This command tests the connectivity between host
hl and host h3. To stop the test, press [ctri+d. The figure below shows a successful
connectivity test.

"Host: h1"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
bytes from 10.0.0.3: icmp seq=1 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=2 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=3 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=4 ttl=64 time=0.

bytes from 10.0.0.3: icmp seq=5 ttl=64 time=0.
bytes from 10.0.0.3: icmp seq=6 ttl=64 time=0.

10.0.0.3 ping statistics
6 packets transmitted, 6 received, 0% packet loss, time
rtt min/avg/max/mdev = 0.063/0.111/0.340/0.102 ms
root@admin-pc:~

Figure 8. Connectivity test using command.

2.2 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the keys or by clicking on the
Linux terminal icon.

Page 8

Lab 20: Hierarchical Token Bucket

o
Miniedit
Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLl is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type

and hit Enter. This command introduces 20ms delay to switch S1’s s1-ethl
interface.

sudo tc gdisc add dev sl-ethl root handle 1: netem delay 20ms

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~ [x]

sl-ethl root handle 1: netem delay
[sudo] pa
admin@admin-pc:

Figure 10. Adding delay of 20ms to switch S1’s s1-eth1 interface.

2.3 Testing connection

To test connectivity, you can use the command [ping].

Step 1. On the terminal of host h1, typeping 10.0.0.3]. To stop the test, press[Ctrl+d|.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

"Host: h1"

root@admin-pc:~#|ping 10.06.0.3
(10.0.0.3) 56(84) bytes of data.
1 10.0.0.3: icmp seq=1 ttl=64 time=41.
10.0.0.3: icmp seq=2 ttl=64 ti
s from 10.0.0.3: icmp seq=3 ttl=64

t)fy‘tes from 10.0.0.3: icmp seq=4 ttl=64

10.0.0.3 ping statistic
4 packets transmitted, 4 re ed, 0% packet loss, time
(= 20.080/25.390/41.266/9.166 ms

Figure 11. Output of ping 10.0.0.3]command.

Page 9

Lab 20: Hierarchical Token Bucket

Theresult above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type [ping 10.0.0.3]. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop

the test, press[Ctrl+d|

"Host: h2"

root@admin-pc:~#|ping 10.0.0.3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from .0.0.3: seq=1 ttl=64 time=40.
64 bytes from .0.0.3: seq=2 ttl=64 time=20.
64 bytes from .0.0.3: seq=3 ttl=64 time=20.

64 bytes from .0.09.3: seq=4 ttl=64 time=20.
i

- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 20.090/25.257/40.745/8.943 ms
root@admin-pc:~# |j

Figure 12. Output of ping 10.0.0.3/command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Emulating a high latency wide area network (WAN)

In this section, you are going to tune the network devices in order to emulate a Wide Area
Network (WAN). First, you will set the hosts’” TCP buffers to 8:BDP therefore, the
bottleneck is not in the end-hosts. Then, you will set the bottleneck bandwidth to 1Gbps
in switch S1’s s1-eth1 interface. Finally, you will conduct throughput tests between two
competing TCP flows when Token Bucket Filter (TBF) is configured in switch S1 to limit the
bandwidth.

3.1 Bandwidth-delay product (BDP) and hosts’ TCP buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

Page 10

Lab 20: Hierarchical Token Bucket

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to BDP. In addition, to ensure that the bottleneck is not the hosts’ TCP
buffers, we configure the buffers to 8-BDP (20,971,520).

3.2 Modifying hosts’ buffer size

For the following calculation, the bottleneck bandwidth is considered as 1 Gbps, and the
round-trip time latency as 20ms.

In order to have enough TCP buffer size, we will set the TCP sending and receiving
buffer to 8 - BDP in all hosts.

BW = 1,000,000,000 bits/second
RTT = 0.02 seconds

BDP = 1,000,000,000 - 0.02 = 20,000,000 bits
= 2,500,000 bytes = 2.5 Mbytes

The send and receive TCP buffer sizes should be set to 8 - BDP to ensure the bottleneck

is not in the end-hosts. For simplicity, we will use 2.5 Mbytes as the value for the BDP
instead of 2,500,000 bytes.

