

NETWORK TOOLS AND PROTOCOLS

Lab 1: Introduction to Mininet

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoking Mininet using the CLI .. 5

2.1 Invoking Mininet using the default topology ... 5

2.2 Testing connectivity ... 8

3 Building and emulating a network in Mininet using the GUI 9

3.1 Building the network topology ... 9

3.2 Testing connectivity ... 11

3.3 Automatic assignment of IP addresses .. 13

3.4 Saving and loading a Mininet topology .. 15

References .. 16

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and how to build and emulate topologies using a graphical user
interface (GUI) application.

Objectives

By the end of this lab, students should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoking Mininet using the CLI.
3. Section 3: Building and emulating a network in Mininet using the GUI.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides
an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

Lab 1: Introduction to Mininet

 Page 4

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses
on emulating a simple network environment without SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently few resources that networks of over a thousand nodes have created, running
on a single laptop. A Mininet container is a process (or group of processes) that no longer
has access to all the host system’s native network interfaces. Containers are then assigned
virtual Ethernet interfaces, which are connected to other containers through a virtual
switch4. Mininet connects a host and a switch using a virtual Ethernet (veth) link. The veth
link is analogous to a wire connecting two virtual interfaces, as illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.
Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e. nodes run the native network software of

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

the physical machine. In a simulator environment on the other hand, applications and
protocol implementations need to be ported to run within the simulator before they can
be used4.

2 Invoking Mininet using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

2.1 Invoking Mininet using the default topology

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 3. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. To start a minimal topology, enter the command sudo mn at the CLI. When
prompted for a password, type password and hit enter. Note that the password will not
be visible as you type it.

Figure 4. Starting Mininet using the CLI.

Lab 1: Introduction to Mininet

 Page 6

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

Figure 5. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

mininet>

Step 3. To display the list of Mininet CLI commands and examples on their usage, type the
command help in the Mininet CLI:

Figure 6. Mininet’s help command.

Step 4. To display the available nodes, type the command nodes:

Figure 7. Mininet’s nodes command.

Lab 1: Introduction to Mininet

 Page 7

The output of this command shows that there are two hosts (host h1 and host h2) and a
switch (s1).

Step 5. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command net in the Mininet CLI to see the available
links.

Figure 8. Mininet’s net command.

The output of this command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2.

3. Switch s1:
a. has a loopback interface lo.
b. connects to h1-eth0 through interface s1-eth1.
c. connects to h2-eth0 through interface s1-eth2.

Mininet allows you to execute commands at a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 6. Issue the command h1 ifconfig.

Figure 9. Output of h1 ifconfig command.

Lab 1: Introduction to Mininet

 Page 8

This command executes the ifconfig Linux command on host h1. The command shows
host h1’s interfaces. The display indicates that host h1 has an interface h1-eth0 configured
with IP address 10.0.0.1, and another interface lo configured with IP address 127.0.0.1
(loopback interface).

2.2 Testing connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2 respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response. Information
available includes how many responses are returned and how long it takes for them to
return.

Step 1. On the CLI, type h1 ping 10.0.0.2. This command tests the connectivity
between host h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a
successful connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and
successfully received the expected responses.

Figure 10. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing exit.

Figure 11. Stopping the emulation using exit.

Lab 1: Introduction to Mininet

 Page 9

The command sudo mn -c is often used on the Linux terminal (not on the Mininet CLI)
to clean a previous instance of Mininet (e.g., after a crash).

3 Building and emulating a network in Mininet using the GUI

In this section, you will use the application MiniEdit5 to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

Figure 12. Lab topology.

3.1 Building the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 13. MiniEdit Desktop shortcut.

MiniEdit will start, as illustrated below.

Figure 14. MiniEdit Graphical User Interface (GUI).

s1

s1-eth2

10.0.0.0/8

h1 h2

h2-eth0h1-eth0

s1-eth1
10.0.0.2

Lab 1: Introduction to Mininet

 Page 10

The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. Switch: allows addition of a new switch to the topology. After clicking this button,
click anywhere in the blank canvas to insert the switch.

4. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

5. Run: starts the emulation. After designing and configuring the topology, click the
run button.

6. Stop: stops the emulation.

Step 2. To build the topology of Figure 12, two hosts and one switch must be deployed.
Deploy these devices in MiniEdit, as shown below.

Figure 15. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses at host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below.

Lab 1: Introduction to Mininet

 Page 11

Figure 16. Configuration of a host’s properties.

3.2 Testing connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 17. Starting the emulation.

Step 2. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal. This opens a terminal on host h1 and allows the execution of commands on the
host h1. Repeat the procedure on host h2.

Figure 18. Opening a terminal on host h1.

Lab 1: Introduction to Mininet

 Page 12

The network and terminals at host h1 and host h2 will be available for testing.

Figure 19. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command ifconfig to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

Figure 20. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Lab 1: Introduction to Mininet

 Page 13

Step 4. On host h1’s terminal, type the command ping 10.0.0.2. This command tests
the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure

below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2
(10.0.0.2) and successfully received the expected responses.

Figure 21. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Figure 22. Stopping the emulation.

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Hold right click on host
h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Lab 1: Introduction to Mininet

 Page 14

Figure 23. Host h1 properties.

Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this
value to 15.0.0.0/8, and then press the OK button.

Figure 24. Modification of the IP Base (network address and prefix length).

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal.

Lab 1: Introduction to Mininet

 Page 15

Figure 25. Opening a terminal on host h1.

Step 5. Type the command ifconfig to display the IP addresses assigned to host h1. The
interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask 255.0.0.0.

Figure 26. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

3.4 Saving and loading a Mininet topology

It is often useful to save the network topology, particularly when its complexity increases.
MiniEdit enables you to save the topology to a file.

Lab 1: Introduction to Mininet

 Page 16

Step 1. To save your topology, click on File then Save. Provide a name for the topology
and save on your machine.

Figure 27. Saving the topology.

Step 2. To load the topology, click on File then Open. Locate the topology file and click on
Open. The topology will be loaded again to MiniEdit.

Figure 28. Opening a topology.

The upcoming labs’ topologies are already built and stored in the folder
/home/admin/lab_topologies located in the Client’s home directory. The Open dialog is
used to avoid manually rebuilding each lab’s topology.

This concludes Lab 1. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.

Lab 1: Introduction to Mininet

 Page 17

2. N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

3. J. Esch, “Prolog to, software-defined networking: a comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, 2015.

4. P. Dordal, “An Introduction to computer networks,” [Online]. Available:
https://intronetworks.cs.luc.edu/.

5. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

NETWORK TOOLS AND PROTOCOLS

Lab 2: Introduction to Iperf3

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 2: Introduction to Iperf3

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1. Introduction to iPerf ... 3

2. Lab topology.. 4

2.1 Starting host h1 and host h2 .. 6

3. Using iPerf3 (client and server commands) .. 6

3.1 Starting client and server ... 7

3.2 Setting transmitting time period .. 8

3.3 Setting time interval ... 9

3.4 Changing the number of bytes to transmit .. 10

3.5 Specifying the transport-layer protocol ... 11

3.6 Changing port number ... 13

3.7 Export results to JSON file .. 13

3.8 Handle one client ... 14

4. Plotting iPerf3 results .. 15

References .. 17

Lab 2: Introduction to Iperf3

 Page 3

Overview

This lab briefly introduces iPerf3 and explains how it can be used to measure and test
network throughput in a designed network topology. It demonstrates how to invoke both
client-side and server-side options from the command line utility.

Objectives

By the end of this lab, students should be able to:

1. Understand throughput and how it differs from bandwidth in network systems.
2. Create iPerf3 tests with various settings on a designed network topology.
3. Understand and analyze iPerf3’s test output.
4. Visualize iPerf3’s output using a custom plotting script.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to iPerf3.
2. Section 2: Lab topology.
3. Section 3: Using iPerf3 (client and server commands).
4. Section 4: Plotting iPerf3’s results.

1 Introduction to iPerf

Bandwidth is a physical property of a transmission media that depends on factors such as
the construction and length of wire or fiber. To network engineers, bandwidth is the
maximum data rate of a channel, a quantity measured in bits per second (bps)1. Having a
high-bandwidth link does not always guarantee high network performance. In fact,
several factors may affect the performance such as latency, packet loss, jitter, and others.

Lab 2: Introduction to Iperf3

 Page 4

In the context of a communication session between two end devices along a network path,
throughput is the rate in bps at which the sending process can deliver bits to the receiving
process. Because other sessions will be sharing the bandwidth along the network path,
and because these other sessions will recur, the available throughput can fluctuate with
time2. Note, however, that sometimes the terms throughput and bandwidth are used
interchangeably.

iPerf3 is a real-time network throughput measurement tool. It is an open source, cross-
platform client-server application that can be used to measure the throughput between
the two end devices. A typical iPerf3 output contains a timestamped report of the amount
of data transferred and the throughput measured.

Figure 1. Throughput measurement with iPerf3.

Measuring throughput is particularly useful when experiencing network bandwidth issues
such as delay, packet loss, etc. iPerf3 can operate on Transmission Control Protocol (TCP),
User Datagram Protocol (UDP), and Stream Control Transmission Protocol (SCTP).

In iPerf3, the user can set client and server configurations via options and parameters and
can create data flows to measure the throughput between the two end hosts in a
unidirectional or bidirectional way. iPerf3 outputs a timestamped report of the amount
of data transferred and the throughput measured3.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Mininet’s default minimal topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Lab 2: Introduction to Iperf3

 Page 5

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 2.mn topology file in the default directory, /home/admin/lab_topologies, and
click on Open.

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 2: Introduction to Iperf3

 Page 6

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 7. Connectivity test using ping command.

The figure above indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

3 Using iPerf3 (client and server commands)

Since the initial setup and configuration are done, it is time to start a simple throughput
measurement. The user interacts with iPerf3 using the iperf3 command. The basic
iperf3 syntax used on both the client and the server is as follows:

iperf3 [-s|-c] [options]

Lab 2: Introduction to Iperf3

 Page 7

3.1 Starting client and server

Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host
h2 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h2.

Step 2. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal as shown in the figure below:

iperf3 -s

Figure 9. Host h2 running iPerf3 server.

The parameter -s in the command above indicates that the host is configured as a server.
Now, the server is listening on port 5201 waiting for incoming connections.

Step 3. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in
host h1’s terminal as shown in the figure below:

iperf3 -c 10.0.0.2

Lab 2: Introduction to Iperf3

 Page 8

Figure 10. Host h1 running iPerf3 as client.

The parameter -c in command above indicates that host h1 is configured as a client. The
parameter 10.0.0.2 is the server’s (host h2) IP address. Once the test is completed, a
summary report on both the client and the server is displayed containing the following
data:

• ID: identification number of the connection.

• Interval: time interval to periodically report throughput. By default, the time
interval is 1 second.

• Transfer: how much data was transferred in each time interval.

• Bitrate: the measured throughput in in each time interval.

• Retr: the number of TCP segments retransmitted in each time interval. This field
increases when TCP segments are lost in the network due to congestion or
corruption.

• Cwnd: indicates the congestion windows size in each time interval. TCP uses this
variable to limit the amount of data the TCP client can send before receiving the
acknowledgement of the sent data.

The summarized data, which starts after the last dashed line, shows the total amount of
transferred data is 52.1 Gbyte and the throughput 44.8 Gbps.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

3.2 Setting transmitting time period

Setting the transmission time period is configured solely on the client. To change the
default transmission time, apply the following steps:

Lab 2: Introduction to Iperf3

 Page 9

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

Figure 11. Host h2 running iPerf3 as server.

Step 2. Start the iPerf3 client with the -t option followed by the number of seconds.

iperf3 -c 10.0.0.2 -t 5

Figure 12. Host h1 transmitting for 5 seconds.

The above command starts an iPerf3 client for a 5-second time period transmitting at an
average rate of 44.5 Gbps.

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.3 Setting time interval

In this test, the user will configure the client to perform a throughput test with 2-seconds
reporting time interval on both the client and the server. Note the default 1-second
interval period in Figure 12.

The -i option allows setting the reporting interval time in seconds. In this case the value
should be set to 2 seconds on both the client and the server.

Step 1. Setting the interval value on the server (host h2’s terminal):

Lab 2: Introduction to Iperf3

 Page 10

iperf3 -s -i 2

Figure 13. Host h2 running iPerf3 as server.

Step 2. Setting the interval value on the client (host h1’s terminal):

iperf3 -c 10.0.0.2 -i 2

Figure 14. Host h1 and host h2 reporting every 2 seconds.

Note that the -i option can be specified differently on the client and the server. For
example, if the -i option is specified with the value 3 on the client only, then the client
will be reporting every 3 seconds while the server will be reporting every second (the
default -i value).

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.4 Changing the number of bytes to transmit

In this test, the client is configured to send a specific amount of data by setting the
number of bytes to transmit. By default, iPerf3 performs the throughput measurement
for 10 seconds. However, with this configuration, the client will keep sending packets until
all the bytes specified by the user were sent.

Step 1. Type the following command on host h2’s terminal to start the iPerf3 server.

iperf3 -s

Lab 2: Introduction to Iperf3

 Page 11

Figure 15. Host h2 running iPerf3 as server.

Step 2. This configuration is only set on the client (host h1’s terminal) using the -n option
as follows:

iperf3 -c 10.0.0.2 -n 16G

The -n option in the above command indicates the amount of data to transmit: 16 Gbytes.
The user can specify other scale values, for example, 16M is used to send 16 Mbytes.

Figure 16. Host h1 sending 16 Gbps of data.

Note the total time spent for sending the 16 Gbytes of data is 3.11 seconds and not the
default transmitting time used by iPerf3 (10 seconds).

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.5 Specifying the transport-layer protocol

So far, the throughput measurements were conducted on the TCP protocol, which is the
default configuration protocol. In order to change the protocol to UDP, the user must
invoke the option -u on the client side. Similarly, the option --sctp is used for the SCTP
protocol. iPerf3 automatically detects the transport-layer protocol on the server side.

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

Lab 2: Introduction to Iperf3

 Page 12

Figure 17. Host h2 running iPerf3 as server.

Step 2. Specify UDP as the transport-layer protocol using the -u option as follows.

iperf3 -c 10.0.0.2 -u

Figure 18. Host h1 sending UDP datagrams.

Once the test is completed, it will show the following summarized data:

• ID, Interval, Transfer, Bitrate: Same as TCP.

• Jitter: the difference in packet delay.

• Lost/Total: indicates the number of lost datagrams over the total number sent to
the server (and percentage).

After the dashed lines, the summary is displayed, showing the total amount of transferred
data (1.25 Mbytes) and the maximum achieved bandwidth (1.05 Mbps), over a time
period of 10 seconds. The Jitter, which indicates in milliseconds (ms) the variance of time
delay between data packets over a network, has a value of 0.010ms. Finally, the lost
datagrams value is 0 (zero) and the total datagram which the server has received was 906,
and thus, the loss rate is 0%. These values are reported on the server as well.

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Lab 2: Introduction to Iperf3

 Page 13

3.6 Changing port number

If the user wishes to measure throughput on a specific port, the -p option is used to
configure both the client and the server to send/receive packets or datagrams on the
specified port.

Step 1. Start the iPerf3 server on host h2. Use the -p option to specify the listening port.

iperf3 -s -p 3250

Figure 19. Host h2 running iPerf3 as server on port 3250.

Step 2. Start the iPerf3 client on host h1. Use the -p option to specify the server’s listening
port.

iperf3 -c 10.0.0.2 -p 3250

Figure 20. Host h2 running on port 3250.

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.7 Export results to JSON file

JSON (JavaScript Object Notation) is a lightweight data-interchange format. iPerf3 allows
exporting the test results to a JSON file, which makes it easy for other applications to
parse the file and interpret the results (e.g. plot the results).

Lab 2: Introduction to Iperf3

 Page 14

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

Figure 21. Host h2 running iPerf3 as server.

Step 2. Start the iPerf3 client on host h1. Specify the -J option to display the output in
JSON format.

iperf3 -c 10.0.0.2 -J

Figure 22. Host h1 using -J to output JSON to standard output (stdout).

The -J option outputs JSON text to the screen through standard output (stdout) after the
test is done (10 seconds by default). It is often useful to export the output to a file that
can be parsed later by other programs. This can be done by redirecting the standard
output to a file using the redirection operator in Linux >.

iperf3 -c 10.0.0.2 -J > test_results.json

Figure 23. Host h1 using -J to output JSON and redirecting stdout to file.

After creating the JSON file, the ls command is used to verify that the file is created. The
cat command can be used to display the file’s contents.

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.8 Handle one client

By default, an iPerf3 server keeps listening to incoming connections. To allow the server
to handle one client and then stop, the -1 option is added to the server.

Step 1. Start the iPerf3 server on host h2. Use the -1 option to accept only one client.

Lab 2: Introduction to Iperf3

 Page 15

iperf3 -s -1

Figure 24. Host h2 running a server with one connection only.

Step 2. Start the iPerf3 client on host h1.

iperf3 -c 10.0.0.2

Figure 25. Host h1 running an iPerf3 client.

After this test is finished, the server stops immediately.

4 Plotting iPerf3 results

In section 3.7, iPerf3’s result was exported to a JSON file to be processed by other
applications. A script called plot_iperf.sh is installed and configured on the Client’s

machine. It accepts a JSON file as input and generates PDF files plotting several variables
produced by iPerf3.

Step 1. Start the iPerf3 server on host h2.

iperf3 -s

Lab 2: Introduction to Iperf3

 Page 16

Figure 26. Host h2 running iPerf3 as server.

Step 2. Start the iPerf3 client on host h1. Specify the -J option to produce the output in
JSON format and redirect the output to the file test_results.json. Any data previously
stored in this file will be replaced with current output as the > operator is being used here.

iperf3 -c 10.0.0.2 -J > test_results.json

Figure 27. Host h1 using -J to output JSON and redirecting stdout to file.

Step 3. To generate the output for iPerf3’s JSON file run the following command:

plot_iperf.sh test_results.json

Figure 28. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) which can be used by other applications. These files are stored in a directory
results created in the same directory where the script was executed as shown in the figure
below.

Figure 29. Listing the current directory’s contents using the ls command.

Step 4. Navigate to the results folder using the cd command.

cd results/

Lab 2: Introduction to Iperf3

 Page 17

Figure 30. Entering the results directory using the cd command.

Step 5. To open any of the generated files, use the xdg-open command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 31. Opening the throughput.pdf file using xdg-open.

Figure 32. throughput.pdf output.

Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 2. Stop the emulation and then exit out of MiniEdit.

References

1. A. Tanenbaum, D. Wetherall, “Computer networks,” 5th Edition, Prentice Hall,
2011.

2. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

3. Invoking Iperf3 [Online]. Available: https://software.es.net/iperf/invoking.html.

NETWORK TOOLS AND PROTOCOLS

Lab 3: Emulating WAN with NETEM I: Latency,
Jitter

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to network emulators and NETEM .. 4

1.1 NETEM .. 4

1.2 WANs and delay ... 4

2 Lab topology.. 5

2.1 Starting host h1 and host h2 .. 6

3 Adding/changing delay to emulate a WAN .. 7

3.1 Identify interface of host h1 and host h2... 8

3.2 Add delay to interface connecting to WAN ... 9

3.3 Changing the delay in emulated WAN ... 11

4 Restoring original values (deleting the rules) ... 12

5 Adding jitter to emulated WAN .. 13

5.1 Add jitter to interface connecting to WAN .. 13

6 Adding correlation value for jitter and delay.. 14

7 Delay distribution .. 16

References .. 17

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 3

Overview

This lab introduces NETEM and explains how it can be used to emulate real-world
scenarios while having control on parameters that affect the performance of networks.
Network parameters include latency, jitter, packet loss, reordering, and corruption.
Correlation values between network parameters will also be set to provide a more
realistic network environment.

Objectives

By the end of this lab, students should be able to:

1. Understand delay in networks and how to measure it.
2. Understand Linux queuing disciplines (qdisc) architecture.
3. Deploy emulated WANs characterized by large delays using NETEM and Mininet.
4. Perform measurements after introducing delays to an emulated WAN.
5. Deploy emulated WANs characterized by delays, jitters, and corresponding

correlation values.
6. Modify the delay distribution of an emulated WAN.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to network emulators and NETEM.
2. Section 2: Lab topology.
3. Section 3: Adding/changing delay to emulate a WAN.
4. Section 4: Restoring original values (deleting the rules).
5. Section 5: Adding jitter to emulated WAN.
6. Section 6: Adding correlation value for jitter and delay.
7. Section 7: Delay distribution.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 4

1 Introduction to network emulators and NETEM

Network emulators play an important role for the research and development of network
protocols and applications. Network emulators provide the ability to perform tests of
realistic scenarios in a controlled manner, which is very difficult on production networks.
This is particularly complex for researchers who develop and test tools for Wide Area
Networks (WANs) and for multi-domain environments.

1.1 NETEM

One of the most popular network emulators is NETEM1,2, a Linux network emulator for
testing the performance of real applications over a virtual network. The virtual network
may reproduce long-distance WANs in the lab environment. These scenarios facilitate the
test and evaluation of protocols and devices from the application layer to the data-link
layer under a variety of conditions. NETEM allows the user to modify parameters such as
delay, jitter, packet loss, duplication and re-ordering of packets.