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 - 10242 bytes = 2,621,440 bytes

8 - BDP = 82,621,440 bytes = 20,971,520 bytes

Step 1. At this point, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s terminal

type the command shown below. The values set are: 10,240 (minimum), 87,380 (default),
and 20,971,520 (maximum).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 20971520’

Page 11

Lab 20: Hierarchical Token Bucket

"Host: h1"

root@admin-pc:~# |sy -w net.ipv4.tcp rmem='10240 87380 20971520’

vd. tcp 20971520

Figure 13. Receive window change in[sysct1].

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 20,971,520 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1l’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520’

"Host: h1"

roote) # |sysctl -w net.ipv4.tcp wmem='10240 87 20971520"

10240 8 20971520
root@admin-pc:

Figure 14. Send window change in[sysct1]

Next, the same commands must be configured on host h2, host h3, and host h4.
Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and

20,971,520 (maximum).

sysctl -w net.ipvé4.tcp rmem='10240 87380 20971520’

"Host: h2"

971520'

Figure 15. Receive window change in[sysctl]
Step 4. To change the current send-window size value(s), use the following command on

host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520’

"Host: h2"

t.ipv4.tcp wmem='10240 2971520

20971520

Figure 16. Send window change in[sysct1].

Page 12

Lab 20: Hierarchical Token Bucket

Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipvéd.tcp rmem=’10240 87380 20971520’

"Host: h3"

pv4.tcp rmem="'10240 20971520

Figure 17. Receive window change in[sysct1].

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipv4.tcp wmem=’10240 87380 20971520’

"Host: h3"

B 20971520

Figure 18. Send window change in[sysct1]

Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipvé4.tcp rmem='10240 87380 20971520’

"Host: h4"

.tep rmem='10240 20971520

171520

Figure 19. Receive window change in[sysctl]

Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
20,971,520 (maximum).

sysctl -w net.ipvéd.tcp wmem=’10240 87380 20971520’

"Host: h4"

ctl -w net.ipv4.tcp wmem='10240 80 20971520

10240 8 0] 71520

Figure 20. Send window change in[sysct1].

Page 13

Lab 20: Hierarchical Token Bucket

3.3 Setting switch S1’s buffer size to BDP

In this section, you are going to set switch S1’s buffer size to BDP and emulate a 1 Gbps
Wide Area Network (WAN) using the Token Bucket Filter. Then, you will set the TCP
sending and receiving windows in all hosts. Finally, you will conduct a throughput test
with two TCP competing flows.

Step 1. Apply rate limiting rule on switch S2’s si-ethl interface. In the client’s
terminal, type the command below. When prompted for a password, type and
hit Enter.

o [catd: 1ghit
e [burst}: 500,000
o [[imit} 2,621,440

sudo tc gdisc add dev sl-ethl parent 1: handle 2: tbf rate 1lgbit burst 500000
limit 2621440

admin@admin-pc: ~

File Actions Edit View Help

admin@admin-pc: ~

admin@admin-pc:~5% |sudo tc qdisc add dev sl-ethl parent 1: handle 2 tbf rate

T

admin@admin-pc:~S |

Figure 21. Limiting rate to 1 Gbps and setting the buffer size to BDP on switch S1’s interface.

3.4 Throughput tests of two TCP competing flows
Step 1. Launch iPerf3 in server mode on host h3’s terminal.
iperf3 -s

"Host: h3"

:~# |iperf

ver listening on 5201

Figure 22. Starting iPerf3 server on host h3.

Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Page 14

Lab 20: Hierarchical Token Bucket

"Host: hg"

root@admin-pc:~# iperf3 -s

Server listening on 5201

Figure 23. Starting iPerf3 server on host h4.

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host h1l and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 3
and Step 4 without executing them next, in Step 5 you will press Enter in host hl and host
h2 to execute them.

Step 3. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.3 -t 60

"Host: h1"

root@admin-pc:~#|iperf3 -c 10.0.8.3 -t E-EJ'

Figure 24. Running iPerf3 client on host h1l.
Step 4. Type the following iPerf3 command in host h2’s terminal without executing it.

iperf3 -c 10.0.0.4 -t 60

"Host: h2"

root@admin-pc:~# |iperf3 -c 10.0.0.4 -t E-EJ'

Figure 25. Running iPerf3 client on host h2.