NETEM is implemented in Linux and consists of two portions: a small kernel module for a
queuing discipline and a command line utility to configure it. Figure 1 shows the basic
architecture of Linux queuing disciplines. The queuing disciplines exist between the IP
protocol output and the network device. The default queuing discipline is a simple packet
first-in first-out (FIFO) queue. A queuing discipline is a simple object with two interfaces.
One interface queues packets to be sent and the other interface releases packets to the
network device. The queuing discipline makes the policy decision of which packets to send,
which packets to delay, and which packets to drop. A classful queueing discipline, such as
NETEM, has configurable internal modules.

Application

TCP

IP

Queueing

discipline

Network device

User

Kernel

Figure 1. Linux queueing discipline.

1.2 WANs and delay

In networks, there are several processes and devices that contribute to the end-to-end
delay between a sender node and a destination node. Many times, the end-to-end delay
is dominated by the WAN’s propagation delay. Consider two adjacent switches A and B
connected by a WAN. Once a bit is pushed onto the WAN by switch A, it needs to

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 5

propagate to switch B. The time required to propagate from the beginning of the WAN to
switch B is the propagation delay. The bit propagates at the propagation speed of the
WAN’s link. The propagation speed depends on the physical medium (that is, fiber optics,
twisted-pair copper wire, etc) and is in the range of 2x108 meters/sec to 3x108 meters/sec,
which is equal to, or a little less than, the speed of light. The propagation delay is the
distance between two switches divided by the propagation speed. Once the last bit of the
packet propagates to switch B, it and all the preceding bits of the packet are stored in
switch B3.

Network tools usually estimate delay for troubleshooting and performance
measurements. For example, an estimate of end-to-end delay is the Round-Trip Time
(RTT), which is the time it takes for a small packet to travel from sender to receiver and
then back to the sender. The RTT includes packet-propagation delays, packet-queuing
delays in intermediate routers and switches, and packet-processing. As mentioned above,
if the propagation delay dominates other delay components (as in the case of many
WANs), then RTT is also an estimate of the propagation delay.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 3.mn topology file and click on Open.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 6

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 7

Figure 6. Opening a terminal on host h1.

Step 2. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 7. Connectivity test using ping command.

The figure above indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

3 Adding/changing delay to emulate a WAN

The user invokes NETEM using the command line utility called tc 4, 5. With no additional
parameters, NETEM behaves as a basic FIFO queue with no delay, loss, duplication, or
reordering of packets. The basic tc syntax used with NETEM is as follows:

sudo tc qdisc [add|del|replace|change|show] dev dev_id root netem opts

• sudo: enable the execution of the command with higher security privileges.

• tc: command used to interact with NETEM.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 8

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output (see Figure 1) are served. The queue
discipline is applied to a packet queue to decide when to send each packet.

• [add | del | replace | change | show]: this is the operation on qdisc. For
example, to add delay on a specific interface, the operation will be add. To change
or remove delay on the specific interface, the operation will be change or del.

• dev_id: this parameter indicates the interface to be subject to emulation.

• opts: this parameter indicates the amount of delay, packet loss, duplication,
corruption, and others.

3.1 Identify interface of host h1 and host h2

According to the previous section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command ifconfig to display information related to its
network interfaces and their assigned IP addresses.

Figure 8. Output of ifconfig command on host h1.

The output of the ifconfig command indicates that host h1 has two interfaces: h1-eth0
and lo. The interface h1-eth0 at host h1 is configured with IP address 10.0.0.1 and subnet
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.

Step 2. In host h2, type the command ifconfig as well.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 9

Figure 9. Output of ifconfig command on host h2.

The output of the ifconfig command indicates that host h2 has two interfaces: h2-eth0
and lo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.

3.2 Add delay to interface connecting to WAN

Network emulators emulate delays by introducing them to an interface. For example, the
delay introduced to a switch A’s interface that is connected to a switch B’s interface may
represent the propagation delay of a WAN connecting both switches. In this section, you
will use netem command to insert delay to a network interface.

Step 1. In host h1, type the following command:

sudo tc qdisc add dev h1-eth0 root netem delay 100ms

This command can be summarized as follows:

• sudo: enable the execution of the command with higher security privileges.

• tc: invoke Linux’s traffic control.

• qdisc: modify the queuing discipline of the network scheduler.

• add: create a new rule.

• dev h1-eth0: specify the interface on which the rule will be applied.

• netem: use the network emulator.

• delay 100ms: inject delay of 100ms.

Figure 10. Adding 100ms delay to the interface h1-eth0.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 10

The above command adds a delay of 100 milliseconds (ms) to the output interface,
exclusively.

Step 2. The user can verify now that the connection from host h1 to host h2 has a delay
of 100 milliseconds by using the ping command from host h1:

ping 10.0.0.2

Figure 11. Verifying latency after emulating delay using ping.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 100.069, 120.180, 200.587, and 40.203 milliseconds respectively.

Note that the above scenario emulates 100 milliseconds latency on the interface of host
h1 connecting to the switch. In order to emulate a WAN where the delay is bidirectional,
a delay of 100 milliseconds must also be added to the corresponding interface on host h2.

Step 3. In host h2’s terminal, type the following command:

sudo tc qdisc add dev h2-eth0 root netem delay 100ms

Figure 12. Adding 100ms delay to the interface h2-eth0.

Step 4. The user can verify now that the connection between host h1 and host h2 has an
RTT of 200 milliseconds (100ms from host h1 to host h2 plus 100ms from host h2 to host
h1) by retyping the ping command on host h1’s terminal:

ping 10.0.0.2

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 11

Figure 13. Verifying latency after emulating delay on both host h1 and host h2 using ping.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 200.078, 200.154, 204.447, and 0.511 milliseconds respectively.

3.3 Changing the delay in emulated WAN

In this section, the user will change the delay from 100 milliseconds to 50 milliseconds in
both sender and receiver. The RTT will be 100 milliseconds now.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc change dev h1-eth0 root netem delay 50ms

Figure 14. Changing delay on the interface h1-eth0.

The new option added here is change, which changes the previously set delay to 50
milliseconds.

Step 2. Apply also the above step on host h2’s terminal to change the delay to 50ms:

sudo tc qdisc change dev h2-eth0 root netem delay 50ms

Figure 15. Changing delay to the interface h2-eth0.

Step 3. The user can verify now that the connection from host h1 to host h2 has a delay
of 100 milliseconds by using the ping command from host h1’s terminal:

ping 10.0.0.2

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 12

Figure 16. Verifying latency after emulating 100ms delay using ping.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 100.079, 100.149, 100.411, and 0.131 milliseconds respectively.

4 Restoring original values (deleting the rules)

In this section, the user will restore the default configuration in both sender and receiver
by deleting all the rules applied to the network scheduler of an interface.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc del dev h1-eth0 root netem

Figure 17. Deleting all rules on interface h1-eth0.

The new option added here is del, which deletes the previously set rules on a given
interface. As a result, the tc qdisc will restore its default values of the device h1-eth0.

Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type the
following command:

sudo tc qdisc del dev h2-eth0 root netem

Figure 18. Deleting all rules on interface h2-eth0.

As a result, the tc queueing discipline will restore its default values of the device h2-eth0.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 13

Step 3. The user can now verify that the connection from host h1 to host h2 has no explicit
delay set by using the ping command from host h1’s terminal:

ping 10.0.0.2

Figure 19. Verifying latency after deleting all rules on both devices.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.044, 0.121, 0.386, and 0.132 milliseconds respectively.

5 Adding jitter to emulated WAN

Networks do not exhibit constant delay; the delay may vary based on other traffic flows
contending for the same path. Jitter is the variation of delay time. The delay parameters

are described by the average value (µ), standard deviation (), and correlation. By default,

NETEM uses a uniform distribution, so that the delay is within µ ±

5.1 Add jitter to interface connecting to WAN

In this section, the user will add delay of 100 milliseconds with a random variation of ± 10
milliseconds. Before doing so, make sure to restore the default configuration of the
interfaces on host h1 and host h2 by applying the commands of Section 4. Then, apply the
commands below.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms

Figure 20. Add 100ms delay with ± 10 millisecond.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 14

The new value added here represents jitter which defines the delay variation. Therefore,
all packets leaving host h1 via interface h1-eth0 will experience a delay of 100ms, with a
random variation of ± 10ms.

Step 2. The user can now verify that the connection from host h1 to host h2 has 100ms
delay with ± 10 millisecond random variation by using the ping command on host h1’s
terminal:

ping 10.0.0.2

Figure 21. Verifying RTT after adding 100 millisecond delay and 10 millisecond jitter on interface
h1-eth0.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 93.603, 101.386, 109.494, and 6.303 milliseconds respectively. Note that
we are only adding jitter to the interface of host h1 at this point.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations:

sudo tc qdisc del dev h1-eth0 root netem

Figure 22. Deleting all rules on interface h1-eth0.

6 Adding correlation value for jitter and delay

The correlation parameter controls the relationship between successive pseudo-random
values. In this section, the user will add a delay of 100 milliseconds with a variation of ±
10 milliseconds while adding a correlation value. Before doing so, make sure to restore
the default configuration of the interfaces on host h1 and host h2 by applying the
commands of Section 4. Then, apply the commands below.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 15

Step 1. In host h1 terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25%

Figure 23. Adding a correlation value of 25%.

The new value added here represents the correlation value for jitter and delay. Therefore,
all packets leaving the device host h1 on the interface h1-eth0 will experience a 100ms
delay time, with a random variation of ± 10 millisecond with the next random packet
depending 25% on the previous one.

Step 2. Now, the user can test the connection from host h1 to host h2 by using the ping
command on host h1’s terminal:

ping 10.0.0.2

Figure 24. Verifying latency after setting the correlation value.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 90.891, 101.007, 109.215, and 6.328 milliseconds respectively.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations:

sudo tc qdisc del dev h1-eth0 root netem

Figure 25. Deleting all rules on interface h1-eth0.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 16

7 Delay distribution

NETEM permits user to specify a distribution that describes how delays vary in the
network. Usually delays are not uniform, so it may be convenient to use a non-uniform
distribution such as normal, pareto, or pareto-normal. For this test, the user will specify
a normal distribution for the delay in the emulated network. Before doing so, make sure
to restore the default configuration of the interfaces on host h1 and host h2 by applying
the commands of Section 4. Then, apply the commands below.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 20ms distribution normal

The new option added here (distribution) represents the delay distribution type. We
define the delay to have a normal distribution, which provides a more realistic emulation
of WAN networks. As a result, all packets leaving the host h1 on the interface h1-eth0 will
experience delay time which is normally distributed between the range of 100ms ± 20ms.

Figure 26. Adding normal distribution of delay.

Step 2. The user can now verify if the configuration was successfully done in the previous
step (Step 1) by using the ping command on host h1’s terminal:

ping 10.0.0.2

Figure 27. Verifying latency after using normal distribution.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 66.347, 89.405, 117.906, and 16.749 milliseconds respectively.

This concludes Lab 3. Stop the emulation and then exit out of MiniEdit.

Lab 3: Emulating WAN with NETEM Part I - Latency, Jitter

 Page 17

References

1. Linux foundation. [Online]. Available:
https://wiki.linuxfoundation.org/networking/netem.

2. S. Hemminger, “Network emulation with NETEM,” Linux conf au. 2005, pp. 18-23.
2005.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

5. M. Brown, F. Bolelli, N. Patriciello, “Traffic control howto,” Guide to IP Layer
Network, 2006.

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

NETWORK TOOLS AND PROTOCOLS

Lab 4: Emulating WAN with NETEM II: Packet
Loss, Duplication, Reordering, and Corruption

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to network emulators and NETEM .. 3

2 Lab topology.. 5

2.1 Testing connectivity between two hosts ... 6

3 Adding/changing packet loss .. 7

3.1 Identify interface of host h1 and host h2... 8

3.2 Add packet loss to the interface connecting to the WAN 9

3.3 Restore default values .. 12

3.4 Add correlation value for packet loss to interface connecting to WAN 13

4 Adding packet corruption ... 14

4.1 Add packet corruption to an interface connected to the WAN 14

5 Add packet reordering .. 16

6 Add packet duplication ... 17

References .. 18

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 3

Overview

This lab continues the description of NETEM and how to use it to emulate Wide Area
Networks (WANs). Besides delay, this lab focuses on other parameters such as packet loss,
packet duplication, reordering, and packet corruption. These parameters affect the
performance of protocols and networks.

Objectives

By the end of this lab, students should be able to:

1. Deploy emulated WANs characterized by parameters such as delay, packet loss,
packet corruption, packet reordering, and packet duplication.

2. Measure the performance of WANs characterized by different parameter values.
3. Visualize WAN performance measures.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to network emulators and NETEM.
2. Section 2: Lab topology.
3. Section 3: Adding/changing packet loss.
4. Section 4: Adding packet corruption.
5. Section 5: Adding packet reordering.
6. Section 6: Adding packet duplication.

1 Introduction to network emulators and NETEM

Part I of Emulating WAN with NETEM described how to use NETEM to emulate WANs
characterized by long delays. Part I also explained how the end-to-end delay can be

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 4

dominated by the WAN’s propagation delay and how the Round-Trip Time (RTT)
estimates this delay.

In addition to delay, many WANs and LANs are subject to packet loss, reordering,
corruption, and duplication.

h2h1

WAN

Delay, Loss, Reordering, Duplication, Corruption

Figure 1. Parameters affecting throughput in a WAN.

The above situations are described follows:

1. Packet loss: a condition that occurs when a packet travelling across a network fails
to reach its destination. Packet loss may have a large impact on high-throughput
high-latency networks. A common cause of packet loss is the inability of routers
to hold packets arriving at a rate higher than the departure rate. Even in cases
where the high packet arrival rate is only temporary (e.g., short-term traffic
bursts), the router is limited by the amount of buffer memory used to momentarily
store packets. When packet loss occurs, TCP reduces the congestion window and
consequently the throughput by half. Packet loss must be mitigated by using best-
practice network designs, such as Science DMZ.

2. Packet reordering: a condition that occurs when packets are received in a different
order from which they were sent. Packet reordering, also known as out-of-order
packet delivery, is typically the result of packets following different routes to reach
their destination. Packet reordering may deteriorate the throughput of TCP
connections in high-throughput high-latency networks. For each segment
received out of order, a TCP receiver sends an acknowledgement (ACK) for the last
correctly received segment. Once the TCP sender receives three
acknowledgements for the same segment (triple duplicate ACK), the sender
considers that the receiver did not correctly receive the packet following the
packet that is being acknowledged three times. It then proceeds to reduce the
congestion window and throughput by half.

3. Packet corruption: corruption of bits comprising a packet may (mostly) occur at
the physical layer. Two adjacent devices are connected by a physical channel (e.g.,
fiber, twisted-pair copper wire, etc). The physical layer accepts a raw bit stream
and delivers it to the data-link layer. If corruption occurs, some bits may have
different values than those originally sent by the sender node. The receiver node
then simply discards the packet. As a result, the TCP sender process will not

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 5

receive an acknowledgement for the corresponding segment and will consider it
as a lost segment. The TCP sender process will subsequently decrease the
congestion window and throughput by half.

4. Packet duplication: a condition where multiple copies of a packet are present in
the network and received by the destination. Packet duplication is the result of
retransmissions, where a sender node retransmits unacknowledged (NACK)
packets.

Packet loss, reordering, and corruption (the last two are interpreted as packet loss also
by the TCP sender) lead to a drastic reduction of throughput. In this lab, we will use the
NETEM tool to emulate these situations affecting end-to-end performance.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 4.mn topology file and click on Open.

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 6

Figure 4. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Testing connectivity between two hosts

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 7

Figure 6. Opening a terminal on host h1.

Step 2. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host

h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 7. Connectivity test using ping command.

The figure above indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

3 Adding/changing packet loss

The user invokes NETEM using the command line utility called tc 4, 5. With no additional
parameters, NETEM behaves as a basic FIFO queue with no delay, loss, duplication, or
reordering of packets. The basic tc syntax used with NETEM is as follows:

sudo tc qdisc [add|del|replace|change|show] dev dev_id root netem opts

• sudo: enable the execution of the command with higher security privileges.

• tc: command used to interact with NETEM.

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 8

• [add | del | replace | change | show]: this is the operation on qdisc. For
example, to add delay on a specific interface, the operation will be add. To change
or remove delay on the specific interface, the operation will be change or del.

• dev_id: this parameter indicates the interface to be subject to emulation.

• opts: this parameter indicates the amount of delay, packet loss, duplication,
corruption, and others.

3.1 Identify interface of host h1 and host h2

In this section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command ifconfig to display information related to its
network interfaces and their assigned IP addresses.

Figure 8. Output of ifconfig command on host h1.

The output of the ifconfig command indicates that host h1 has two interfaces: h1-eth0
and lo. The interface h1-eth0 at host h2 is configured with IP address 10.0.0.1 and subnet
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.

Step 2. In host h2, type the command ifconfig as well.

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 9

Figure 9. Output of ifconfig command on host h2.

The output of the ifconfig command indicates that host h2 has two interfaces: h2-eth0
and lo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.

3.2 Add packet loss to the interface connecting to the WAN

In a network, packets may be lost during transmission due to factors such as bit errors
and network congestion. The rate of packets that are lost is often measured as a
percentage of lost packets with respect to the number of sent packets. In this section, you
will use netem command to insert packet loss on a network interface.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem loss 10%

Figure 10. Adding 10% packet loss to host h1’s interface h1-eth0.

The above command adds a 10% packet loss to host h1’s interface h1-eth0.

Step 2. The user can verify now that the connection from host h1 to host h2 has packet
losses by using the ping command from host h1’s terminal. The -c option specifies the
total number of packets to send.

ping 10.0.0.2 -c 200

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 10

Figure 11. ping command after introducing packet loss.

In the figure 11, host h1 sends 200 ping packets to host h2. Note the icmp_seq values
demonstrated in the figure above.

You can see that icmp_seq=2, 6, 10 and 17 are missing due to packet losses. Resulting
packet loss will likely vary in each emulation.

Figure 12 shows the summary report of the previous command. By default, ping reports
the percentage of packet loss after finishing the transmission. In our test, ping reported a
packet loss rate of 10%. The measured packet loss rate will tend to become closer to the
configured loss rate as more trials are performed.

Figure 12. ping summary report showing 10% packet loss.

Note that the above scenario emulates 10% packet loss on the unidirectional link from
host h1 to host h2. If we want to emulate packet loss on both directions, a packet loss of
10% must also be added to host h2.

Step 3. In host h2’s terminal, type the following command:

sudo tc qdisc add dev h2-eth0 root netem loss 10%

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 11

Figure 13. Adding 10% packet loss to host h2’s interface h2-eth0.

Step 4. The user can verify now that the connection between host h1 and host h2 has
more packets losses (10% from host h1 + 10% from host h2) by retyping the ping
command on host h1’s terminal:

ping 10.0.0.2 -c 200

Figure 14. ping command after introducing packet loss.

In the figure 14, host h1 sends 200 ping packets to host h2. Note the icmp_seq values
demonstrated in the figure above.

You can see that icmp_seq=3, 6, 10, 14, 23 and 27 are missing due to packet losses.
Resulting packet loss will likely vary in each emulation.

Figure 14 shows the summary report of the previous command. By default, ping reports
the percentage of packet loss after finishing the transmission. In our test, ping reported a
packet loss rate of 10%. The measured packet loss rate will tend to become closer to the
configured loss rate as more trials are performed.

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 12

Figure 15. ping summary report showing 20.5% packet loss.

The result above indicates that 159 out of 200 packets were received successfully (20.5%
packet loss).

3.3 Restore default values

To remove the packet loss added in Section 3.2 and restore the default configuration, you
must delete the rules of the interfaces on host h1 and host h2.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc del dev h1-eth0 root netem

Figure 16. Deleting all rules on interface h1-eth0.

Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type the
following command:

sudo tc qdisc del dev h2-eth0 root netem

Figure 17. Deleting all rules on interface h2-eth0.

As a result, the tc queueing discipline will restore its default values of the device h2-eth0.

Step 3. Now, the user can verify that the connection from host h1 to host h2 has no
explicit packet loss configured by using the ping command from host h1’s terminal, press
Ctrl+c to stop the test:

ping 10.0.0.2

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 13

Figure 18. Verifying latency after deleting all rules on both devices.

The result above indicates that all five packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.043, 0.112, 0.357, and 0.122 milliseconds respectively.

3.4 Add correlation value for packet loss to interface connecting to WAN

An optional correlation may be added. Adding correlation causes the random number
generator to be less random and can be used to emulate packet burst losses1.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem loss 50% 50%

Figure 19. Verifying latency after deleting all rules on both devices.

The above command introduces a packet loss rate of 50%, and each successive probability
depends 50% on the last one1. Note that a packet loss rate this high is unlikely.

Step 2. The user can verify now that the connection from host h1 to host h2 has packet
losses by using the ping command from host h1’s terminal.

ping 10.0.0.2 -c 50

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 14

Figure 20. ping in progress showing successive packet loss.

The result above shows an example where successive packets were dropped: [3, 4, 6, 10,],
[13, 14, 16, 17, 20, 21], etc.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations:

sudo tc qdisc del dev h1-eth0 root netem

Figure 21. Deleting all rules on interface h1-eth0.

4 Adding packet corruption

Besides packet loss, packet corruption can be introduced with NETEM.

4.1 Add packet corruption to an interface connected to the WAN

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem corrupt 0.01%

The new value added here represents packet corruption percentage (0.01%).

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 15

Figure 22. Adding packets corruption (0.01%) to interface h1-eth0.

Step 2. The user can now verify the previous configuration by using the iperf3 tool to
check the retransmissions. To launch iPerf3 in server mode, run the command iperf3 -
s in host h2’s terminal.

iperf3 -s

Figure 23. Host h2 running iPerf3 as server.

Step 3. To launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in host
h1’s terminal.

iperf3 -c 10.0.0.2

Figure 24. Retransmissions after packets corruption.

The figure above shows the retransmission values on each time interval (1 second). The
total number of retransmitted packets, due to packet corruption, is 3710. This verifies
that packet corruption was indeed, applied to the interface on host h1.

Step 4. In host h1’s terminal, type the following command to delete previous
configurations:

sudo tc qdisc del dev h1-eth0 root netem

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 16

Figure 25. Deleting all rules on interface h1-eth0.

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

5 Add packet reordering

Packets are sometimes not delivered in the same order they were sent. In order to
emulate reordering in NETEM, the reorder option is used. Proceed with the steps below.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc add dev h1-eth0 root netem delay 10ms reorder 25% 50%

Figure 26. Adding packet reordering.

In this command, 25% of the packets (with a correlation value of 50%) will be sent
immediately, while the remainder 75% will be delayed by 10ms.

Step 2. The user can verify the effect of packet reorder by using the ping command on
host h1’s terminal, press Ctrl+c to stop the test:

ping 10.0.0.2

Figure 27. ping test illustrating the effect of packet reordering.

Consider the first four packets of the figure above. The first and second packets did not
experience delay (one out of four, or 25%), while the next three packets experienced a
delay of ~10 milliseconds (three out of four, or 75%). The measured reordering rate will
tend to become closer to the configured reordering rate as more trials are performed.

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 17

It is possible that your first packet will experience delay, but this effect will eventually
occur in future tests.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations:

sudo tc qdisc del dev h1-eth0 root netem

Figure 28. Deleting all rules on interface h1-eth0.

6 Add packet duplication

Duplicate packets may be present in networks as a result of retransmissions. NETEM
provides the option duplicate to inject duplicate packets. Before introducing packet
corruption, make sure to restore the default configuration of the interfaces on host h1
and host h2 by applying the commands of Section 3.3. Then, proceeds with the following
steps.

Step 1. In host h1’s terminal, type the following command:

sudo tc qdisc change dev h1-eth0 root netem duplicate 50%

Figure 29. Adding packet duplication.

The above command will produce a duplication of 50% (i.e., 50% of the packets will be
received twice at the destination).

Step 2. The user can verify the effect of packet duplication by using the ping command
on host h1’s terminal, press Ctrl+c to stop the test:

ping 10.0.0.2

Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption

 Page 18

Figure 30. ping test illustrating the effect of packet duplication.

The result above indicates that five duplicate packets were received. Duplicate packets
are also marked with (DUP!). The measured rate of duplicate packets will tend to become
closer to the configured rate as more trials are performed.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations:

sudo tc qdisc del dev h1-eth0 root netem

Figure 31. Deleting all rules on interface h1-eth0.

This concludes Lab 4. Stop the emulation and then exit out of MiniEdit.

References

1. Linux foundation. [Online]. Available:
https://wiki.linuxfoundation.org/networking/netem.

2. S. Hemminger, “Network emulation with NETEM,” Linux conf au. 2005, pp. 18-
23. 2005.

3. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

4. M. Brown, F. Bolelli, N. Patriciello, “Traffic control howto,” Guide to IP Layer
Network, 2006.

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

NETWORK TOOLS AND PROTOCOLS

Lab 5: Setting WAN Bandwidth with Token Bucket
Filter (TBF)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Token Bucket algorithm .. 3

2 Lab topology.. 5

2.1 Starting host h1 and host h2 .. 7

3 Rate limiting on end-hosts .. 8

3.1 Identify interface of host h1 and host h2 .. 8

3.2 Emulating 10 Gbps high-latency WAN ... 9

4 Rate limiting on switches .. 11

5 Combining NETEM and TBF .. 15

References .. 18

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 3

Overview

This lab explains the Token Bucket Filter (TBF) queuing discipline which shapes
incoming/outgoing traffic to limit the bandwidth. Throughput measurements are also
conducted in this lab to verify the bandwidth-limiting configuration with TBF.

Objectives

By the end of this lab, students should be able to:

1. Understand the Token Bucket algorithm.
2. Use Token Bucket Filter (tbf), which is a Linux implementation of the Token Bucket

algorithm on network interfaces.
3. Understand how to combine queueing disciplines in Linux Traffic Control (tc).
4. Combine tbf and NETEM.
5. Emulate WAN properties in Mininet.
6. Visualize iPerf3’s output after modifying the network’s parameters.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Token Bucket algorithm.
2. Section 2: Lab Topology.
3. Section 3: Rate limiting on end-hosts.
4. Section 4: Rate limiting on switches.
5. Section 5: Combining NETEM and TBF.

1 Introduction to Token Bucket algorithm

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 4

When simulating a Wide Area Network (WAN), it is sometimes necessary to limit the
bandwidth of devices (end hosts and networking devices) to observe the network’s
behavior in different conditions.

The Token Bucket is an algorithm used in packet-switching networks to limit the
bandwidth and the burstiness of the traffic. In summary, token bucket consists of adding
tokens (represented as packets or packets’ bytes) at a fixed rate to a fixed-capacity bucket.
When a new packet arrives, the bucket is inspected to check the number of available
tokens; if at least n tokens are available, n tokens are removed from the bucket, and the
packet is sent to the network. Else, no tokens are removed, and the packet is considered
non-conformant. In such case, the packet might be dropped, enqueued, or transmitted
but marked as non-conformant. This algorithm is illustrated in Figure 1.

Figure 1. Token bucket filter.

The rate, which is the transmission speed, is determined by the frequency at which tokens
are added to the bucket.

Another important property of the token bucket algorithm is burstiness; when the bucket
becomes completely occupied (i.e. no packets are consuming tokens), new packets will
consume tokens right away, without being limited. Burstiness is defined as the number of
tokens that can fit in the bucket, or the bucket size.

To provide limits and control over the bursts, token bucket implementations often create
another smaller bucket with a size equal to the Maximum Transmission Unit (MTU), and
a rate much faster than the original bucket (the peak rate). Its rate defines the maximum
speed of bursts.

The token bucket algorithm implemented in Linux is the Token Bucket Filter (tbf), which
is a queuing discipline used in conjunction with the Linux Traffic Control (tc) to shape
traffic.

Figure 2 depicts the main parameters used by tbf.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 5

Figure 2. tbf parameters and architecture.

The basic tbf syntax used with tc is as follows:

tc qdisc [add | ...] dev [dev_id] root tbf limit [BYTES] burst [BYTES] rate

[BPS] [mtu BYTES] [peakrate BPS] [latency TIME]

• tc: Linux traffic control tool.

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which
packets arriving from the IP protocol output are served. The queue discipline is
applied to a packet queue to decide when to send each packet.

• [add | del | replace | change | show]: this is the operation on qdisc. For
example, to add the token bucket algorithm on a specific interface, the operation
will be add. To change or remove it, the operation will be change or del,
respectively.

• dev [dev_id]: this parameter indicates the interface is to be subject to emulation.

• tbf: this parameter specifies the Token Bucket Filter algorithm.

• limit [BYTES]: size of the packet queue in bytes.

• burst [BYTES]: number of bytes that can fit in the bucket.

• rate [BPS]: transmission speed, determined by the frequency at which tokens
are added to the bucket.

• mtu [BYTES]: maximum transmission unit in bytes.

• peakrate [BPS]: the maximum speed of a burst.

• latency [TIME]: the maximum time a packet can wait in the queue.

In this lab, we will use the tbf queueing discipline to emulate the aforementioned
parameters affecting the network behavior.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 6

Figure 3. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 5.mn topology file and click on Open.

Figure 5. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 7

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 7. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful

connectivity test.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 8

Figure 8. Connectivity test using ping command.

Figure 8 indicates that there is connectivity between host h1 and host h2.

3 Rate limiting on end-hosts

The tc command can be applied on the network interface of a device to shape egress
traffic. In this section, the user will limit the sending rate of an end-host using the Token
Bucket Filter (tbf), which is an implementation of the Token bucket algorithm.

3.1 Identify interface of host h1 and host h2

According to the previous section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command ifconfig to display information related to its
network interfaces and their assigned IP addresses.

Figure 9. Output of ifconfig command on host h1.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 9

The output of the ifconfig command indicates that host h1 has two interfaces: h1-eth0
and lo. The interface h1-eth0 at host h1 is configured with IP address 10.0.0.1 and subnet
mask 255.0.0.0. This interface must be used in tc when emulating the network.

Step 2. In host h2’s command line, type the command ifconfig as well.

Figure 10. Output of ifconfig command on host h2.

The output of the ifconfig command indicates that host h2 has two interfaces: h2-eth0
and lo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet
mask 255.0.0.0. This interface must be used in tc when emulating the network.

3.2 Emulating 10 Gbps high-latency WAN

In this section, you will use tbf command on a network interface to control the egress
rate.

Step 1. Modify the bandwidth of host h1 typing the command below. This command sets
the bandwidth to 10 Gbps on host h1’s h1-eth0 interface. The tbf parameters are the
following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev h1-eth0 root tbf rate 10gbit burst 5000000 limit 15000000

Figure 10. Limiting rate with TBF to 10 Gbps.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 10

This command can be summarized as follows:

• sudo: enable the execution of the command with higher security privileges.

• tc: invoke Linux’s traffic control.

• qdisc: modify the queuing discipline of the network scheduler.

• add: create a new rule.

• dev h1-eth0 root: specify the interface on which the rule will be applied.

• tbf: use the token bucket filter algorithm.

• rate: specify the transmission rate (10 Gbps).

• burst: number of bytes that can fit in the bucket (5,000,000).

• limit: queue size in bytes (15,000,000).

Burst calculation: tbf requires setting a burst value when limiting the rate. This value
must be high enough to allow your configured rate. Specifically, it must be at least the
specified rate / HZ, where HZ is clock rate, configured as a kernel parameter, and can be
extracted using the following command:

egrep '^CONFIG_HZ_[0-9]+' /boot/config-`uname -r`

Figure 11. Retrieving system’s HZ.

The HZ on Client1 is 250. Thus, to calculate the burst, we divide 10 Gbps by 250:

10 Gbps = 10,000,000,000 bps

Burst =
10,000,000,000

250
= 40,000,000 bits

Burst = 40,000,000 bits = 5,000,000 bytes

The resulting value is to be used in the command as the burst value.

Step 2. The user can now verify the previous configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal as shown in the figure below:

iperf3 -s

Figure 12. Host h2 running iPerf3 as server.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 11

Step 3. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in
host h1’s terminal as shown below:

iperf3 -c 10.0.0.2

Figure 13. iPerf3’s report after limiting the rate on host h1 to 10 Gbps.

The figure above shows the iPerf3 report after limiting the rate on host h1 using tbf. The
average achieved throughputs are 9.57 Gbps (sender) and 9.53 Gbps (receiver). Since we
executed the command on host h1’s terminal, the rule was applied to host h1’s network
interface. However, it is also possible to limit the rate on the switch interfaces as
explained next.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Rate limiting on switches

The previous section explained how to use the token bucket filter on end-hosts’ network
interfaces. In this section, we will explain how to apply the filter on switch interfaces. By
limiting the rate on switch S1’s s1-eth2 interface, all communication sessions between
switch S1 and switch S2 will be filtered by the applied rule(s).

In previous tests, we applied the command on host h1’s terminal; switches, however, we
do not have terminals where commands can be set and applied. Recall that we are using
Mininet for this emulation, which creates virtual interfaces emulating the switch
functionality. Therefore, these virtual interfaces can be identified using the ifconfig
command, but this time, it should be issued on the client’s terminal (e.g., the terminal
located on the Desktop) and not on end-hosts (host h1 or host h2).

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 12

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 14. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. Type in the terminal the command ifconfig to display information related to its
network interfaces.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 13

Figure 15. Output of ifconfig command on the client’s terminal.

Figure 15 shows the network interfaces of the client:

• s1-eth1 is the interface connecting switch S1 to host h1.

• s1-eth2 is the interface connecting switch S1 to switch S2.

• s2-eth1 is interface connecting switch S2 to host h2.

• s2-eth2 is interface connecting switch S2 to switch S1.

Step 3. Remove the previous configuration on host h1. Write the following command on
host h1’s terminal:

sudo tc qdisc del dev h1-eth0 root

Figure 16. Deleting all rules on host h1’s network scheduler.

Step 4. Apply tbf rate limiting rule on switch S1’s interface which connects it to switch
S2 (s1-eth2). In the Client1’s terminal, type the command below. When prompted for a
password, type password and hit enter. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 root tbf rate 10gbit burst 5000000 limit 15000000

Figure 17. Limiting rate with TBF to 10 Gbps on switch S1’s interface.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 14

Step 5. The user can now verify the previous configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal as shown in Figure 18:

iperf3 -s

Figure 18. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in
host h1’s terminal as shown in the figure below:

iperf3 -c 10.0.0.2

Figure 19. iPerf3’s report after limiting the rate on switch S1 to 10 Gbps.

Again, the reported values match the desired throughput (10 Gbps). In practice, the
reported throughput will not achieve the target (10 Gbps) but will achieve a throughput
slightly less than the target.

Step 7. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 15

5 Combining NETEM and TBF

NETEM is used to introduce delay, jitter, packet corruption, etc. TBF on the other hand
can be used to limit the rate. However, this is not enough for emulating real networks,
particularly WANs. Therefore, it is also possible to combine multiple impairments and
activate them at the same time.

Figure 20. Chaining qdiscs hierarchy.

As shown in Figure 20, the first qdisc (qdisc1) is attached to the root label. Then,
subsequent qdiscs can be attached to their parents by specifying the correct label. In this
section, we will look at how to combine NETEM and TBF in order to have more properties
emulated in our network. Specifically, we will introduce delay, jitter, and packet
corruption, while specifying the rate on switch S1’s interface.

Step 1. In the Client’s terminal, type the following command to remove the previous
configuration on switch S1.

sudo tc qdisc del dev s1-eth2 root

Figure 21. Deleting all rules on switch S1’s s1-eth2.

Step 2. In the client’s terminal, type the command below. When prompted for a password,
type password and hit Enter.

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 10ms

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 16

Figure 22. Adding delay of 10ms to switch S1’s s1-eth2 interface.

The new keyword in this command is handle and its value reflects the number shown in
Figure 22 above each qdisc. This means that our NETEM qdisc is attached to the root with
the handle 1:.

Step 3. The user can now verify the previous configuration by using the ping tool to
measure the Round-Trip Time (RTT). On the terminal of host h1, type ping 10.0.0.2. To
stop the test, press Ctrl+c. The figure below shows a successful connectivity test. Host

h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses back.

ping 10.0.0.2

Figure 23. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 10.083, 10.210, 10.575, and 0.222 milliseconds, respectively. Essentially,
the standard deviation is an average of how far each ping RTT is from the average RTT.
The higher the standard deviation, the more variable the RTT is.

Step 4. Now to add the second rule which applies rate limiting using tbf, issue the
command shown below on the client’s terminal. The tbf parameters are the following:

• rate: 2gbit

• burst: 1,000,000

• limit: 2,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 2gbit burst 1000000

limit 2000000

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 17

Figure 24. Adding a new rule while combining it with the previous.

Step 5. The user can now verify the previous configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal as shown in Figure 25:

iperf3 -s

Figure 25. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in host h1’s terminal as shown in Figure 26:

iperf3 -c 10.0.0.2

Figure 26. iPerf3 throughput test after combining qdiscs.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 1.86 Gbps (sender) and 1.84 Gbps (receiver).

Step 7. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)

 Page 18

This concludes Lab 5. Stop the emulation and then exit out of MiniEdit.

References

1. Journey to the center of the linux kernel: traffic Control, shaping and QoS.
[Online]. Available: http://wiki.linuxwall.info/doku.php/en:ressources:dossiers:n
etworking:traffic_control.

2. How to use the linux traffic control panagiotis vouzis [Online]. Available:
https://netbeez.net/blog/how-to-use-the-linux-traffic-control.

https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

NETWORK TOOLS AND PROTOCOLS

Lab 6: Understanding Traditional TCP Congestion
Control (HTCP, Cubic, Reno)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Understanding Traditional TCP Congestion Control

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP ... 3

1.1 TCP review .. 4

1.2 TCP throughput .. 4

1.3 TCP packet loss event ... 5

1.4 Impact of packet loss in high-latency networks ... 6

2 Lab topology.. 7

2.1 Starting host h1 and host h2 .. 8

2.2 Emulating 10 Gbps high-latency WAN with packet loss 9

2.3 Testing connection ... 10

3 Introduction to sysctl .. 11

3.1 Read sysctl parameters .. 11

3.2 Write sysctl parameters ... 12

3.3 Configuring sysctl.conf file ... 12

4 Congestion control algorithms and sysctl ... 14

4.1 Inspect and install/load congestion control algorithms 15

4.2 Inspect the default (current) congestion control algorithm 16

4.3 Modify the default (current) congestion control algorithm 17

5 iPerf3 throughput test .. 17

5.1 Throughput test without delay .. 18

5.1.1 TCP Reno ... 18

5.1.2 Hamilton TCP (HTCP) .. 19

5.1.3 TCP Cubic .. 21

5.2 Throughput test with 30ms delay .. 22

5.2.1 TCP Reno ... 23

5.2.2 Hamilton TCP (HTCP) .. 24

5.2.3 TCP Cubic .. 26

References .. 27

Lab 6: Understanding Traditional TCP Congestion Control

 Page 3

Overview

This lab reviews key features and behavior of Transmission Control Protocol (TCP) that
have a large impact on data transfers over high-throughput, high-latency networks. The
lab describes the behavior of TCP’s congestion control algorithm, its impact on
throughput, and how to modify the congestion control algorithm in a Linux machine.

Objectives

By the end of this lab, students should be able to:

1. Describe the basic operation of TCP congestion control algorithm and its impact
on high-throughput networks.

2. Explain the concepts of congestion window, bandwidth probing, and Additive-
Increase Multiplicative-Decrease (AIMD).

3. Understand TCP throughput calculation.
4. Understand the impact of packet loss on high-latency networks.
5. Deploy emulated WANs in Mininet.
6. Modify the TCP congestion control algorithm in Linux using sysctl tool.
7. Compare TCP Reno, HTCP, and Cubic with injected packet loss.
8. Compare TCP Reno, HTCP, and Cubic with both injected delay and packet loss.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab topology.
3. Section 3: Introduction to sysctl.
4. Section 4: Congestion control algorithms and sysctl.
5. Section 5: iPerf3 throughput test.

1 Introduction to TCP

Lab 6: Understanding Traditional TCP Congestion Control

 Page 4

1.1 TCP review

Big data applications require the transmission of large amounts of data between end
devices. Data must be correctly delivered from one device to another; e.g., from an
instrument to a Data Transfer Node (DTN). Reliability is one of the services provided by
TCP and a reason why TCP is the protocol used by most data transfer tools. Thus,
understanding the behavior of TCP is essential for the design and operation of networks
used to transmit big data.

TCP receives data from the application layer and places it in the TCP send buffer, as shown
in Figure 1(a). Data is typically broken into Maximum Segment Size (MSS) units. Note that
“segment” here refers to the Protocol Data Unit (PDU) at the transport layer, and
sometimes the terms packet and segment are interchangeably used. The MSS is simply
the Maximum Transmission Unit (MTU) minus the combined lengths of the TCP and IP
headers (typically 40 bytes). Ethernet’s normal MTU is 1,500 bytes. Thus, MSS’s typical
value is 1,460. The TCP header is shown in Figure 1(b).

Application

TCP send

buffer

MSS MSS

Source port
2

0
 b

y
te

s
Destination port

Sequence number

Acknowledgment number

DO R Ctrl bits Window

Checksum Urgent pointer

Application

TCP

receive

buffer

(a) (b)

Options Padding

Segments

Figure 1. (a) TCP Connection. (b) TCP header.

For reliability, TCP uses two fields of the TCP header to convey information to the sender:
sequence number and acknowledgement (ACK) number. The sequence number is the
byte-stream number of the first byte in the segment. The acknowledgement number that
the receiver puts in its segment is the sequence number of the next byte the receiver is
expecting from the sender. In the example of Figure 2(a), after receiving the first two
segments containing sequence number 90 (which contains bytes 90-99) and 100 (bytes
100-109), the receiver sends a segment with acknowledge number 110. This segment is
called cumulative acknowledgement.

1.2 TCP throughput

The TCP rate limitation is defined by the receive buffer shown in Figure 1(a). If this buffer
size is too small, TCP must constantly wait until an acknowledgement arrives before
sending more segments. This limitation is removed by setting a large receive buffer size.