Step 5. Press Enter to execute the commands shown in step 4 and step 6, first in host hl
terminal then, in host h3 terminal.

Step 6. Wait until the test finishes then, click on host h1 terminal to visualize the results.
You will notice that host h1 uses approximately the half part of the link (~500Mbps).

Page 15

Lab 20: Hierarchical Token Bucket

21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]

55.

56.0
57.0

[+
(=

59.00-60

ID] Interval

21]
21]

0-60.00
0e-60.05

iperf Done.

@admin-pc:~# |

[34+]

(3 0]

wowowmowmowm

W
s sl s s is)

Figure 25. Throughput report on host h1l.

"Host: h1"

55.0 MBytes

p5 GByt

Transfer
3.03 GBytes

Bitrate

Mbits/sec
ec

Mbits/se

437 Mbits/
434 Mbits/

I T = T T I R R e e e N =
. ot

.50

MBytes

MBytes
MBytes
MBytes
MBytes

8 MBytes

MBytes
MBytes
MBytes
MBytes
MBytes

Step 7. To visualize the results in the other sender, click on host h2 terminal. You will
notice that host h2 uses approximately the half part of the link (~500Mbps).

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]
21]

21]
21]

43
44
45.
46
47.
48
49.
50
51
52.
53
54
55
56
57
58
59.

0.
0.

.00-44.
.00-45.

00-46.

.00-47.

00-48.

.00-49.

00-50.

.00-51.
.00-52.

00-53.

.00-54.
.00-55.
.00-56.
.00-57.
.00-58.
.00-59.

00-60.

ID] Interval

00-60.
00-60.

iperf Done.
root@admin-pc:~# [

Figure 26. Throughput report on host h2.

"Host: h2"

y i
71.
TL
755
76.
735
63.
63.
63.
65.
65.
65.
66.
65.
66.
65.
61.

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

TNONONOOOWMWMOWMONONNO®

Transfer
3.66 GBytes
3.65 GBytes

619
598
598
629
640
619
535
535
535
545
545
545
556
545
556
545
514

ngzraté__

Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec
Mbits/sec

524 Mbits/sec
522 Mbits/sec

N
N

[cNolNoNoNoNoNoNoNoNoNYNoNoNoNoNo Nl

Step 8. To stop iperf3 servers in host h3 and host h4 press [ctri+d|.

HFNNNNNNNNNNNNNNNN

MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes
MBytes

sender

receiver

Page 16

Lab 20: Hierarchical Token Bucket

4 Setting HTB at switch s2 egress interface

In this section you will enable in switch S2’s s2-eth2 interface Hierarchical Token Bucket
(HTB). First is defined as the root queueing discipline. Secondly, two classes are
defined. These classes specify the bandwidth allocation for two TCP flows. Then, you will
use filters to associate specific flows to the previously defined classes. Lastly, a
throughput test is conducted to observe how HTB classifies TCP traffic. HTB ensures that
the amount of service provided to each class is at least the minimum of the amount it
requests, and the amount assigned to it.

Step 1: In order to enable in switch S2 egress interface, type the following
command:

sudo tc gdisc add dev s2-eth2 root handle 1: htb

admin@admin-pc: ~

Edit

File Actions View Help
admin@admin-pc: ~

admin@admin-pc: sudo tc qd 2-eth2 root handle 1: htb

admin@admin-pc:

Figure 26. Setting in switch S2’s s2-eth2 interface.

4.1 Defining classes

In this section, first you will define a root class which specifies as its parent. A root
class, like other classes under an qdisc allows its children to borrow from each other,
but one root class cannot borrow from another. Then, you will create two classes that will
allocate 700Mbps and 300Mbps of bandwidth respectively. These classes borrow from
the root the bandwidth they need.

Step 1: To define the root class type the following command in the Client’s terminal.

e [rate]: 1gbit
® [ceill: 1gbit

sudo tc class add dev s2-eth2 parent 1:0 classid 1:1 htb rate lgbit ceil 1lgbit

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~5|sudo tc class add dev sZ-eth2 parent 1:0 classid 1:1 htb
rate 1gbit ceil 1gbit

admin@admin-pc:~5 |

Figure 27. Defining a root class.