A second limitation is imposed by the congestion control mechanism operating at the
sender side, which keeps track of a variable called congestion window. The congestion

Lab 6: Understanding Traditional TCP Congestion Control

 Page 5

window, referred to as cwnd (in bytes), imposes a constraint on the rate at which a TCP
sender can send traffic. The cwnd value is the amount of unacknowledged data at the
sender. To see this, note that at the beginning of every Round-Trip Time (RTT), the sender
can send cwnd bytes of data into the connection; at the end of the RTT the sender receives
acknowledgments for the data. Thus, the sender’s send rate is roughly cwnd/RTT
bytes/sec. By adjusting the value of cwnd, the sender can therefore adjust the rate at
which it sends data into the connection.

TCP Throughput ≈
cwnd

RTT
 [bytes/second]

T
im

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

T
ri
p

le
 d

u
p

lic
a

te
 A

C
K

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time

Triple duplicate ACK (packet loss)

Additive increase

Multiplicative decrease

 (a) (b)

Figure 2. (a) TCP operation. (b) Adaptation of TCP’s congestion window.

1.3 TCP packet loss event

TCP is a reliable transport protocol that requires each segment be acknowledged. If an
acknowledgement for an outstanding segment is not received, TCP retransmits that
segment. Alternatively, instead of waiting for a timeout-triggered retransmission, the
sender can also detect a packet loss before the timeout by detecting duplicate ACKs. A
duplicate ACK is an ACK that re-acknowledges a segment for which the sender has already
received. If the TCP sender receives three duplicate ACKs for the same segment, TCP
interprets this event as packet loss due to congestion and reduces the congestion window
cwnd by half. This congestion window reduction is known as multiplicative decrease.

In steady state (ignoring the initial TCP period when a connection begins), a packet loss
will be detected by a triple duplicate ACK. After decreasing cwnd by half, and as long as
no other packet loss is detected, TCP will slowly increase cwnd again by 1 MSS per RTT.
This congestion control phase essentially produces an additive increase in the congestion
window. For this reason, TCP congestion control is referred to as an Additive-Increase
Multiplicative-Decrease (AIMD) form of congestion control. AIMD gives rise to the “saw

Lab 6: Understanding Traditional TCP Congestion Control

 Page 6

tooth” behavior shown in Figure 2(b), which also illustrates the idea of TCP “probing” for
bandwidth—TCP linearly increases its congestion window size (and hence its transmission
rate) until a triple duplicate-ACK event occurs. It then decreases its congestion window
size by a factor of two but then again begins increasing it linearly, probing to see if there
is additional available bandwidth.

1.4 Impact of packet loss in high-latency networks

During the additive increase phase, TCP only increases cwnd by 1 MSS every RTT period.
This feature makes TCP very sensitive to packet loss on high-latency networks, where the
RTT is large.

Consider Figure 3, which shows the TCP throughput of a data transfer across a 10 Gbps
path. The packet loss rate is 1/22,000, or 0.0046%. The purple curve is the throughput in
a loss-free environment; the green curve is the theoretical throughput computed
according to the equation below, where L is the packet loss rate.

Figure 3. Throughput vs Round-Trip Time (RTT), for two devices connected via a 10 Gbps path.
The performance of two TCP implementations are provided: Reno1 (blue) and Hamilton TCP2
(HTCP) (red). The theoretical performance with packet losses (green) and the measured
throughput without packet losses (purple) are also shown3.

TCP Throughput ≈
MSS

RTT √𝐿
 [bytes / second]

The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the Round-Trip Time (RTT) and the square root of the packet loss rate (L). The red and
blue curves are real throughput measurements of two popular implementations of TCP:
Reno1 and Hamilton TCP (HTCP)2. Because TCP interprets losses as network congestion, it
reacts by decreasing the rate at which packets are sent. This problem is exacerbated as
the latency increases between the communicating hosts. Beyond LAN transfers, the
throughput decreases rapidly to less than 1 Gbps. This is often the case when research
collaborators sharing data are geographically distributed.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 7

TCP Reno is an early congestion control algorithm. TCP Cubic4, HTCP5, and BBR6 are more
recent congestion control algorithms, which have demonstrated improvements with
respect to TCP Reno.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 6.mn topology file and click on Open.

Figure 6. MiniEdit shortcut.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 6: Understanding Traditional TCP Congestion Control

 Page 8

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on host h1.

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 9

Figure 9. Connectivity test using ping command.

Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN with packet loss

This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 10 Gbps. Then
we will emulate packet losses between switch S1 and switch S2 and measure the
throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01%

Lab 6: Understanding Traditional TCP Congestion Control

 Page 10

Figure 11. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2; on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip

Lab 6: Understanding Traditional TCP Congestion Control

 Page 11

Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

3 Introduction to sysctl

sysctl is a tool for dynamically changing parameters in the Linux operating system7. It
allows users to modify kernel parameters dynamically without rebuilding the Linux kernel.

Step 1. Run the command below on the Client1’s terminal. When prompted for a
password, type password and hit enter.

sudo sysctl -a

Figure 14. Listing all system parameters in Linux.

This command produces a large output containing the kernel parameters and their values.
This is represented in a key-value pair. For instance, net.ipv4.ip_forward = 0 implies
that the key net.ipv4.ip_forward has the value 0.

3.1 Read sysctl parameters

It is often useful to search for specific keys without having to manually locate the needed
key. This can be achieved using the following command:

sysctl <key>

Where <key> is replaced by the needed key. For example, the command sysctl
net.ipv4.ip_forward returns net.ipv4.ip_forward = 0.

Step 1. Run the following command on the host h1’s terminal:

Lab 6: Understanding Traditional TCP Congestion Control

 Page 12

sysctl net.ipv4.ip_forward

Figure 15. Reading the value of a given key.

3.2 Write sysctl parameters

It is also very useful to modify kernel parameters on the fly. The -w switch is added to
the sysctl to “write” a value for a specific key.

sysctl -w <key>=<value>

Step 1. For example, if the user decides to enable IP forwarding (i.e., to configure a device
as a router), then the following command is used:

sudo sysctl -w net.ipv4.ip_forward=1

Run the above command on the host h1’s terminal:

Figure 16. Modifying a system parameter.

The changes made to a parameter using this command are temporary. Therefore, a new
boot resets the value of a key to its default value. Also, when stopping MiniEdit’s
emulation, the configured parameters are reset.

3.3 Configuring sysctl.conf file

If the user wishes to permanently modify the value of a specific key, then the key-value
pair must be stored within the file /etc/sysctl.conf.

Step 1. In the Linux terminal, open the /etc/sysctl.conf file using your favorite text editor.
Run the following command on the Client1’s terminal. When prompted for a password,
type password and hit enter.

sudo featherpad /etc/sysctl.conf

This is a text file that can be edited in any text editor (vim, nano, etc.). For simplicity, we
use a Graphical User Interface (GUI)-based text editor (featherpad).

Lab 6: Understanding Traditional TCP Congestion Control

 Page 13

Figure 17. Opening the /etc/sysctl.conf file.

Step 2. Keys and values are appended to this file. Enable IP forwarding permanently on
the system by append net.ipv4.ip_forward=1 to the /etc/sysctl.conf file and save it.
Once you have saved the file, close the text editor.

net.ipv4.ip_forward=1

Lab 6: Understanding Traditional TCP Congestion Control

 Page 14

Figure 18. Appending key+value to the /etc/sysctl.conf file and saving.

Step 3. To refresh the system with the new parameters, the -p switch is passed to the
sysctl command as follows:

sudo sysctl -p

When prompted for a password, type password and hit enter.

Figure 19. Loading new sysctl.conf parameters.

Now, even after a new system boot (or reboot), the system will have IP forwarding
enabled.

4 Congestion control algorithms and sysctl

Congestion control algorithms can be inspected and modified using the sysctl command
and the /etc/sysctl.conf file. Specifically, the following operations are possible:

1. Check the installed congestion control algorithms on the system.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 15

2. Inspect the default congestion control algorithm (i.e., the current algorithm used
by the system).

3. Modify the congestion control algorithm.

4.1 Inspect and install/load congestion control algorithms

In Linux, it is possible to check the available TCP congestion control algorithms installed
on the system with the command below.

Step 1. Execute the command below on the Client1’s terminal.

sysctl net.ipv4.tcp_available_congestion_control

Figure 20. Displaying the system’s available congestion control algorithms.

Usually, the default congestion control algorithm is CUBIC or Reno, depending on the
installed operating system. A list of some of the possible output is:

• reno: Traditional TCP used by almost all other Operating Systems. Characterized
by slow start, congestion avoidance, and fast retransmission via triple duplicate
ACKs.

• cubic: CUBIC-TCP. Optimized congestion control algorithm for high bandwidth
networks with high latency. Operates in a similar but more systematic fashion than
BIC-TCP, in which its congestion window is a cubic function of time since the last
packet loss, with the inflection point set to the window prior to the congestion
event.

• bic: BIC-TCP. Congestion window utilizes a binary search algorithm to find the
largest congestion window that will last the maximum amount of time.

• htcp: Hamilton TCP. A loss-based algorithm using additive-increase and
multiplicative-decrease to control TCP’s congestion window.

• vegas: TCP Vegas. Emphasizes packet delay, rather than packet loss, as a signal to
help determine the rate at which to send packets.

• bbr: a new algorithm, discussed in future labs. Measures bottleneck bandwidth
and Round-Trip Propagation (RTP) time in its execution of congestion control.

If the above command does not return a specific congestion control algorithm, it means
that it is not loaded on the distribution.

Step 2. The command used in Step 1 listed three algorithms: reno cubic bbr. To install
a new algorithm, its corresponding kernel module must be loaded. This can be done using

Lab 6: Understanding Traditional TCP Congestion Control

 Page 16

insmod or modprobe commands. For example, to load the BIC-TCP module, use the
following command on the Client1’s terminal:

sudo modprobe tcp_bic

Figure 21. Loading tcp_bic module into the Linux kernel.

modprobe and insmod commands require high sudo privileges to insert kernel modules.

When prompted for a password, type password and hit enter.

Step 3. To verify that the BIC-TCP algorithm is loaded, execute the below command on
the Client1’s terminal.

sysctl net.ipv4.tcp_available_congestion_control

Figure 22. Displaying the system’s available congestion control algorithms after loading TCP-BIC.

4.2 Inspect the default (current) congestion control algorithm

To check which TCP congestion control is currently being used by the Linux kernel, the
net.ipv4.tcp_congestion_control sysctl key is read. This key can be read on an end-host’s
terminal (host h1 or host h2) or on the Client1’s terminal.

Step 1. Execute the following command on the Client1’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp_congestion_control

Figure 23. Current TCP congestion control algorithm.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 17

The output shows that the default congestion control algorithm is Cubic. Note that
applications can set this value (congestion control algorithm) for individual connections.

4.3 Modify the default (current) congestion control algorithm

To temporarily change the TCP congestion control algorithm, the sysctl command is
used with the -w switch on the net.ipv4.tcp_congestion_control key.

Step 1. To modify the current algorithm to TCP Reno, the following command is used.
Execute the command below on the Client1’s terminal. When prompted for a password,
type password and hit enter.

sudo sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 24. Modifying the congestion control algorithm to reno.

If no error occurred in the assignment (e.g., the module is not installed on the system),
the output echoes back the new key-value pair, i.e.:
net.ipv4.tcp_congestion_control=reno

Step 2. Execute the following command on the Client1’s terminal to determine the
current congestion control algorithm.

sysctl net.ipv4.tcp_congestion_control

Figure 25. Current TCP congestion control algorithm after modifying to reno.

The output shows that the default congestion control algorithm is now Reno instead of
Cubic.

5 iPerf3 throughput test

In this section, the throughput between host h1 and host h2 is measured using different
congestion control algorithms, namely Reno, HTCP, and Cubic. Moreover, the test is

Lab 6: Understanding Traditional TCP Congestion Control

 Page 18

repeated using various injected delays to observe the throughput variations depending
on each congestion control algorithm and the selected RTT.

5.1 Throughput test without delay

In this test, we measure the throughput between host h1 and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

5.1.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 26. Changing TCP congestion control algorithm to reno on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 27. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1 ’s terminal. The -O option is used to
specify the number of seconds to omit in the resulting report. Note that this option is a
capitalized ‘O’, not a zero.

iperf3 -c 10.0.0.2 -t 20 -O 10

Lab 6: Understanding Traditional TCP Congestion Control

 Page 19

Figure 28. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1890
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.1.2 Hamilton TCP (HTCP)

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=htcp

Lab 6: Understanding Traditional TCP Congestion Control

 Page 20

Figure 29. Changing TCP congestion control algorithm to htcp on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 30. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 31. Running iPerf3 client on host h1.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 21

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1789
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.1.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 32. Changing TCP congestion control algorithm to cubic on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 33. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Lab 6: Understanding Traditional TCP Congestion Control

 Page 22

Figure 34. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1845
(due to the injected packet loss-- 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1 and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. On the client’s terminal, run the following command to modify the previous rule
to include 30ms delay. When prompted for a password, type password and hit enter.

sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms

Lab 6: Understanding Traditional TCP Congestion Control

 Page 23

Figure 35. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Figure 36. Modifying the TCP buffer size on host h1.

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.

Figure 37. Modifying the TCP buffer size on host h2.

5.2.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 38. Changing TCP congestion control algorithm to reno on host h1.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 24

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 39. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 40. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 472 Mbps (sender) and 472 Mbps (receiver), and the number of retransmissions is 45.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2.2 Hamilton TCP (HTCP)

Lab 6: Understanding Traditional TCP Congestion Control

 Page 25

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=htcp

Figure 41. Changing TCP congestion control algorithm to htcp on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 43. Running iPerf3 client on host h1.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 26

The figure above shows the iPerf3 test output report. The average achieved throughput
is 344 Mbps (sender) and 344 Mbps (receiver), and the number of retransmissions is 93.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

5.2.3 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 44. Changing TCP congestion control algorithm to cubic on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 45. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Lab 6: Understanding Traditional TCP Congestion Control

 Page 27

Figure 46. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 938 Mbps (sender) and 939 Mbps (receiver), and the number of retransmissions is 180.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux
terminal.

References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

Lab 6: Understanding Traditional TCP Congestion Control

 Page 28

2. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

3. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

4. S. Ha, I., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

5. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

6. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

7. System information variables – sysctl (7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

NETWORK TOOLS AND PROTOCOLS

Lab 7: Understanding Rate-based TCP
Congestion Control (BBR)

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP ... 3

1.1 Traditional TCP congestion control review .. 3

1.2 Traditional congestion control limitations ... 4

1.3 TCP BBR .. 5

2 Lab topology.. 8

2.1 Starting host h1 and host h2 .. 9

2.2 Emulating 1 Gbps high-latency WAN with packet loss 10

2.3 Testing connection ... 11

3 iPerf3 throughput test .. 12

3.1 Throughput test without delay .. 12

3.1.1 TCP Reno ... 12

3.1.2 TCP BBR ... 13

3.2 Throughput test with 30ms delay .. 15

3.2.1 TCP Reno ... 16

3.2.2 TCP BBR ... 19

References .. 22

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 3

Overview

This lab describes a new type of TCP congestion control algorithm called Bottleneck
Bandwidth and Round-Trip Time (BBR). The lab conducts experimental results using TCP
BBR and contrasts these results with those obtained using traditional congestion control
algorithms such as a Reno and HTCP.

Objectives

By the end of this lab, students should be able to:

1. Describe the basic operation of TCP BBR.
2. Describe differences between rate-based congestion control and window-based

loss-based congestion control.
3. Modify the TCP congestion control algorithm in Linux using sysctl tool.
4. Compare the throughput performance of TCP Reno and BBR in high-throughput

high-latency networks.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP.
2. Section 2: Lab Topology.
3. Section 3: iPerf3 Throughput Test.

1 Introduction to TCP

1.1 Traditional TCP congestion control review

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 4

TCP congestion control was introduced in the late 1980s. For many years, the main
algorithm of congestion control was TCP Reno1. Subsequently, multiple algorithms were
proposed based on Reno’s enhancements. The goal of congestion control is to determine
how much capacity is available in the network, so that a source knows how many packets
it can safely have in transit (inflight). Once a source has these packets in transit, it uses
the arrival of an acknowledgement (ACK) as a signal that one of its packets has left the
network and that it is therefore safe to insert a new packet into the network without
adding to the level of congestion. By using ACKs to pace the transmission of packets, TCP
is said to be self-clocking2.

A major task of the congestion control algorithm is to determine the available capacity.
In steady state, TCP Reno maintains an estimate of the Round-Trip Time (RTT) -the time
to send a packet and receive the corresponding ACK-. If the ACK stream shows that no
packets are lost in transit, Reno increases the sending rate by one additional segment
each RTT interval. This period is known as the additive increase. Note that “segment” here
refers to the protocol data unit (PDU) at the transport layer, and that sometimes the
terms packet and segment are interchangeably used. Eventually, the increasing flow rate
saturates the bottleneck link at a router, which drops a packet. The TCP receiver signals
the missing packet by sending an ACK in response to an out-of-order received segment,
as illustrated in Figure 1(a). Once the TCP sender receives three duplicate ACKs for the
same out-of-order segment, it interprets this event as packet loss due to congestion and
reduces the sending rate by half. This reduction is known as multiplicative decrease. Once
the loss is repaired, Reno resumes the additive increase phase. This iteration of additive
increase multiplicative decrease (AIMD) periods is shown in Figure 1(b).

T
im

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

T
ri
p

le
 d

u
p

lic
a

te
 A

C
K

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time

Triple duplicate ACK (packet loss)

Additive increase

Multiplicative decrease

 (a) (b)

O
u

t-
o

f-
o

rd
e

r

s
e

g
m

e
n

ts

Figure 1. (a) TCP operation. (b) Evolution of TCP’s congestion window.

1.2 Traditional congestion control limitations

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 5

While Reno has proven to perform adequately in the past, when the bulk of the TCP
connections carried trivial applications such as web browsing and email, it faces severe
limitations in high-throughput connections that are needed for grid computing and big
science data transfers. Reno’s average TCP throughput can be approximated by the
following equation2:

TCP Throughput ≈
MSS

RTT √𝐿
 [bytes / second]

The equation above indicates that the throughput of a TCP connection in steady state is
directly proportional to the maximum segment size (MSS) and inversely proportional to
the product of Round-Trip Time (RTT) and the square root of the packet loss rate (L).
Essentially, the equation above indicates that the TCP throughput is very sensitive to
packet loss. In such environments Reno cannot achieve high throughput, especially in
high-latency scenarios. Figure 2 validates the above equation. It shows the throughput as
a function of RTT, for two devices connected by a 10 Gbps path. The performance of two
TCP AIMD-based implementations are provided: Reno1 (blue) and Hamilton TCP3, better
known as HTCP (red). The theoretical performance (using the above equation) with
packet losses (green) and the measured throughput without packet losses (purple) are
also shown. Figure 2 is reproduced from4.

Figure 2. Throughput vs Round-Trip Time (RTT) for two devices connected via a 10 Gbps path. The
performance of two TCP implementations are provided: Reno1 (blue) and HTCP (red). The
theoretical performance with packet losses (green) and the measured throughput without packet
losses (purple) are also shown.

1.3 TCP BBR

The main issue surrounding traditional congestion control algorithms in high-speed high-
latency networks is that the sender cannot recover from the packet loss and multiplicative
decrease, even when the packet losses are sporadic. When the RTT is large, increasing the
congestion window (and thus the sending rate) by only 1 MSS every RTT is too slow.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 6

BBR5 is a new congestion control algorithm that does not adhere to the AIMD rule and
the above equation. BBR is a rate-based algorithm, meaning that at any given time it sends
data at a rate that is independent of current packet losses. Note that this feature is a
drastic departure from traditional congestion control algorithms, which operate by
reducing the sending rate by half each time a packet loss is detected.

The behavior of BBR can be described using Figure 3, which shows a TCP’s viewpoint of
an end-to-end connection. At any time, the connection has exactly one slowest link, or
bottleneck bandwidth (btlbw), that determines the location where queues are formed.
When router buffers are large, traditional congestion control keeps them full (i.e., they
keep increasing the rate during the additive increase phase). When buffers are small,
traditional congestion control misinterprets a loss as a signal of congestion, leading to low
throughput. The output port queue increases when the input link arrival rate exceeds
btlbw. The throughput of loss-based congestion control is less than btlbw because of the
frequent packet losses.

R
T

T
T

h
ro

u
g

h
p

u
t

Inflight data

btlbw

RTTmin

Buffer limitedBandwidth limitedApp. limited

Optimal operating point

Operating point of traditional congestion control algorithms

BDP = RTTmin · btlbw BDP + buffer size

Packet lossRTT increases at

router’s queue

Sender Receiver

Bottleneck

(btlbw)

Output port buffer

Router

(a)

(b)
Figure 3. TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified
TCP interpretation of the connection. (b) Throughput and RTT, as a function of in-flight data.

Figure 3(b) illustrates the RTT and throughput with the amount of data inflight5. RTTmin is
the propagation time with no queueing component (the network is not congested). In the

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 7

application limited region, the delivery rate/throughput increases as the amount of data
generated by the application layer increases, while the RTT remains constant. The
pipeline between sender and receiver becomes full when the inflight number of bits is
equal to the bandwidth multiplied by the RTT. This number is also called bandwidth-delay
product (BDP) and quantifies the number of bits that can be inflight if the sender
continuously sends segments. In the bandwidth limited region, the queue size at the
router of Figure 3(a) starts increasing, resulting in an increase of the RTT. The throughput
remains constant, as the bottleneck link is fully utilized. Finally, when no buffer is available
at the router to store arriving packets (the number of inflight bits is equal to BDP plus the
buffer size of the router), these are dropped.

It is important to understand that packets to be sent are paced at the estimated
bottleneck rate, which is intended to avoid network queuing that would otherwise be
encountered when the network performs rate adaptation at the bottleneck point. The
intended operational model here is that the sender is passing packets into the network at
a rate that is not anticipated to encounter queuing at any point within the entire path.
This is a significant contrast to protocols such as Reno, which tends to send packet bursts
at the epoch of the RTT and relies on the network’s queues to perform rate adaptation in
the interior of the network if the burst sending rate is higher than the bottleneck capacity.

BBR also periodically probes for additional bandwidth. It spends one RTT interval
deliberately sending at a rate that is higher than the current estimate bottleneck
bandwidth. Specifically, it sends data at 125% the bottleneck bandwidth. If the available
bottleneck bandwidth has not changed, then the increased sending rate will cause a
queue to form at the bottleneck. This will cause the ACK signaling to reveal an increased
RTT, but the bottleneck bandwidth estimate will be unaltered. If this is the case, then the
sender will subsequently send at a compensating reduced sending rate for an RTT interval.
The reduced rate is set to 75% the bottleneck bandwidth, allowing the bottleneck queue
to drain. On the other hand, if the available bottleneck bandwidth estimate has increased
because of this probe, then the sender will operate according to this new bottleneck
bandwidth estimate. The entire cycle duration lasts eight RTTs and is repeated indefinitely
in steady state.

S
e

n
d

in
g

 r
a

te

Time

btlbw

probe

drain

8 RTTs

100

125

75

cycle 2 ...cycle 1

Figure 4. The rate used by the sender is the estimate bottleneck bandwidth (btlbw). During the
probe period (1 RTT duration), the sender probes for additional bandwidth, sending at a rate of
125% of the bottleneck bandwidth. During the subsequent period, drain (1 RTT duration), the
sender reduces the rate to 75% of the bottleneck bandwidth, thus allowing any bottleneck queue
to drain.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 8

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 5. Lab topology.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 6. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 7.mn topology file and click on Open.

Figure 7. MiniEdit’s Open dialog.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 9

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 8. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 9. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 10

Figure 10. Connectivity test using ping command.

Figure 10 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 1 Gbps high-latency WAN with packet loss

This section emulates a high-latency WAN, which is used to validate the results observed
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 1 Gbps. Then
we will emulate packet losses between switch S1 and switch S2, and measure the
throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 11. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the below command. When prompted for a password, type
password and hit enter. This command basically introduces a 0.01% packet loss rate on
switch S1’s s1-eth2 interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01%

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 11

Figure 12. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 1 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 1gbit

• burst: 500,000

• limit: 2,500,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000

limit 2500000

Figure 13. Limiting the bandwidth to 1 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 14. Output of ping 10.0.0.2 command.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 12

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the
standard deviation is an average of how far each ping RTT is from the average RTT. The
higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

3 iPerf3 throughput test

In this section, the throughput between host h1 and host h2 is measured using two
congestion control algorithms: Reno and BBR. Moreover, the test is repeated using
various injected delays to observe the throughput variations depending on each
congestion control algorithm and the selected RTT.

3.1 Throughput test without delay

In this test, we measure the throughput between host h1 and host h2 without introducing
delay on the switch S1’s s1-eth2 interface.

3.1.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 15. Changing TCP congestion control algorithm to reno on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 16. Starting iPerf3 server on host h2.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 13

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify
the number of seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 17. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughputs
are 956 Mbps (sender) and 956 Mbps (receiver), and the number of retransmissions is
161 (due to the injected packet loss - 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.1.2 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 14

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 18. Changing TCP congestion control algorithm to bbr on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 19. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in client mode on host h1’s terminal:

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 20. Running iPerf3 client on host h1.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 15

Figure 20 shows the iPerf3 test output report. The average achieved throughputs are 937
Mbps (sender) and 937 Mbps (receiver), and the number of retransmissions is 92 (due to
the injected packet loss - 0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3.2 Throughput test with 30ms delay

In this test, we measure the throughput between host h1 and host h2 while introducing
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps:

Step 1. In order to add delay to the switch 1 or interface s1-eth2, go back to the Client’s
terminal, run the following command to modify the previous rule to include 30ms delay:

sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms

Figure 21. Injecting 30ms delay on switch S1’s s1-eth2 interface.

Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in
future labs.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Figure 22. Modifying the TCP buffer size on host h1.

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 16

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Figure 23. Modifying the TCP buffer size on host h2.

3.2.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 24. Changing TCP congestion control algorithm to reno on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 25. Starting iPerf3 server on host h2.

Step 3. Create and enter to a new directory reno on host h1’s terminal:

mkdir reno && cd reno

Figure 26. Creating and entering a new directory reno.

Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -J > reno.json

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 17

Figure 27. Running iPerf3 client on host h1 and redirecting the output to reno.json.

Step 5. Once the test is finished, type the following command to generate the output
plots for iPerf3’s JSON file:

plot_iperf.sh reno.json

Figure 28. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) to be used by applicable programs. These files are stored in a directory results
created in the same directory where the script was executed as shown in the figure below.

Step 6. Navigate to the results folder using the cd command.

cd results/

Figure 29. Entering the results directory using the cd command.

Step 7. To open any of the generated files, use the xdg-open command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 30. Opening the throughput.pdf file using xdg-open.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 18

Figure 31. Reno’s throughput.

Step 8. Close the throughput.pdf file and open the cwnd.pdf file using the following
command:

xdg-open cwnd.pdf

Figure 32. Opening the throughput.pdf file using xdg-open.

Figure 33. Reno’s congestion window.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 19

Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 10. Exit the /reno/results directory by using the following command on host h1’s
terminal:

cd ../..

Figure 34. Exiting the /reno/results directory.

3.2.2 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 35. Changing TCP congestion control algorithm to bbr on host h1.

Step 2. Launch iPerf3 in server mode on host h2’s terminal:

iperf3 -s

Figure 36. Starting iPerf3 server on host h2.

Step 3. Create and enter to a new directory bbr host h1’s terminal:

mkdir bbr && cd bbr

Figure 37. Creating and entering a new directory bbr .

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 20

Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a

file.

iperf3 -c 10.0.0.2 -t 30 -J > bbr.json

Figure 38. Running iPerf3 client on host h1 and redirecting the output to bbr.json.

Step 5. To generate the output plots for iPerf3’s JSON file run the following command:

plot_iperf.sh bbr.json

Figure 39. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file
(1.dat) to be used by applicable programs. These files are stored in a directory results
created in the same directory where the script was executed as shown in the figure below.

Step 6. Navigate to the results folder using the cd command.

cd results/

Figure 40. Entering the results directory using the cd command.

Step 7. To open any of the generated files, use the xdg-open command followed by the
file name. For example, to open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 41. Opening the throughput.pdf file using xdg-open.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 21

Figure 42. BBR’s throughput.

Step 8. Figure 42 shows that in steady state, BBR has already attained the maximum
throughput, which is over 900 Mbps (the bottleneck bandwidth is 1 Gbps, with an
observed effective bandwidth of ~937 Gbps). Note also the periodic (short) drain intervals,
where the throughput decreases to ~75% of maximum throughput, as discussed in
Section 1.3. To proceed, close the throughput.pdf file and open the cwnd.pdf file using
the following command:

xdg-open cwnd.pdf

Figure 43. Opening the cwnd.pdf file using xdg-open.

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 22

Figure 44. BBR’s congestion window.

Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 10. Exit the /bbr/results directory by using the following command on host h1’s
terminal:

cd ../..

Figure 45. Exiting the /bbr/results directory.

It is clear from the above test that when introducing delay, BBR preforms significantly
better than Reno.

This concludes Lab 7. Stop the emulation and then exit out of MiniEdit.

References

1. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

2. J. Kurose, K. Ross, “Computer networking, a top down approach,” Pearson, 6th
Edition, 2017.

3. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf.

4. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The science DMZ: a network
design pattern for data-intensive science,” in Proceedings of the International

Lab 7: Understanding Rate-based TCP Congestion Control (BBR)

 Page 23

Conference on High Performance Computing, Networking, Storage and Analysis,
Nov. 2013.

5. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

6. S. Ha, I., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

7. Leith D, Shorten R. H-TCP: TCP congestion control for high bandwidth-delay
product paths. draft-leith-tcp-htcp-06 (work in progress). 2008 Apr.

8. System information variables – sysctl(7). [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.

NETWORK TOOLS AND PROTOCOLS

Lab 8: Bandwidth-delay Product and
TCP Buffer Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 8: BDP and Setting TCP Buffer Size

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP buffers, BDP, and TCP window ... 3

1.1 TCP buffers ... 3

1.2 Bandwidth-delay product... 4

1.3 Practical observations on setting TCP buffer size .. 5

1.4 TCP window size calculated value .. 7

1.5 Zero window ... 8

2 Lab topology.. 8

2.1 Starting host h1 and host h2 .. 9

2.2 Emulating 10 Gbps high-latency WAN ... 10

3 BDP and buffer size ... 13

3.1 Window size in sysctl.. 13

4 Modifying buffer size and throughput test... 15

References .. 17

Lab 8: BDP and Setting TCP Buffer Size

 Page 3

Overview

This lab explains the bandwidth-delay product (BDP) and how to modify the TCP buffer
size in Linux systems. Throughput measurements are also conducted to test and verify
TCP buffer configurations based on the BDP.

Objectives

By the end of this lab, students should be able to:

1. Understand BDP.
2. Define and calculate TCP window size.
3. Modify the TCP buffer size with sysctl, based on BDP calculations.
4. Emulate WAN properties in Mininet.
5. Achieve full throughput in WANs by modifying the size of TCP buffers.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP buffers, BDP, and TCP window.
2. Section 2: Lab topology.
3. Section 3: BDP and buffer size experiments.
4. Section 4: Modifying buffer size and throughput test.

1 Introduction to TCP buffers, BDP, and TCP window

1.1 TCP buffers

The TCP send and receive buffers may impact the performance of Wide Area Networks
(WAN) data transfers. Consider Figure 1. At the sender side, TCP receives data from the

Lab 8: BDP and Setting TCP Buffer Size

 Page 4

application layer and places it in the TCP send buffer. Typically, TCP fragments the data in
the buffer into maximum segment size (MSS) units. In this example, the MSS is 100 bytes.
Each segment carries a sequence number, which is the byte-stream number of the first
byte in the segment. The corresponding acknowledgement (Ack) carries the number of
the next expected byte (e.g., Ack-101 acknowledges bytes 1-100, carried by the first
segment). At the receiver, TCP receives data from the network layer and places it into the
TCP receive buffer. TCP delivers the data in order to the application. E.g., bytes contained
in a segment, say segment 2 (bytes 101-200), cannot be delivered to the application layer
before the bytes contained in segment 1 (bytes 1-100) are delivered to the application.
At any given time, the TCP receiver indicates the TCP sender how many bytes the latter
can send, based on how much free buffer space is available at the receiver.

...

1-100

...

From Application

To Network

TCP send buffer

To Application
(in-order delivery)

From Network

101-200201-300

801-900 701-800

301-400

TCP receive buffer

201-300 101-200 1-100

401-500501-600...

Ack-101 Ack-201 ...

Seq. number
(first byte in segment)

Ack number (next expected byte)

Figure 1. TCP send and receive buffers.

1.2 Bandwidth-delay product

In many WANs, the round-trip time (RTT) is dominated by the propagation delay. Long
RTTs along and TCP buffer size have throughput implications. Consider a 10 Gbps WAN
with a 50-millisecond RTT. Assume that the TCP send and receive buffer sizes are set to 1
Mbyte (1 Mbyte = 10242 bytes = 1,048,576 bytes = 1,048,576 ⋅ 8 bits = 8,388,608 bits).
With a bandwidth (Bw) of 10 Gbps, this number of bits is approximately transmitted in

Ttx =
bits

Bw
=

8,388,608

10 ⋅ 109
= 0.84 milliseconds.

I.e., after 0.84 milliseconds, the content of the TCP send buffer will be completely sent.
At this point, TCP must wait for the corresponding acknowledgements, which will only
start arriving at t = 50 milliseconds. This means that the sender only uses 0.84/50 or 1.68%
of the available bandwidth.

The solution to that above problem lies in allowing the sender to continuously transmit
segments until the corresponding acknowledgments arrive back. Note that the first
acknowledgement arrives after an RTT. The number of bits that can be transmitted in a
RTT period is given by the bandwidth of the channel in bits per second multiplied by the

Lab 8: BDP and Setting TCP Buffer Size

 Page 5

RTT. This quantity is referred to as the bandwidth-delay product (BDP). For the above
example, the buffer size must be greater than or equal to the BDP:

TCP buffer size ≥ BDP = (10 ⋅ 109)(50 ⋅ 10−3) = 500,000,000 bits = 62,500,000 bytes.

The first factor (10 ⋅ 109) is the bandwidth; the second factor (50 ⋅ 10-3) is the RTT. For
practical purposes, the TCP buffer can be also expressed in Mbytes (1 Mbyte = 10242
bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression, in Mbytes, is

TCP buffer size ≥ 62,500,000 bytes = 59.6 Mbytes ≈ 60 Mbytes.

1.3 Practical observations on setting TCP buffer size

Linux systems configuration. Linux assumes that half of the send/receive TCP buffers are
used for internal structures. Thus, only half of the buffer size is used to store segments.
This implies that if a TCP connection requires certain buffer size, then the administrator
must configure the buffer size equals to twice that size. For the previous example, the
TCP buffer size must be:

TCP buffer size ≥ 2 ⋅ 60 Mbytes = 120 Mbytes.

Packet loss scenarios and TCP BBR1. TCP provides a reliable, in-order delivery service.
Reliability means that bytes successfully received must be acknowledged. In-order
delivery means that the receiver only delivers bytes to the application layer in sequential
order. The memory occupied by those bytes will be deallocated from the receive buffer
after passing the bytes to the application layer. This process has some performance
implications, as illustrated next. Consider Figure 2, which shows a TCP receive buffer.
Assume that the segment carrying bytes 101-200 is lost. Although the receiver has
successfully received bytes 201-900, it cannot deliver to the application layer until bytes
101-200 are received. Note that the receive buffer may become full, which would block
the sender from utilizing the channel.

Figure 2. TCP receive buffer. Although bytes 301-900 have been received, they cannot be
delivered to the application until the segment carrying bytes 201-300 are received.

While setting the buffer size equal to the BDP is acceptable when traditional congestion
control algorithms are used (e.g., Reno2, Cubic3, HTCP4), this size may not allow the full

Lab 8: BDP and Setting TCP Buffer Size

 Page 6

utilization of the channel with BBR1. In contrast to other algorithms, BBR does not reduce
the transmission rate after a packet loss. For example, suppose that a packet sent at t = 0
is lost, as shown in Figure 3. At t = RTT, the acknowledgement identifying the packet to
retransmit is received. By then, the sender has sent BDP bits, which will be stored in the
receive buffer. This data cannot be delivered yet to the application, because of the in-
order delivery requirement. Since the receive buffer has a capacity of BDP only, the
sender is temporarily blocked until the acknowledgement for the retransmitted data is
received at t = 2⋅RTT. Thus, the throughput over the period t = 0 to t = 2⋅RTT is reduced
by half:

throughput =
bits transmitted

period
=

Bw ⋅ RTT

2 ⋅ RTT
=

Bw

2
.

T=RTT

t=0

BDP

Missing data. Buffered data
can’t be released to
application

Missing data arrives. Ready
for in-order delivery

Data delivered to application.
Buffer is drainedt=2RTT

Sender is blocked (TCP
receive buffer full)

...

Sender resumes
transmission

Sender Receiver

TCP receive buffer
(BDP capacity)

Packet loss
Data segment

Legend:

Ack identifying packet
to retransmit

ACK / SACK
Retransmission

Figure 3. A scenario where a TCP receive buffer size of BDP cannot prevent throughput
degradation.

With BBR, to fully utilize the available bandwidth, the TCP send and receive buffers must
be large enough to prevent such situation. Figure 4 shows an example on how a TCP buffer
size of 2⋅BDP mitigates packet loss.

High to moderate packet loss scenarios, using TCP BBR:

TCP send/receive buffer ≥ several BDPs (e.g., 4 ⋅ BDP)

Continuing with the example of Section 1.2, in a Linux system using TCP BBR, the
send/receive buffers for a BDP of 60 Mbytes in a high to moderate packet loss scenario
should be:

TCP buffer size ≥ (2 ⋅ 60 Mbytes) ⋅ 4 = 480 Mbytes.

Lab 8: BDP and Setting TCP Buffer Size

 Page 7

The factor 2 is because of the Linux systems configuration, and the factor 4 is because of
the use of TCP BBR in a high to moderate packet loss scenario.

t=RTT

t=0

2BDP

Missing data. Still ~BDP
buffer capacity available

Data delivered to application.
Buffer is drained

t=2RTT

...

Sender Receiver

Missing data
arrives. Ready for
in-order delivery

ACK / SACK identifying
packet to retransmit

Figure 4. A scenario where a TCP buffer size of 2⋅BDP mitigates packet loss.

1.4 TCP window size calculated value

The receiver must constantly communicate with the sender to indicate how much free
buffer space is available in the TCP receive buffer. This information is carried in a TCP
header field called window size. The window size has a maximum value of 65,535 bytes,
as the header value allocated for the window size is two bytes long (16 bits; 216-1 = 65,535).
However, this value is not large enough for high-bandwidth high-latency networks.
Therefore, TCP window scale option was standardized in RFC 13235. By using this option,
the calculated window size may be increased up to a maximum value of 1,073,725,440
bytes. When advertising its window, a device also advertises the scale factor (multiplier)
that will be used throughout the session. The TCP window size is calculated as follows:

Scaled TCPWin = TCPWin ⋅ Scaling Factor

As an example, consider the following example. For an advertised TCP window of 2,049
and a scale factor of 512, then the final window size is 1,049,088 bytes. Figure 5 displays
a packet inspected in Wireshark protocol analyzer for this numerical example.

Figure 5. Window Scaling in Wireshark.

Lab 8: BDP and Setting TCP Buffer Size

 Page 8

1.5 Zero window

When the TCP buffer is full, a window size of zero is advertised to inform the other end
that it cannot receive any more data. When a client sends a TCP window of zero, the
server will pause its data transmission, and waits for the client to recover. Once the client
is recovered, it digests data, and inform the server to resume the transmission again by
setting again the TCP window.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 6. Lab topology.

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password.

Figure 7. Miniedit shortcut.

Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate
the lab8.mn topology file and click on Open.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 8: BDP and Setting TCP Buffer Size

 Page 9

Figure 8. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of Miniedit’s window
to start the emulation.

Figure 9. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Lab 8: BDP and Setting TCP Buffer Size

 Page 10

Figure 10. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 11. Connectivity test using ping command.

Figure 11 indicates that there is connectivity between host h1 and host h2.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN by introducing delays to the network. We will
first set the bandwidth between hosts 1 and 2 to 10 Gbps. Then, we will emulate a 20 ms
delay and measure the throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 8: BDP and Setting TCP Buffer Size

 Page 11

Figure 12. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on S1’s s1-eth2 interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms

Figure 13. Adding 20ms delay to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switches S1 and S2: on the same
terminal, type the command below. This command sets the bandwidth to 10 Gbps on S1’s
s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 14. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. On h1’s terminal, type ping 10.0.0.2. This command tests the connectivity
between host h1 and host h2. The test was initiated by h1 as the command is executed
on h1’s terminal.

Lab 8: BDP and Setting TCP Buffer Size

 Page 12

To stop the test, press Ctrl+c. The figure below shows a successful connectivity test.
Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses
back.

Figure 15. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the round-trip time
(RTT) were 20.092, 25.353, 41.132, and 9.111 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 4. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
H2’s terminal:

iperf3 -s

Figure 16. Host h2 running iperf3 as server.

Step 5. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in h1’s terminal:

iperf3 -c 10.0.0.2

Lab 8: BDP and Setting TCP Buffer Size

 Page 13

Figure 17. iPerf3 throughput test.

Notice the measured throughput now is approximately 3 Gbps, which is different than
the value assigned in our tbf rule. Next, we explain why the 10 Gbps maximum
theoretical bandwidth is not achieved.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 BDP and buffer size

In connections that have a small BDP (either because the link has a low bandwidth or
because the latency is small), buffers are usually small. However, in high-bandwidth high-
latency networks, where the BDP is large, a larger buffer is required to achieve the
maximum theoretical bandwidth.

3.1 Window size in sysctl

The tool sysctl is used for dynamically changing parameters in the Linux operating system.
It allows users to modify kernel parameters dynamically without rebuilding the Linux
kernel.

The sysctl key for the receive window size is net.ipv4.tcp_rmem and the send window
size is net.ipv4.tcp_wmem

Step 1. To read the current receiver window size value of host h1, use the following
command on h1’s terminal:

sysctl net.ipv4.tcp_rmem

Lab 8: BDP and Setting TCP Buffer Size

 Page 14

Figure 18. Receive window read in sysctl.

Step 2. To read the current send window size value of host h1, use the following command
on h1’s terminal:

sysctl net.ipv4.tcp_wmem

Figure 19. Send window read in sysctl.