Page 17

Lab 20: Hierarchical Token Bucket

Step 2: Define the following class by issuing the command shown below:

e [cate: 700mbit
o [ceil: 1gbit

sudo tc class add dev s2-eth2 parent 1:1 classid 1:10 htb rate 700mbit ceil
lgbit

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~5%|sudo tc class add dev s2-eth2 parent 1:1 classid 1:10 htb rate

-

700mbit cell 1gbit

admin@admin-pc:~5 i

Figure 28. Defining a class rate and ceil values.

Step 3: Define the next class by issuing the following command:

e [rate]: 300mbit
e [ceill: 1gbit

sudo tc class add dev s2-eth2 parent 1:1 classid 1:20 htb rate 300mbit ceil
lgbit

admin@admin-pc: ~

Edit

File Actions

View Help
admin@admin-pc: ~

5 add dev -eth2 parent 1:1 classid 1:20 htb rate
[300mb1t ce1

admin@admin-pc:

Figure 29. Defining a class rate and ceil values.

4.2 Defining filters

In this section, you will specify the filters. The filters determine which class belong to
each packet. In this case we use the source IP to match the flows. Note that the IP
address of host h1 is 10.0.0.1 and the IP address of host h2 is 10.0.0.2.

Step 1: To define filter related to the first class that was defined in the previous section,
in the Client’s terminal type the following command:

sudo tc filter add dev s2-eth2 protocol ip parent 1:0 prio 1 u32 match ip src
10.0.0.1 flowid 1:10

Page 18

Lab 20: Hierarchical Token Bucket

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc:~5 |sudo tc filter add dev s2-eth2? protocol ip parent 1:0 pric 1
u32 match 1p src 10.0.0.1 flowld 1:10

admin@admin-pc:~5 |

Figure 30. Setting a filter to associate the flows from h1 to class 1:10.

Step 2 To define filter for the first class type the following command in the Client’s
terminal.

sudo tc filter add dev s2-eth2 protocol ip parent 1:0 prio 1 u32 match ip src
10.0.0.2 flowid 1:20

admin@admin-pc: ~

File Actions Edit View Help
admin@admin-pc: ~

admin@admin-pc: sud filter add dev s2-eth2 protocol ip parent 1:0 prio 1
u32 match ip 9.0.0.2 flowid 1:20

admin@admin-pc:

Figure 31. Setting a filter to associate the flows from h2 to class 1:20.

4.3 Throughput tests of two TCP competing flows using HTB
In this section, you will conduct a throughput test to verify the previous configuration.

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

"Host: h3"

Figure 32. Starting iPerf3 server on host h3.
Step 2. Launch iPerf3 in server mode on host h4’s terminal.
iperf3 -s

"Host: h4a"

root@admin-pc:~#|iperf3 -s

Figure 33. Starting iPerf3 server on host h4.

Page 19

Lab 20: Hierarchical Token Bucket

The following steps are aimed to replicate the case when two TCP flows are competing
sharing the same link therefore, the iperf3 commands in host hl and host h2 should be
executed almost simultaneously. Hence, you will type the commands presented in Step 3
and Step 4 without executing them next, in Step 5 you will press Enter in host h1 and host
h2 to execute them.

Step 3. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.3 -t 60

"Host: h1"

root@admin-pc:~# |iperf3 -c

Figure 34. Running iPerf3 client on host h1l.
Step 4. Type the following iPerf3 command in host h2’s terminal without executing it.

iperf3 -c 10.0.0.4 -t 60

"Host: h2"

root@admin-pc:~# |iperf3 -c 10.0.0.4 -t 60

Figure 35. Running iPerf3 client on host h1.

Step 5. Press Enter to execute the commands shown in step 4 and step 6, first in host hl
terminal then, in host h3 terminal.

Step 6. Wait until the test finishes then, click on host h1 terminal to visualize the results.

You will notice that host h1 uses the bandwidth that was specified by the rate in the first
class, which is approximately 700Mbps.