The returned values of both keys (net.ipv4.tcp_rmem and net.ipv4.tcp_wmem) are
measured in bytes. The first number represents the minimum buffer size that is used by
each TCP socket. The middle one is the default buffer which is allocated when applications
create a TCP socket. The last one is the maximum receive buffer that can be allocated for
a TCP socket.

The default values used by Linux are:

• Minimum: 10,240

• Default: 87,380

• Maximum: 16,777,216

In the previous test (10 Gbps, 20ms delay), the buffer size was not modified on end-hosts.
The BDP for the above test is:

BDP = (10 ⋅ 109) ⋅ (20 ⋅ 10−3) = 200,000,000 bits = 25,000,000 bytes ≈ 25 Mbytes.

Note that this value is significantly greater than the maximum buffer size (16 Mbytes),
and therefore, the pipe is not getting filled, which leads to network resources
underutilization. Moreover, since Linux systems by default uses half of the send/receive
TCP buffers for internal kernel structures (see Section 1.3 Linux systems configuration),
only half of the buffer size is used to store TCP segments. Figure 20 shows the calculated
window size of a sample packet of the previous test- approximately 8 Mbytes. This is 50%
of the default buffer size used by Linux (16 Mbytes).

Figure 20. Sample window size from previous test.

Note that the observation in Figure 20 reinforces the best practice described in Section
1.3: in Linux systems, the TCP buffer size must be at least twice the BDP.

Lab 8: BDP and Setting TCP Buffer Size

 Page 15

4 Modifying buffer size and throughput test

This section repeats the throughput test of Section 4 after modifying the buffer size
according to the formula describe above. This test assumes the same network parameters
introduced in the previous test, therefore, the bandwidth is limited to 10 Gbps, and the
RTT (delay or latency) is 20ms. The send and receive buffer sizes should be set to at least
2 · BDP (if BBR is used as the congestion control algorithm, this should be set to even a
larger value, as described in Section 1). We will use 25 Mbytes value for the BDP instead
of 25,000,000 bytes (1 Mbyte = 10242 bytes).

BDP = 25 Mbytes = 25 ⋅ 10242 bytes = 26,214,400 bytes

TCP buffer size = 2 · BDP = 2 · 26,214,400 bytes = 52,428,800 bytes

Step 1. To change the TCP receive receive-window size value(s), use the following
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 21. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 22. Send window change in sysctl.

Next, the same commands must be configured on host h2.

Lab 8: BDP and Setting TCP Buffer Size

 Page 16

Step 3. To change the current receiver-window size value(s), use the following command
on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 23. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 24. Send window change in sysctl.

Step 5. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
h2’s terminal:

iperf3 -s

Figure 25. Host h2 running iPerf3 as server.

Step 6. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in h1’s terminal:

iperf3 -c 10.0.0.2

Lab 8: BDP and Setting TCP Buffer Size

 Page 17

Figure 26. iPerf3 throughput test.

Note the measured throughput now is approximately 10 Gbps, which is close to the value
assigned in our tbf rule (10 Gbps).

This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: Congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

2. K. Fall, S. Floyd, “Simulation-based comparisons of tahoe, reno, and sack TCP,”
Computer Communication Review, vol. 26, issue 3, Jul. 1996.

3. S. Ha, I., Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM
SIGOPS operating systems review, vol. 42, issue 5, pp. 64-74, Jul. 2008.

4. D. Leith, R. Shorten, Y. Lee, “H-TCP: a framework for congestion control in high-
speed and long-distance networks,” Hamilton Institute Technical Report, Aug.
2005. [Online]. Available: http://www.hamilton.ie/net/htcp2005.pdf

5. V. Jacobson, R. Braden, D. Borman, “TCP extensions for high performance,”
Internet Request for Comments, RFC Edit, RFC 1323, May 1992. [Online].
Available: https://tools.ietf.org/rfc/rfc1323.txt

NETWORK TOOLS AND PROTOCOLS

Lab 9: Enhancing TCP Throughput with Parallel
Streams

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 9: TCP Parallel Streams

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP parallel streams .. 3

1.1 Parallel stream fundamentals .. 3

1.2 Advantages of parallel streams .. 4

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 7

2.2 Emulating 10 Gbps high-latency WAN ... 8

2.3 Testing connection ... 9

3 Parallel streams to overcome TCP buffer limitation .. 11

4 Parallel streams to combat packet loss .. 12

4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface 12

4.2 Test with parallel streams .. 14

References .. 16

Lab 9: TCP Parallel Streams

 Page 3

Overview

This lab introduces TCP parallel streams in Wide Area Networks (WANs) and explains how
they are used to achieve higher throughput. Then, throughput tests using parallel streams
are conducted.

Objectives

By the end of this lab, students should be able to:

1. Understand TCP parallel streams.
2. Describe the advantages of TCP parallel streams.
3. Specify the number of parallel streams in an iPerf3 test.
4. Conduct tests and measure performance of parallel streams on an emulated WAN.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP parallel streams.
2. Section 2: Lab topology.
3. Section 3: Parallel streams in a high-latency high-bandwidth WAN.
4. Section 4: Parallel streams with packet loss.

1 Introduction to TCP parallel streams

1.1 Parallel stream fundamentals

Parallel Streams are multiple TCP connections opened by an application to increase
performance and maximize the throughput between communicating hosts. With parallel
streams, data blocks for a single file transmitted from a sender to a receiver are

Lab 9: TCP Parallel Streams

 Page 4

distributed over the multiple streams. Figure 1 shows the basic model. A control channel
is established between the sender and the receiver to coordinate the data transfer. The
actual transfer occurs over the parallel streams, collectively referred to as data channels.
In this context, the term stream is a synonym of flow and connection.

DP1

Sender

CP

Receiver

DP2

DP3

DP1

DP2

DP3

Stream 1

Stream 2

Stream 3

Control channel
CP

Legend:

CP: Control process

DP: Data process

Data channels

Figure 1. Data transfer model with parallel streams.

1.2 Advantages of parallel streams

Transferring large files over high-latency WANs with parallel streams have multiple
benefits, as describe next.

Combat random packet loss not due congestion: assume that packet loss occurs
randomly rather than due congestion. In steady state, the average throughput of a single
TCP stream is given by1:

𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭 ≈
𝐌𝐒𝐒

𝐑𝐓𝐓 √𝑳
 bytes per second,

where MSS is the maximum segment size and L is the packet loss rate. The above equation
indicates that the throughput is directly proportional to the MSS and inversely
proportional to RTT and the square root of L. When an application uses K parallel streams
and if RTT, packet loss, and MSS are the same in each stream, the aggregate average
throughput is the aggregation of the K single stream throughputs2:

Aggregate average throughput ≈ ∑
𝑀𝑆𝑆

𝑅𝑇𝑇√𝐿
= 𝐾 ⋅

𝑀𝑆𝑆

𝑅𝑇𝑇√𝐿
𝐾
𝑖=1 bytes per second.

Thus, an application opening K parallel connections essentially creates a large virtual MSS
on the aggregate connection that is K times the MSS of a single connection2.

The TCP throughput follows the additive increase multiplicative decrease (AIMD) rule: TCP
continuously probes for more bandwidth and increases the throughput of a connection
by approximately 1 MSS per RTT as long as no packet loss occurs (additive increase phase).
When a packet loss occurs, the throughput is reduced by half (multiplicative decrease
event). Figure 2 illustrates the AIMD behavior for two connections with different MSSs.
The MSS of the green connection is six than the MSS of the red connection. Since during
the additive increase phase TCP increases the throughput by one MSS every RTT, the

Lab 9: TCP Parallel Streams

 Page 5

speed at which the throughput increases is proportional to the MSS (i.e., the larger the
MSS the faster the recovery after a packet loss).

In
s
ta

n
ta

n
e

o
u

s
 T

h
ro

u
g

h
p

u
t

Time

MSS2 = 6 MSS1

MSS1 = 1 unit

Packet loss (throughput

decreases by half)

Slope proportional

to MSS
Additive increase

Multiplicative

decrease

Figure 2. Additive increase multiplicative decrease (AIMD) behavior. The green curve corresponds
to the throughput when the MSS is six times that of the red curve.

Mitigate TCP round-trip time (RTT) bias: when different flows with different RTTs share
a given bottleneck link, TCP’s throughput is inversely proportional to the RTT3. This is also
noted in the equations discussed above. Hence, low-RTT flows get a higher share of the
bandwidth than high-RTT flows. Thus, for transfers across high-latency WANs, one
approach to combat the higher (unfair) bandwidth allocated to low-latency connections
is by using parallel streams. By doing so, even if each high-latency stream receives less
amount of bandwidth than low-latency flows, the aggregate throughput of the parallel
streams can be high.

Overcome TCP buffer limitation: TCP receives data from the application layer and places
it in the TCP buffer, as shown in Figure 3. TCP implements flow control by requiring the
receiver indicate how much spare room is available in the TCP receive buffer. For a full
utilization of the path, the TCP send and receive buffers must be greater than or equal to
the bandwidth-delay product (BDP). This buffer size value is the maximum number of bits
that can be outstanding (in-flight) if the sender continuously sends segments. If the buffer
size is less than the bandwidth-delay product, then throughput will not be maximized.
One solution to overcome small TCP buffer size situations is by using parallel streams.
Essentially, an application opening K parallel connections creates a large buffer size on
the aggregate connection that is K times the buffer size of a single connection.

TCP data
in buffer

Spare room

TCP receive buffer

To application
layer

From
IP

Receiver

TCP data in
buffer

Spare
room

TCP send buffer

From
application layer

To IP

Sender

Figure 3. TCP send and receive buffers.

Lab 9: TCP Parallel Streams

 Page 6

In this lab, we will explore the use of parallel streams to overcome TCP buffer limitation
and to mitigate random packet loss.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 9.mn topology file and click on Open.

Figure 6. MiniEdit’s Open dialog.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 9: TCP Parallel Streams

 Page 7

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host

h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 9: TCP Parallel Streams

 Page 8

Figure 9. Connectivity test using ping command.

Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 to measure the throughput. Then, we will set the bandwidth
between host h1 and host h2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on switch S1’s s1-eth2
interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms

Lab 9: TCP Parallel Streams

 Page 9

Figure 11. Adding delay of 20ms to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

Lab 9: TCP Parallel Streams

 Page 10

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.284, 40.883, and 9.006 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Step 3. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. To stop the test, press Ctrl+c.

iperf3 -c 10.0.0.2

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.22 Gbps. This is because the TCP buffer size is less than the bandwidth-
delay product. In the upcoming section, we run a throughput test without modifying the
TCP buffer size, but with multiple parallel streams.

Lab 9: TCP Parallel Streams

 Page 11

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Parallel streams to overcome TCP buffer limitation

In this section, parallel streams are specified by the client when executing the throughput
test in iPerf3. The iPerf3 server should start as usual, without specifying any additional
options or parameters.

Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal as shown the figure below:

iperf3 -s

Figure 16. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the -P option specified (not to be
confused with the -p option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host h1’s
terminal:

iperf3 -c 10.0.0.2 -P 8

Figure 17. iPerf3 throughput test with parallel streams.

Lab 9: TCP Parallel Streams

 Page 12

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

Figure 18. iPerf3 throughput test with parallel streams summary output.

Note the measured throughput now is approximately 9.5 Gbps, which is close to the value
assigned in the tbf rule (10 Gbps).

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Parallel streams to combat packet loss

Packet loss is inevitable in real-world networks. This section explores the use of parallel
streams to mitigate packet loss not due congestion (i.e., random packet loss), and
compares the performance of single and parallel streams.

4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface

In this topology, rate limiting is applied on switch S1’s interface which connects it to
switch S2 (s1-eth2) and 1% packet loss is introduced.

Step 1. Before applying any additional configuration, the previous rules assigned on the
switch’s interface must be deleted. To remove these, type the following command on the
Client’s terminal. When prompted for a password, type password and hit enter.

Lab 9: TCP Parallel Streams

 Page 13

sudo tc qdisc del dev s1-eth2 root

Figure 19. Deleting previous rules on switch S1’s s1-eth2 interface.

Step 2. On the same terminal, type the below command to add 1% packet loss.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1%

Figure 20. Adding 1% packet loss to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 21. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Step 3. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal as shown the figure below:

iperf3 -s

Lab 9: TCP Parallel Streams

 Page 14

Figure 22. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. To stop the test, press Ctrl+c.

iperf3 -c 10.0.0.2

Figure 23. Running iPerf3 client on host h1.

Note the measured throughput now is approximately 7.6 Gbps, which is different than
the value assigned in the tbf rule (10 Gbps).

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4.2 Test with parallel streams

Step 1. Now the test is repeated while using parallel streams. To launch iPerf3 in server
mode, run the command iperf3 -s in host h2’s terminal as shown in Figure 24:

iperf3 -s

Lab 9: TCP Parallel Streams

 Page 15

Figure 24. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the -P option specified (not to be
confused with the -p option which specifies the listening port number). This option
specifies the number of parallel streams. Run the following command in host h1’s
terminal:

iperf3 -c 10.0.0.2 -P 8

Figure 25. Host h1 running iPerf3 as client with 8 parallel streams.

The above command uses 8 parallel streams. Note that 8 sockets are now opened on
different local ports, and their streams are connected to the server, ready for transmitting
data and performing the throughput test.

Figure 26. iPerf3 throughput test with parallel streams summary output.

Lab 9: TCP Parallel Streams

 Page 16

Note the measured throughput now is approximately 9.6 Gbps, which is close to the value
assigned in our tbf rule (10 Gbps). In conclusion, parallel streams are beneficial when the
packet loss rate is high. As shown in the previous test, when using parallel streams, the
host was able to achieve the maximum theoretical bandwidth.

This concludes Lab 9. Stop the emulation and then exit out of MiniEdit.

References

1. M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm,” ACM Computer Communication Review, vol. 27,
no 3, pp. 67-82, Jul. 1997.

2. T. Hacker, B. Athey, B. Noble, “The end-to-end performance effects of parallel TCP
sockets on a lossy wide-area network,” in Proceedings of the Parallel and
Distributed Processing Symposium, Apr. 2001.

3. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and protocols for
computer communication, pp. 303-314, Sep. 1998.

NETWORK TOOLS AND PROTOCOLS

Lab 10: Measuring TCP Fairness

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 10: TCP Fairness

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Fairness concepts .. 3

1.1 TCP bandwidth allocation .. 3

1.2 TCP fairness index calculation .. 5

2 Lab topology.. 6

2.1 Starting host h1 and host h2 .. 8

2.2 Emulating 10 Gbps high-latency WAN ... 8

2.3 Testing connection ... 10

3 Calculating fairness among parallel flows .. 13

4 Calculating fairness among several hosts with the same congestion control
algorithm ... 14

5 Calculating fairness among hosts with different congestion control algorithms 17

References .. 19

Lab 10: TCP Fairness

Overview

This lab introduces TCP fairness in Wide Area Networks (WAN) and explains how
competing TCP connections converge to fairness. The lab describes how to calculate the
TCP fairness index, a metric that quantifies how fair the aggregate connection is divided
between active connections. Finally, the lab conducts throughput tests in an emulated
high-latency network and derives the fairness index.

Objectives

By the end of this lab, students should be able to:

1. Define TCP fairness.
2. Calculate TCP fairness index.
3. Emulate a WAN and calculating fairness index among parallel streams.
4. Emulate a WAN and calculating fairness index among competing TCP connections.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Fairness concepts.
2. Section 2: Lab topology.
3. Section 3: Calculating fairness among parallel flows.
4. Section 4: Calculating fairness index with different congestion control

algorithms.

1 Fairness concepts

1.1 TCP bandwidth allocation

Lab 10: TCP Fairness

Many networks do not use any bandwidth reservation mechanism for TCP flows passing
through a router. Instead, routers simply make forwarding decisions based on the
destination field of the IP header. As a result, flows may attempt to use as much
bandwidth as possible. In this situation, it is the TCP congestion control algorithm that
allocates bandwidth to the competing flows.

Consider the scenario where two TCP flows share a bottleneck link with bandwidth
capacity R, as illustrated in Figure 1. Assume that the two senders are in equal conditions
(round-trip time, maximum segment size, configuration parameters) and that they use
the same congestion control algorithm. Furthermore, assume that the two flows are in
steady state and that the congestion control algorithm operates according to the additive
increase multiplicative decrease (AIMD) rule1. A fair bandwidth allocation would result in
a bandwidth partition of R/2 to each flow.

Bottleneck

R
Sender

TCP flow 2

Sender

TCP flow 1

Router Router

Figure 1. Two TCP flows that share a bottleneck link of capacity R.

Figure 2 shows the bandwidth allocation region for the two flows1. The bandwidth
allocation to flow 1 is on x-axis and to flow 2 is on the y-axis. If TCP is to share the
bottleneck bandwidth equally between the two flows, then the bandwidth will fall along
the fairness line emanating from the origin. Note that the origin (0, 0) is a fair but
undesirable solution. When the allocations sum to 100% of the bottleneck capacity, the
allocation is efficient. This is shown by the efficiency line. Note that potential efficient
solutions include points A (R, 0) and points B (0, R). On point A, flow 1 receives 100% of
the capacity, and on point B flow 2 receives 100% of the capacity. Clearly, these solutions
are not desirable, as they lead to starvation and unfairness.

Assume that the sending rates of senders 1 and 2 at a given time are indicated by point
p1. As the amount of aggregate bandwidth jointly consumed by the two flows is less than
R, no loss will occur, and TCP will gently increase the bandwidth allocation (this process is
called additive increase phase). Eventually, the bandwidth jointly consumed by the two
connections will be greater than R, and a packet loss will occur at a point, say p2. TCP
reacts to a packet loss by aggressively decreasing the sending rate by half (this operation
is called multiplicate decrease). The resulting bandwidth allocations are realized at point
p3. Since the joint bandwidth use is less than R at point p3, TCP will again increase the
allocation to flows 1 and 2. Eventually, the TCP additive increase phase will lead to the

Lab 10: TCP Fairness

operating point p4, where a loss will again occur, and the two flows again will see a
decrease in the bandwidth allocation, and so on. The bandwidth realized by the two flows
eventually will fluctuate along the fairness line, near the optimal operating point Opt (R/2,
R/2). Chiu and Jain1 describe the reasons of why TCP converges to a fair and efficient
allocation. This convergence occurs independently of the starting point2, 3.

B (0, R)

A (R, 0)

Opt (R/2, R/2)

Bandwidth Sender 1

B
a

n
d

w
id

th
 S

e
n

d
e

r
2

Fairness line

(equal-shared bandwidth)

Efficiency line

(100% bandwidth utilized)

p1

p2

p3

p4

p5

Start

Additive increase

(up at 45
o
)

Multiplicative decrease

(line points to origin)

Legend:

Figure 2. Bandwidth allocation region realized by two competing TCP flows.

1.2 TCP fairness index calculation

A useful index to quantify fairness is Jain’s index4. The index has the following properties:

1. Population size independence: the index is applicable to any number of flows.
2. Scale and metric independence: the index is independent of scale, i.e., the unit of

measurement does not matter.
3. Boundedness: the index is bounded between 0 and 1. A totally fair system has an

index of 1 and a totally unfair system has an index of 0.
4. Continuity: the index is continuous. Any change in allocation is reflected in the

fairness index.

Jain’s fairness index is given by the following equation:

𝐼 =
(∑ 𝑇𝑖

𝑛
𝑖=1)2

𝑛 ∑ 𝑇𝑖
2𝑛

𝑖=1

where

• 𝐼 is the fairness index, with values between 0 and 1.

• 𝑛 is the total number of flows.

• 𝑇1, 𝑇2, . . . , 𝑇𝑛 are the measured throughput of individual flows.

Lab 10: TCP Fairness

As an example of fairness index calculation, consider the three flows shown in Figure 3.
Given the bottleneck capacity of 9 Gbps, assume that the bandwidth allocations for flows
1, 2, and 3 are 5 Gbps, 3 Gbps, and 1 Gbps. The fairness index for this allocation is:

𝐼 =
(∑ 𝑇𝑖

3
𝑖=1)2

3 ∑ 𝑇𝑖
23

𝑖=1

=
(5 ⋅ 109 + 3 ⋅ 109 + 1 ⋅ 109)2

3 ⋅ ((5 ⋅ 109)2 + (3 ⋅ 109)2 + (1 ⋅ 109)2)
= 0.77

Bottleneck

9 Gbps

Sender

TCP flow 3

Sender

TCP flow 1

Router Router

Sender

TCP flow 2

5 Gbps

1 Gbps

3 Gbps

Figure 3. Three TCP flows that share a bottleneck link of capacity 9 Gbps.

Note that by property 2 (scale and metric independence), the fairness index of the above
example is the same as that of an allocation of 5 Mbps, 3 Mbps, and 1 Mbps (or more
generally, an allocation of 5, 3, and 1 units). Also, note that an optimal fair allocation of 3
Gbps to each flow would produce a fairness index of 1.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0

Lab 10: TCP Fairness

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 10.mn topology file and click on Open.

Figure 6. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 10: TCP Fairness

2.1 Starting host h1 and host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 9. Connectivity test using ping command.

Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are
ready to start the throughput measurement process.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth
between host h1 and host h2 to 10 Gbps.

Lab 10: TCP Fairness

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 20ms delay on switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms

Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface.

Lab 10: TCP Fairness

2.3 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test

should be relatively close to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Step 3. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 14. Starting iPerf3 server on host h2.

Step 4. Launch iPerf3 in client mode on host h1 ’s terminal.

iperf3 -c 10.0.0.2

Lab 10: TCP Fairness

Figure 15. Running iPerf3 client on host h1.

Although the link was configured to 10 Gbps, the test results show that the achieved
throughput is 3.20 Gbps. This is because the TCP buffer size was not modified at this point.

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

Step 6. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation:

𝐵𝑊 = 10,000,000,000 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

𝑅𝑇𝑇 = 0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝐵𝐷𝑃 = 10,000,000,000 ∗ 0.02 = 200,000,000 𝑏𝑖𝑡𝑠
 = 25,000,000 𝑏𝑦𝑡𝑒𝑠 ≈ 25 𝑀𝑏𝑦𝑡𝑒𝑠

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 𝑀𝑏𝑦𝑡𝑒 = 10242 𝑏𝑦𝑡𝑒𝑠

𝐵𝐷𝑃 = 25 𝑀𝑏𝑦𝑡𝑒𝑠 = 25 ∗ 10242 𝑏𝑦𝑡𝑒𝑠 = 26,214,400 𝑏𝑦𝑡𝑒𝑠

2 · 𝐵𝐷𝑃 = 2 · 26,214,400 𝑏𝑦𝑡𝑒𝑠 = 52,428,800 𝑏𝑦𝑡𝑒𝑠

Now, we have calculated the maximum value of the TCP sending and receiving buffer size.
In order to apply the new values, on host h1’s terminal type the command showed down
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Lab 10: TCP Fairness

Figure 16. Receive window change in sysctl.

Step 7. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 17. Send window change in sysctl.

Next, the same commands must be configured on host h2.

Step 8. To change the current receive-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 18. Receive window change in sysctl.

Step 9. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 19. Send window change in sysctl.

Step 10. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal:

iperf3 -s

Lab 10: TCP Fairness

Figure 20. Host h2 running iPerf3 as server.

Step 11. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in host h1’s terminal:

iperf3 -c 10.0.0.2

Figure 21. iPerf3 throughput test.

Note the measured throughput now is approximately 9.38 Gbps, which is close to the
value assigned in our tbf rule (10 Gbps).

Step 12. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Calculating fairness among parallel flows

In this section, an iPerf3 test that includes several parallel streams is conducted, followed
by the calculation of the fairness index.

Step 1. Now a test is conducted using parallel streams. To launch iPerf3 in server mode,
run the command iperf3 -s in host h2’s terminal as shown in Figure 22:

iperf3 -s

Lab 10: TCP Fairness

Figure 22. Host h2 running iPerf3 as server.

Step 2. Now the iPerf3 client should be launched with the -P option specified to start
parallel streams. The -J option is also specified to indicate that JSON output is desired,
and the redirection operator > to store the output in a file. Run the following command
in host h1’s terminal as shown in Figure 23:

iperf3 -c 10.0.0.2 -P 8 -J > out.json

Figure 23. Host h1 running iPerf3 as client with 8 parallel streams and saving output in file.

Step 3. The client includes a script called fairness.sh. Basically, this script accepts as
input the JSON file exported by iPerf3 and calculates the fairness index. Run the following
command to calculate the fairness index:

fairness.sh out.json

Figure 24. Calculating the fairness index between the parallel streams.

In the above test, the fairness index is .91395, or 91% fair. Note that this result may vary
according to the result of your emulation test.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Calculating fairness among several hosts with the same congestion

control algorithm

Lab 10: TCP Fairness

In the previous section, we calculated the fairness index among several parallel streams,
all initiated by a single host. In this section we calculate the fairness index among two
transmitting devices. Specifically, an iPerf3 client is executed on host h1 and connected
to host h2 (iPerf3 server); another iPerf3 client is executed on host h3 and connected to
host h4 (iPerf3 server).

To calculate the fairness index, the transmitting hosts should initiate their transmissions
simultaneously. Since it is difficult to start the clients at the same time, the client’s
machine provides a script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 25. Opening Mininet’s terminal.

Figure 26. Mininet’s terminal.

Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_same_algo

Lab 10: TCP Fairness

Figure 27. Running the tests simultaneously for 120 seconds. Both host h1 and host h3 are using
Reno.

Figure 28. Throughput of host h1 and host h3.

The above graph shows that the throughput of host h1 is close to that of host h3.
Therefore, the fairness index should be close to 1 (100%). Note that this result may vary
according to the result of your emulation test.

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 10: TCP Fairness

Figure 29. Calculated fairness index.

The above figure shows a fairness index of .99595. This value indicates that the bottleneck
bandwidth was 99% fairly shared among host h1 and host h3. Note that this result may
vary according to the result of your emulation test.

5 Calculating fairness among hosts with different congestion control

algorithms

In the previous test, we calculated the fairness index while using the same congestion
control algorithm (Reno). In this section we repeat the test, but with host h1 using Reno
and host h3 using BBR.

Step 1. Go back to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 30. Opening Mininet’s terminal.

Step 2. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_diff_algo

Lab 10: TCP Fairness

Figure 31. Running the tests simultaneously for 20 seconds. Host h1 is using Reno while host h3
is using BBR.

Figure 32. Throughput of host h1 and host h3.

The above graph shows that the device configured with BBR has a larger bandwidth
allocation than that configured with Reno. Therefore, the fairness index will not be close
to 1 (100%).

Step 3. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 10: TCP Fairness

Figure 33. Calculated fairness index.

The above figure shows a fairness index of .86036 (~ 86%), which is very far from 100%.
This value indicates that the bottleneck bandwidth was 86% fairly shared among host h1
and host h3. Note that this result may vary according to the result of your emulation test.

This concludes Lab 10. Stop the emulation and then exit out of MiniEdit.

References

1. D. Chiu, R. Jain, “Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks,” Journal of Computer Networks and ISDN
Systems, vol. 17, issue 1, pp. 1-14, Jun. 1989.

2. A. Tanenbaum, D. Wetherall, “Computer networks,” 5th Edition, Prentice Hall,
2011.

3. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

4. R. Jain, D. Chiu, W. Hawe, “A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems,” DEC Research Report TR-301,
Sep. 1984.

NETWORK TOOLS AND PROTOCOLS

Lab 11: Router’s Buffer Size

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 11: Router’s Buffer Size

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to switching ... 4

1.2 Router architecture .. 4

1.3 Where does packet loss occur? .. 5

1.4 Buffer size ... 5

2 Lab topology.. 6

2.1 Starting host h1, host h2, host h3 and host h4 .. 7

2.2 Modifying hosts’ buffer size ... 9

2.3 Emulating high-latency WAN ... 12

2.4 Testing connection ... 13

3 Testing throughput with 100⋅MTU switch’s buffer size ... 14

3.1 Setting switch S1’s buffer size to 100⋅MTU ... 14

3.2 TCP Cubic .. 14

3.3 TCP Reno .. 16

3.4 TCP BBR .. 18

4 Testing throughput with one BDP switch’s buffer size ... 20

4.1 Changing switch S1’s buffer size to one BDP ... 20

4.2 TCP Cubic .. 21

4.3 TCP Reno .. 23

4.4 TCP BBR .. 25

5 Emulating high-latency WAN with packet loss ... 27

5.1 TCP Cubic .. 27

5.2 TCP Reno .. 29

5.3 TCP BBR .. 31

References .. 33

Lab 11: Router’s Buffer Size

 Page 3

Overview

This lab reviews the internal architecture of routers and switches. These devices are
essential in high-speed networks, as they must be capable of absorbing transient packet
bursts generated by large flows and thus avoid packet loss. The lab describes the buffer
requirements to absorb such traffic fluctuations, which are then validated by
experimental results.

Objectives

By the end of this lab, students should be able to:

1. Describe the internal architecture of routers and switches.
2. Understand the importance of buffers of routers and switches to prevent packet

loss.
3. Conduct experiments with routers and switches of variable buffer sizes.
4. Calculate the buffer size required by routers and switches to absorb transient

bursts.
5. Use experimental results to draw conclusions and make appropriate decision

related to routers’ and switches’ buffers.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Testing throughput with 100*MTU switch’s buffer size.
4. Section 4: Testing throughput with one BDP switch’s buffer size.
5. Section 5: Emulating high-latency WAN with packet loss.

1 Introduction

Lab 11: Router’s Buffer Size

 Page 4

1.1 Introduction to switching

Two essential functions performed by routers are routing and forwarding. Routing refers
to the determination of the route taken by packets. Forwarding refers to the switching of
a packet from the input port to the appropriate output port. The term switching is also
used interchangeably with forwarding. Traditional routing approaches such as static and
dynamic routing (e.g., Open Shortest Path First (OSPF)1, BGP2) are used in the
implementation of high-speed networks, e.g., Science DMZs. Routing events, such as
routing table updates, occur at the millisecond, second, or minute timescale, and best
practices used in regular enterprise networks are applicable to high-speed networks as
well. These functions are sometimes collectively referred to as the control plane and are
usually implemented in software and execute on the routing processor (typically a
traditional CPU), see Figure 1. On the other hand, with transmission rates of 10 Gbps and
above, the forwarding operations related to moving packets from input to output
interfaces at very high speed must occur at the nanosecond timescale. Thus, forwarding
operations, collectively referred to as forwarding or data plane, are executed in
specialized hardware and optimized for performance.

Figure 1. A generic router architecture.

Since forwarding functionality is common in both routers and switches, this lab reviews
the architecture and forwarding-related attributes of switches. These attributes are
applicable to routers as well; thus, for this lab, the terms switch and router are used
interchangeably.

1.2 Router architecture

Consider the generic router architecture that is shown in Figure 1. Modern routers may
have a network processor (NP) and a table derived from the routing table in each port,
which is referred to as the forwarding table (FT) or forwarding information base (FIB). The
router in Figure 1 has two input ports, iP1 and iP2, with their respective queues. iP1 has

Lab 11: Router’s Buffer Size

 Page 5

three packets in its queue, which will be forwarded to output ports oP1 (green packets)
and oP2 (blue packet) by the fabric. A switch fabric moves packets from input to output
ports. Switch fabric designs are shared memory, crossbar network, and bus. In shared
memory switches, packets are written into a memory location by an input port and then
read from that memory location by the output port. Crossbar switches implement a
matrix of pathways that can be configured to connect any input port to any output port.
Bus switches use a shared bus to move packets from the input ports to the output ports3.

Router queues/buffers absorb traffic fluctuations. Even in the absence of congestion,
fluctuations are present, resulting mostly from coincident traffic bursts4. Consider an
input buffer implemented as a first-in first-out in the router of Figure 1. As iP1 and iP2
both have one packet to be forwarded to oP1 at the front of the buffer, only one of them,
say the packet at iP2, will be forwarded to oP1. The consequence of this is that not only
the first packet must wait at iP1. Also, the second packet that is queued at iP1 must wait,
even though there is no contention for oP2. This phenomenon is known as Head-Of-Line
(HOL) blocking5. To avoid HOL blocking, many switches use output buffering, a mixture of
internal and output buffering, or techniques emulating output buffering such as Virtual
Output Queueing (VOQ).

1.3 Where does packet loss occur?

Packet queues may form at both the input ports and the output ports. The location and
extent of queueing (either at the input port queues or the output port queues) will
depend on the traffic load, the relative speed of the switching fabric, and the line speed5.
However, in modern switches with large switching rate capability, queues are commonly
formed at output or transmission ports. A main contributing factor is the coincident
arrivals of traffic bursts from different input ports that must be forwarded to the same
output port. If transmission rates of input and output ports are the same, then packets
from coincident arrivals must be momentarily buffered.

Note, however, that buffers will only prevent packet losses in case of transient traffic
bursts. If those were not transient but permanent, such as approximately constant bit
rates from large file transfers, the aggregate rate of input ports will surpass the rate of
the output port. Thus, the output buffer would be permanently full, and the router would
drop packets.

Packet loss occurs when a router drops the packet. It is the queues within a router, where
such packets are dropped and lost.

1.4 Buffer size

From the above observation, a key question is how large should buffers be to absorb the
fluctuations generated by TCP flows. The rule of thumb has been that the amount of
buffering (in bits) in a router’s port should equal the average Round-Trip Time (RTT) (in
seconds) multiplied by the capacity C (in bits per seconds) of the port6, 7.

Lab 11: Router’s Buffer Size

 Page 6

Router′s buffer size = C ⋅ RTT [bits] (single / small number of flows)

Note that RTT is the average of individual RTTs. For example, if there are five TCP flows
sharing a router’s link (port), the RTT used in the equation above is the average value of
the five flows, and the capacity C is the router’s port capacity. E.g., for 250 millisecond
connections and a 10 Gbps port, the router’s buffer size equals 2.5 Gbits. The above
quantity is a conservative value that can be used in high-throughput high-latency
networks.

In 2004, Appenzeller et al.8 presented a study that suggests that when there is a large
number of TCP flows passing through a link, say N (e.g., hundreds, thousands or more),
the amount of buffering can be reduced to:

Router′s buffer size =
C ⋅RTT

√𝑁
 [bits] (large number of flows N)

This result is observed when there is no dominant flow and the router aggregates
hundreds, thousands, or more flows. The observed effect is that the fluctuation of the
sum of congestion windows are smoothed, and the buffer size at an output port can be
reduced to the expression given above. Note that N can be very large for campus and
backbone networks, and the reduction in needed buffer size can become considerable.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 2. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0

Lab 11: Router’s Buffer Size

 Page 7

Figure 3. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 11.mn topology file and click on Open.

Figure 4. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 5. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, host h3 and host h4

Lab 11: Router’s Buffer Size

 Page 8

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Figure 6. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 7. Connectivity test using ping command.

Step 4. Test connectivity between the end-hosts using the ping command. On host h3,
type the command ping 10.0.0.4. This command tests the connectivity between host
h3 and host h4. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Lab 11: Router’s Buffer Size

 Page 9

Figure 8. Connectivity test using ping command.

2.2 Modifying hosts’ buffer size

The following tests the bandwidth is limited to 10 Gbps, and the RTT (delay or latency) is
20ms.

In order to have enough TCP buffer size, we will set the sending and receiving buffer
to 5 · BDP in all hosts.

BW = 10,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 10,000,000,000 · 0.02 = 200,000,000 bits
 = 25,000,000 bytes ≈ 25 Mbytes

The send and receive buffer sizes should be set to 5 · BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes

BDP = 25 Mbytes = 25 · 10242 bytes = 26,214,400 bytes

5 · BDP = 5 · 26,214,400 bytes = 131,072,000 bytes

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Lab 11: Router’s Buffer Size

 Page 10

Figure 9. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 131,072,000 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 10. Send window change in sysctl.

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Figure 11. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 12. Send window change in sysctl.

Lab 11: Router’s Buffer Size

 Page 11

Step 5. To change the current receiver-window size value(s), use the following command
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Figure 13. Receive window change in sysctl.

Step 6. To change the current send-window size value(s), use the following command on
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 14. Send window change in sysctl.

Step 7. To change the current receiver-window size value(s), use the following command
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Figure 15. Receive window change in sysctl.

Step 8. To change the current send-window size value(s), use the following command on
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
131,072,000 (maximum).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Figure 16. Send window change in sysctl.

Lab 11: Router’s Buffer Size

 Page 12

2.3 Emulating high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switches, setting 10ms delay on switch S1 and 10ms delay on switch S2, resulting in 20ms
of Round-Trip Time (RTT).

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Figure 17. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 10ms delay to switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 10ms

Figure 18. Adding delay of 10ms to switch S1’s s1-eth1 interface.

Step 3. Similarly, repeat again the previous step to set a 10ms delay to switch S2’s
interface. When prompted for a password, type password and hit Enter. This command
introduces 10ms delay on switch S2’s s2-eth1 interface.

sudo tc qdisc add dev s2-eth1 root handle 1: netem delay 10ms

Figure 19. Adding delay of 10ms to switch S2’s s2-eth1 interface.

Lab 11: Router’s Buffer Size

 Page 13

2.4 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 20. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.096, 20.110, 20.135, and 0.101 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h3, type ping 10.0.0.4. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Figure 21. Output of ping 10.0.0.4 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.094, 20.212, 20.529, and 0.252 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Lab 11: Router’s Buffer Size

 Page 14

3 Testing throughput with 100⋅MTU switch’s buffer size

In this section, you are going to change the switch S1’s buffer size to 100 ⋅MTU and
emulate a 10 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then,
you will test the throughput between host h1 and host h2 while there is another TCP flow
between host h3 and host h4. On each test, you will modify the congestion control
algorithm in host h1, namely, cubic, reno and bbr. The congestion control algorithm will
still be cubic in host h3 for all tests. In this section, the MTU is 1600 bytes, thus the tbf
limit value will be set to 100 ⋅ MTU = 160,000 bytes.

3.1 Setting switch S1’s buffer size to 100⋅MTU

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and

hit Enter.

• rate: 10gbit

• burst: 5,000,000

• limit: 160,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 160000

Figure 22. Limiting rate to 10 Gbps and setting the buffer size to 100⋅MTU on switch S1’s interface.

3.2 TCP Cubic

The default congestion avoidance algorithm in the following test is cubic thus, there is
no need to specify it manually.

Step 1. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 23. Starting iPerf3 server on host h2.

Lab 11: Router’s Buffer Size

 Page 15

Step 2. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 24. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 3. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

C
Figure 25. Typing iPerf3 client command on host h1.

Step 4. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 26. Typing iPerf3 client command on host h3.

Step 5. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 16

Figure 27. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 86.4 Mbps (sender) and 86.1 Mbps (receiver), and the number of
retransmissions is 994. Host h3’s results are similar to the above, however we are just
focused on host h1’s results.

Step 6. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

3.3 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 28. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 17

Figure 29. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 30. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 31. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 32. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 18

Figure 33. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 78.7 Mbps (sender) and 78.3 Mbps (receiver), and the number of
retransmissions is 1129. Host h3’s results are similar to the figure above, however we are
just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The

user can see the throughput results in the server side too.

3.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 34. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 19

Figure 35. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 36. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 37. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 38. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 20

Figure 39. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 3.48 Gbps (sender) and 3.47 Gbps (receiver), and the number of
retransmissions is 75818. Note that the congestion control algorithm used in host h1 is
bbr and in host h3 is cubic.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4 Testing throughput with one BDP switch’s buffer size

In this section, you are going to change the switch S1 buffer size to one BDP (26,214,400)
using the Token Bucket Filter (tbf). Then, you will test the throughput between host h1
and host h2 while there is another TCP flow between host h3 and host h4. On each test,
you will modify the congestion control algorithm in host h1 namely, cubic, reno and bbr.
The congestion control algorithm will still cubic in host 3 for all tests. In this section, the
tbf limit value will be set to one BDP = 26,214,400 bytes.

4.1 Changing switch S1’s buffer size to one BDP

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 10gbit

Lab 11: Router’s Buffer Size

 Page 21

• burst: 5,000,000

• limit: 26,214,400

sudo tc qdisc change dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst

5000000 limit 26214400

Figure 40. Changing the buffer size to one BDP on switch S1’s s1-eth1 interface.

4.2 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 41. Changing TCP congestion control algorithm to cubic in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 42. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 22

Figure 43. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 44. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 45. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Figure 46. Running iPerf3 client on host h1.

Lab 11: Router’s Buffer Size

 Page 23

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 4.57 Gbps (sender) and 4.57 Gbps (receiver), and the number of
retransmissions is 0. Note that the congestion avoidances algorithm used in host h1 and
host h2 is cubic. Similar results are found in host h3 terminal.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4.3 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 47. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 48. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 49. Starting iPerf3 server on host h4.

Lab 11: Router’s Buffer Size

 Page 24

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 50. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 51. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Figure 52. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 2.74 Gbps (sender) and 2.74 Gbps (receiver), and the number of
retransmissions is 1982. Note that the congestion avoidances algorithm used in host h1

Lab 11: Router’s Buffer Size

 Page 25

is reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however
we are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

4.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 53. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 54. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 55. Starting iPerf3server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

Lab 11: Router’s Buffer Size

 Page 26

iperf3 -c 10.0.0.2 -t 90

Figure 56. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 57. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Figure 58. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 5.64 Gbps (sender) and 5.63 Gbps (receiver), and the number of
retransmissions is 16,110. Note that the congestion avoidances algorithm used in host h1
is bbr and in host h3 is cubic. Host h3’s results are similar to the figure above, however
we are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

Lab 11: Router’s Buffer Size

 Page 27

5 Emulating high-latency WAN with packet loss

This section emulates a high-latency WAN with packet loss. We already have set a 20ms
RTT on the switches. Now, you will add 0.01% packet loss on the switch S1. Note that the
switch S1’s buffer size is set to one BDP.

Step 1. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 0.01% packet loss on switch S1’s s1-
eth1 interface.

sudo tc qdisc change dev s1-eth1 root handle 1: netem delay 10ms loss 0.01%

Figure 59. Adding delay of 0.01% to switch S1’s s1-eth1 interface.

5.1 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=cubic

Figure 60. Changing TCP congestion control algorithm to cubic in host h1.

Note that host h3’s congestion control algorithm is Cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Figure 61. Starting iPerf3 server on host h2.