Page 20

Lab 20: Hierarchical Token Bucket

"Host: h1"

671 Mbits/s¢ :

671 ¢ MByt
671 Mbits/se ¢ 6 MByt
661 Mbits/se] 2 MBytes
671 Mbits/se] 2.96 MBytes
671 Mbits/se ¢ 2 MBytes
671 Mbits/sec ¢ 2.96 MBytes
661 Mbits/se ¢ .98 MBytes
671 Mbits/se ¢ . MByt
671 s ¢ . MByt
671 Mbi ! . MByt
671 Mbi ! MByt
661 Mbits/se 2 MBytes
671 ¢ . MBytes
671 = ¢ . MBytes
671 Mbi e ¢ MBytes
671 Mbi e ¢ 3 MBytes

w

o

w

w

w

o

w

55.
56.
57.0

59.0¢

T«
W

o

[
W oW oW
w

w

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

(o}
w
wn

Bitrate
671 Mbits

iperf Done.
root@admin-pc:~# |

Figure 36. Throughput report on host h1.

Step 7. Click on host h2 terminal to visualize the results. Notice that host h2 uses the
bandwidth that was specified by the rate in the second class, which is around 300Mbps.

"Host: h2"

Mbits/s
Mbits

Mbits/

35. Mbits
35. 2 Mbits
92.5 MBytes

115 MBy Mbits/
Transfer Bitrate
2 316 Mbits/
P 314 Mbits/se

1]
w

W @ 0

i pe
roote

Figure 37. Throughput report on host h2.
Step 8. To stop iperf3 servers in host h3 and host h4 press [Ctri+d|.

This concludes Lab 20. Stop the emulation and then exit out of MiniEdit.

Page 21

Lab 20: Hierarchical Token Bucket

References

1. C. H Lee, K. Young-Tak. "QoS-aware hierarchical token bucket (QHTB) queuing
disciplines for QoS-guaranteed Diffserv provisioning with optimized bandwidth
utilization and priority-based preemption." International conference on
information networking 2013 (ICOIN), pp. 351-358. IEEE, 2013.

2. M. Devera “HTB Linux queuing discipline manual - user guide” 2002. [Online].
Available: http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

5. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

6. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

7. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

Page 22

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Exercise 1 - Building a Basic Topology
	Lab 2 - Introduction to Iperf
	Lab 3 - Emulating WAN with NETEM I Latency, Jitter
	Lab 4 - Emulating WAN with NETEM II Packet Loss, Duplication, Reordering, and Corruption
	Lab 5 - Setting WAN Bandwidth with Token Bucket Filter (TBF)
	Exercise 2 - Emulating a Wide Area Network (WAN)
	Problem 1 - Troubleshooting a WAN
	Lab 6 - Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
	Lab 7 - Understanding Rate-based TCP Congestion Control (BBR)
	Lab 8 - Bandwidth-delay Product and TCP Buffer Size
	Exercise 3 - Tuning TCP and Switch Buffer Size
	Exercise 4 - Running Tests with Competing TCP Flows and Different Congestion Control Algorithms
	Lab 9 - Enhancing TCP Throughput with Parallel Streams
	Exercise 5 - Enhancing the Aggregate TCP Throughput with Parallel Streams
	Problem 2 - Enhancing TCP Throughput
	Lab 10 - Measuring TCP Fairness
	Exercise 6 - RTT Unfairness
	Problem 3 - Minimizing the Unfairness
	Lab 11 - Routers Buffer Size
	Lab 12 - TCP Rate Control with Pacing
	Exercise 7 - Setting the Pacing Rate
	Lab 13 - Maximum Segment Size (MSS)
	Lab 14 - Router's Bufferbloat
	Exercise 8 - Router Bufferbloat
	Lab 15 - Analyzing the Impact of Hardware Offloading on TCP Performance
	Lab 16 - Random Early Detection
	Lab 17 - Stochastic Fair Queueing
	Lab 18 - Controlled Delay (CoDel) Active Queue Management
	Lab 19: Proportional Integral Controller-Enhanced (PIE)
	Lab 20 - Classifying TCP traffic using Hierarchical Token Bucket (HTB)