Lab 11: Router’s Buffer Size

 Page 28

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 62. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously thus, you will type the
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 63. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 64. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 29

Figure 65. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 1.02 Gbps (sender) and 1.02 Gbps (receiver), and the number of
retransmissions is 3088. Note that the congestion control algorithm used in host h1 and
host h2 is cubic. Host h3’s results are similar to the figure above, however we are just
focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

5.2 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=reno

Figure 66. Changing TCP congestion control algorithm to reno in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

iperf3 -s

Lab 11: Router’s Buffer Size

 Page 30

Figure 67. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 68. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 69. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 70. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 31

Figure 71. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 726 Mbps (sender) and 718 Mbps (receiver), and the number of
retransmissions is 19,496. Note that the congestion control algorithm used in host h1 is
reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however we
are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

5.3 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by
typing the following command:

sysctl -w net.ipv4.tcp_congestion_control=bbr

Figure 72. Changing TCP congestion control algorithm to bbr in host h1.

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal.

Lab 11: Router’s Buffer Size

 Page 32

iperf3 -s

Figure 73. Starting iPerf3 server on host h2.

Step 3. Launch iPerf3 in server mode on host h4’s terminal.

iperf3 -s

Figure 74. Starting iPerf3 server on host h4.

The following two steps should be executed almost simultaneously, thus you will type the
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 75. Typing iPerf3 client command on host h1.

Step 5. Type the following iPerf3 command in host h3’s terminal without executing it.

iperf3 -c 10.0.0.2 -t 90

Figure 76. Typing iPerf3 client command on host h3.

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3
terminal.

Lab 11: Router’s Buffer Size

 Page 33

Figure 77. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report by the last 20 seconds. The average
achieved throughput is 8.72 Gbps (sender) and 8.71 Gbps (receiver), and the number of
retransmissions is 25,740. Note that the congestion avoidances algorithm used in host h1
is bbr and in host h3 is cubic.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The
user can see the throughput results in the server side too.

This concludes Lab 11. Stop the emulation and then exit out of MiniEdit.

References

1. J. Moy, “Open shortest path first (OSPF) Version 2,” Internet Request for
Comments, RFC Editor, RFC 2328, Apr. 1998. [Online]. Available:
https://www.ietf.org/rfc/rfc2328.txt.

2. Y. Rekhter, T. Li, S. Hares, “Border gateway protocol 4,” Internet Request for
Comments, RFC Editor, RFC 4271, Jan. 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271.

3. J. Crichigno, E. Bou-Harb, N. Ghani, “A comprehensive tutorial on Science DMZ,”
IEEE Communications Surveys and Tutorials, 2019.

4. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

5. J. Kurose, K. Ross, “Computer networking: a top-down approach,” 7th Edition,
Pearson, 2017.

Lab 11: Router’s Buffer Size

 Page 34

6. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

7. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

8. G. Appenzeller, I. Keslassy, N. McKeown, “Sizing router buffers,” in Proceedings of
the 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 281-292, Oct. 2004.

NETWORK TOOLS AND PROTOCOLS

Lab 12: TCP Rate Control with Pacing

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 12: TCP Pacing

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to TCP pacing ... 4

1.1 TCP pacing essentials ... 4

1.2 Use case: TCP pacing on a 100 Gbps network ... 5

1.3 Fair queueing details .. 6

2 Lab topology.. 7

2.1 Starting host h1 and host h2 .. 8

2.2 Emulating 10 Gbps high-latency WAN ... 9

2.3 Testing connection ... 10

3 Enabling TCP pacing with tc and fq ... 13

4 Enabling TCP pacing from application .. 15

5 Concurrent transmission without pacing ... 17

6 Concurrent transmission with pacing ... 19

7 Parallel streams and without pacing .. 21

8 Parallel streams and with pacing .. 23

References .. 25

Lab 12: TCP Pacing

 Page 3

Overview

This lab introduces TCP pacing, which is a technique that evenly spaces out packets and
minimizes traffic burstiness and packet losses. The focus in this lab is on Fair Queueing
(FQ)-based pacing in high-latency Wide Area Networks (WANs). The lab describes the
steps to conduct throughput tests that encompass TCP pacing and to compare the
performance of TCP pacing against regular (non-paced) TCP.

Objectives

By the end of this lab, students should be able to:

1. Define TCP pacing.
2. Understand FQ-based pacing.
3. Enable TCP pacing in Linux.
4. Compare the performance of paced TCP vs. non-paced TCP.
5. Understand pacing effect on parallel streams.
6. Emulate a WAN and calculate the coefficient of variation of flows.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to TCP pacing.
2. Section 2: Lab topology.
3. Section 3: Enabling TCP pacing with tc and fq.
4. Section 4: Enabling TCP pacing from application.
5. Section 5: Concurrent transmission without pacing.
6. Section 6: Concurrent transmission with pacing.
7. Section 7: Parallel streams and without pacing.
8. Section 8: Parallel streams and with pacing.

Lab 12: TCP Pacing

 Page 4

1 Introduction to TCP pacing

1.1 TCP pacing essentials

Data transmission can be bursty, resulting in packets being buffered at routers and
switches and dropped at times. End devices can contribute to the problem by sending a
large number of packets in a short period of time. If those packets were transmitted at a
steady pace, the formation of queues could be reduced, avoiding packet losses.

TCP pacing is a technique by which a transmitter evenly spaces or paces packets at a pre-
configured rate. It has been applied for years in enterprise networks1, with mixed results.
However, its recent application to data transfers in high-throughput high-latency
networks and science demilitarized zones (Science DMZs) suggests that its use has several
advantages2. TCP pacing has also been applied to datacenter environments3.

The existing TCP congestion control algorithms, except for BBR4, indicate how much data
is allowed for transmission. Those algorithms do not provide a time period over which
that data should be transmitted and how the data should be spread to mitigate potential
bursts. The rate, however, can be enforced by a packet scheduler such as a fair queue
(FQ)5. The packet scheduler organizes the flow of packets of each TCP connection through
the network stack to meet policy objectives. Some Linux distributions such as CentOS6
implement FQ scheduling in conjunction with TCP pacing4, 7.

FQ is intended for locally generated traffic (e.g., a sender device, such as data transfer
node (DTN) in Science DMZs). Figure 1 illustrates the operation of FQ pacing. Application
1 generates green packets, and application 2 generates blue packets. Each application
opens a TCP connection. FQ paces each connection according to the desired rate, evenly
spacing out packets within an application based on the desired rate. The periods T1 and
T2 represent the time-space used for connections 1 and 2 respectively.

Figure 1. TCP pacing. Packets of applications 1 and 2 are evenly spaced by T1 and T2 time units.

TCP pacing reduces the typical TCP sawtooth behavior8 and is effective when there are
rate mismatches along the path between the sender and the receiver. This is the case, for
example, when the ingress port of a router has a capacity of 100 Gbps, and the egress
port has a capacity of 10 Gbps. Because of the TCP congestion control mechanism, the
sawtooth behavior always emerges. As TCP continues to increase the size of the
congestion window, eventually the bottleneck link becomes full while the rest of the links

Lab 12: TCP Pacing

 Page 5

become underutilized. These mismatches produce a continuous circle of additive
increases and multiplicative decreases8.

1.2 Use case: TCP pacing on a 100 Gbps network

With the increase of big data transfers across networks, network professionals have
recently explored the impact of pacing on large flows8. Figure 2(a) shows the results of
data transfers over the Energy Science Network (ESnet). ESnet is a high-performance
network that carries science traffic for the U.S. Department of Energy. As of 2018, this
network is transporting more than 200 petabytes per month. The path capacity and
round-trip time (RTT) between end devices, referred to as DTNs, are 100 Gbps and 92
milliseconds respectively. Transfers use TCP Cubic congestion control algorithm9 without
pacing and a maximum segment size (MSS) of 1,500 bytes. Four concurrent TCP
connections are generated from a single source DTN to a single destination DTN. These
four connections exhibit the typical sawtooth behavior10, which in part is attributed to
the inability of switches to absorb traffic bursts. Figure 2(b) shows the behavior of TCP
Cubic with FQ pacing. The pacing rate for the four TCP connections is approximately 20
Gbps (curves are overlapped at nearly 20 Gbps). The throughput is slightly lower than 20
Gbps per connection. However, notice how the sawtooth behavior is reduced and stable
rates are obtained.

In general, TCP FQ pacing is also effective when there are rate mismatches along the path
between the sender and the receiver. This is the case, for example, when the ingress port
of a router has a capacity of 100 Gbps and the egress port has a capacity of 10 Gbps. As
TCP increases the congestion window during the additive increase phase, eventually the
bottleneck link becomes full while the rest of the links become underutilized. The
mismatches produce a continuous circle of additive increases and multiplicative
decreases, thus generating the sawtooth behavior.

Figure 2. Impact of TCP pacing on throughput. (a) Data transfers of four parallel TCP connections
across a 100 Gbps, 92 milliseconds RTT path. (b) The same data transfer as in (a) but using TCP
pacing. (c) Data transfers between two DTNs connected by a path with a bottleneck link of 1 Gbps.
The curves show the performance when the DTNs use different Linux operating systems (violet:

CentOS 6; green: CentOS 7, and blue: CentOS7 with pacing). The results are reproduced from8.

Figure 2(c) shows the data transfer between two DTNs over ESnet. One DTN is in Amarillo,
Texas, and the other DTN is in New York City. Although the WAN connecting the two sites
has 100 Gbps capacity, one of the DTNs is attached to the network via a 1 Gbps network

Lab 12: TCP Pacing

 Page 6

interface card. Thus, the entirety of the path includes multiple 100 Gbps links and one
bottleneck link of 1 Gbps. The figure shows three curves: the throughput when both DTNs
are based on Linux CentOS6 Version 6 (violet), the throughput when DTNs are based on
Linux CentOS Version 7 (green), and the throughput when DTNs are based on Linux
CentOS Version 7 and packets are paced at 800 Mbps (blue). Note that pacing also leads
to much more stable behaviors, almost removing the TCP sawtooth behavior.

1.3 Fair queueing details

In Linux-based systems, network traffic can be controlled by Queueing Disciplines (qdisc)
used in conjunction with the Traffic Control (tc) tool. In this lab we focus on the most
commonly used queueing discipline: FQ. In this queueing discipline, aggregate queues are
used to associate token buckets in order to limit the transmission rate.

FQ performs flow separation to achieve pacing; it is designed to follow the requirements
set by the TCP stack5. Generally, a flow is considered all packets pertaining to a particular
socket. FQ uses the red-black tree data structure to index and track the state of single
flows as shown in Figure 3(a)11. A red-black tree is a binary search tree which ensures that
no path in the tree is more than twice long as any other. This property ensures that tree
operations have a logarithmic complexity. FQ achieves fairness through the Deficit Round
Robin (DRR) algorithm12, illustrated in Figure 3(b). The DRR is an algorithm that allows
each flow passing through a network device to have a nearly perfect fairness and requires
only a constant number of operations per packet. FQ uses the leaky bucket queue where
transmitting timestamps (indexed on the read-black tree) are derived from the pacing
rate specified by the user and the packet size. FQ is a non-work conserving scheduler,
therefore, it can have idle scheduled resources even if there are jobs ready to be
scheduled.

Figure 3. (a) FQ-pacing. (b) Deficit Round-Robin (DRR) algorithm.

Lab 12: TCP Pacing

 Page 7

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 4. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 5. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 12.mn topology file and click on Open.

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth2

10.0.0.1

h3

h3-eth0

s1-eth5

10.0.0.3

h5

h5-eth010.0.0.5

h7

10.0.0.7 h7-eth0

s1-eth4

s1-eth2

h2

s2-eth1

h2-eth0
10.0.0.2

h4

h4-eth0
10.0.0.4

h6

h6-eth0 10.0.0.6

h8

10.0.0.8h8-eth0

s2-eth4

s2-eth3

s2-eth5

Lab 12: TCP Pacing

 Page 8

Figure 6. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s window
to start the emulation.

Figure 7. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1 and host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Lab 12: TCP Pacing

 Page 9

Figure 8. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 9. Connectivity test using ping command.

2.2 Emulating 10 Gbps high-latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay between
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth
between hosts 1 and 2 to 10 Gbps.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 12: TCP Pacing

 Page 10

Figure 10. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit enter. This command introduces 20ms delay on switch S1’s s1-eth1
interface.

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms

Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface.

2.3 Testing connection

Lab 12: TCP Pacing

 Page 11

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h2 (10.0.0.2), successfully receiving responses back.

Figure 13. Output of ping 10.0.0.2 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation:

BW = 10,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 10,000,000,000 · 0.02 = 200,000,000 bits
 = 25,000,000 bytes ≈ 25 Mbytes

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes
value for the BDP instead of 25,000,000 bytes.

1 Mbyte = 10242 bytes

BDP = 25 Mbytes = 25 · 10242 bytes = 26,214,400 bytes

TCP buffer size = 2 · BDP = 2 · 26,214,400 bytes = 52,428,800 bytes

Now, we have calculated the maximum value of the TCP sending and receiving buffer size.
In order to apply the new values, on host h1’s terminal type the command showed down
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800
(maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Lab 12: TCP Pacing

 Page 12

Figure 14. Receive window change in sysctl.

Step 3. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 15. Send window change in sysctl.

Next, the same commands must be configured on host h2.

Step 4. To change the current receive-window size value(s), use the following command
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 16. Receive window change in sysctl.

Step 5. To change the current send-window size value(s), use the following command on
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 17. Send window change in sysctl.

Step 6. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in
host h2’s terminal:

iperf3 -s

Lab 12: TCP Pacing

 Page 13

Figure 18. Host h2 running iPerf3 as server.

Step 7. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 in host h1’s terminal:

iperf3 -c 10.0.0.2

Figure 19. iPerf3 throughput test.

Note the measured throughput is approximately 10 Gbps, which is close to the value
assigned in our tbf rule (10 Gbps).

Step 8. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

3 Enabling TCP pacing with tc and fq

The user enables fair queuing using a command line utility called tc. The basic tc syntax
used with fq is as follows:

sudo tc qdisc [add|del|replace|change|show] dev dev_id root fq opts

sudo: enables the execution of the command with higher security privileges.

Lab 12: TCP Pacing

 Page 14

tc: invokes Linux’s traffic control.
qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which

packets arriving from the IP protocol output are served. The queue discipline is applied to
a packet queue to decide when to send each packet.
[add | del | replace | change | show]: this is the operation on qdisc. For example,
to add delay on a specific interface, the operation will be add. To change or remove delay
on the specific interface, the operation will be change or del.
dev_id: this parameter indicates the interface to be subject to emulation.
fq: this parameter enables fair queuing qdisc.
opts: this parameter indicates the amount of delay, packet loss, duplication, corruption,
and others.

Step 1. In host h1, type the following command:

sudo tc qdisc add dev h1-eth0 root fq maxrate 5gbit

This command can be summarized as follows:

sudo: enable the execution of the command with higher security privileges.
tc: invoke Linux’s traffic control.
qdisc: modify the queuing discipline of the network scheduler.
add: create a new rule.
dev h1-eth0: specify the interface on which the rule will be applied.
fq: use the fair queueing qdics.
maxrate 5gbit: Maximum sending rate of a flow (default is unlimited). Enables

pacing on a maximum rate of 5 Gbps.

Figure 20. Enabling fair queuing pacing with a maximum rate of 5 Gbps to the interface h1-eth0
on host h1.

Step 2. The user can now verify pacing configuration by using the iperf3 tool to measure
throughput. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Figure 21. Host h2 running iPerf3 as server.

Lab 12: TCP Pacing

 Page 15

Step 3. Now to launch iPerf3 in client mode again by running the command iperf3 -c
10.0.0.2 -O 5 in host h1’s terminal. The -O option is used to specify the number of

seconds to omit in the resulting report.

iperf3 -c 10.0.0.2 -O 5

Figure 22. iPerf3 throughput test.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 4.78 Gbps (sender) and 4.78 Gbps (receiver), which is close to the assigned pacing value
(5 Gbps).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too.

4 Enabling TCP pacing from application

An application can specify a maximum pacing rate using the SO_MAX_PACING_RATE
setsockopt call. This packet scheduler adds delay between packets to respect rate
limitation set on each socket. Application specific setting via SO_MAX_PACING_RATE is
ignored only if it is larger than the maxrate value assigned with fq (if any).

In iPerf3, the option --fq-rate sets a rate to be used with fair-queueing based socket-
level pacing, in bits per second.

Step 1. Remove previous qdiscs on host h1’s h1-eth0 interface.

Lab 12: TCP Pacing

 Page 16

sudo tc qdisc del dev h1-eth0 root

Figure 23. Removing qdiscs on host h1’s h1-eth0 interface.

Step 2. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Figure 24. Host h2 running iPerf3 as server.

Step 3. Now launch iPerf3 in client mode by running the command iperf3 -c 10.0.0.2
-O 5 --fq-rate 5gbit in host h1’s terminal. The -O option is used to specify the number
of seconds to omit in the resulting report (5 seconds), and the --fq-rate is used to
enable pacing through the SO_MAX_PACING_RATE setsockopt call.

iperf3 -c 10.0.0.2 -O 5 --fq-rate 5gbit

Figure 25. iPerf3 throughput test with pacing enabled by iPerf3 application.

Lab 12: TCP Pacing

 Page 17

5 Concurrent transmission without pacing

In the previous section, we applied pacing on a single host (host h1) and we measured the
average throughput. In this section we run a test where four clients (host h1, host h3,
host h5, and host h7) are transmitting simultaneously to four servers (host h2, host h4,
host h6, and host h8), while sharing the same bottleneck link (link connecting switch S1
to switch S2).

Since it is difficult to start the four clients at the same time, Client1’s machine provides a
script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 26. Opening Mininet’s terminal.

Figure 27. Mininet’s terminal.

Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.

source concurrent_no_pacing

Lab 12: TCP Pacing

 Page 18

Figure 28. Running the tests simultaneously for 20 seconds without applying pacing.

Figure 29. Throughput of host h1, host h3, host h5 and host h7.

The above graph shows that the throughput of host h1, host h3, host h5 and host h7. It is
clear from the figure that there are variations in the flows. Moreover, the bottleneck
bandwidth was not evenly shared among the hosts, which decreases the fairness index
from 100%.

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 12: TCP Pacing

 Page 19

Figure 30. Calculated fairness index.

The above figure shows a fairness index of .83588. This value indicates that the bottleneck
bandwidth was approximately 83% evenly shared among host h1, host h3, host h5, and
host h7.

6 Concurrent transmission with pacing

In the previous section, we ran a test where four clients (host h1, host h3, host h5, and
host h7) are transmitting simultaneously to four servers (host h2, host h4, host h6, and
host h8), while sharing the same bottleneck link (link connecting switch S1 to switch S2)
without applying pacing. In this section we repeat the same test, but with pacing enabled
on host h1, host h3, host h5 and host h7.

Since it is difficult to start the four clients at the same time, Client1’s machine provides a
script that automates this process.

Step 1. Using same Mininet’s terminal, issue the following command on Mininet’s
terminal as shown in the figure below.

source concurrent_pacing

Lab 12: TCP Pacing

 Page 20

Figure 31. Running the tests simultaneously for 20 seconds while applying pacing.

Figure 32. Throughput of host h1, host h3, host h5 and host h7 after applying pacing.

The above graph shows that the throughput of host h1, host h3, host h5 and host h7 with
pacing enabled. It is clear from the figure that there are less variations in the flows
compared to the non-paced flows. Moreover, the bottleneck bandwidth is now better
shared among the hosts.

Step 2. Close the graph window and go back to Mininet’s terminal. The fairness index is
displayed at the end as shown in the figure below.

Lab 12: TCP Pacing

 Page 21

Figure 33. Calculated fairness index.

The above figure shows a fairness index of .99999. The fairness index here is better than
the previous test .83588. Therefore, pacing generally improves fairness among
transmitting hosts.

7 Parallel streams and without pacing

In the previous tests, four clients (host h1, host h3, host h5, and host h7) were
transmitting simultaneously to four servers (host h2, host h4, host h6, and host h8), while
sharing the same bottleneck link (link connecting switch S1 to switch S2). In this section
only one client (host h1) is transmitting to one server (host h2) while using five parallel
streams.

Step 1. In MiniEdit, hold the right-click on host h1 and select Terminal. This opens the
terminal of host h1 and allows the execution of commands on that host.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Lab 12: TCP Pacing

 Page 22

Figure 34. Host h2 running iPerf3 as server.

Step 4. Create and enter to a new directory parallel_streams:

mkdir parallel_streams && cd parallel_streams

Figure 35. Creating and entering a new directory parallel_streams.

Step 5. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a
file.

iperf3 -c 10.0.0.2 -t 30 -P 5 -J > parallel_streams.json

Figure 36. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds, and redirecting
the output to parallel_streams.json.

Step 6. Once the test is finished, in order to generate the output plots for iPerf3’s JSON
file run the following command:

plot_iperf.sh parallel_streams.json

Figure 37. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf).
These files are stored in a directory results created in the same directory where the script
was executed.

Step 7. Navigate to the results folder using the cd command.

cd results/

Figure 38. Entering the results directory using the cd command.

Lab 12: TCP Pacing

 Page 23

Step 8. Open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 39. Opening the throughput.pdf file using xdg-open.

Figure 40. Throughput of 5 parallel streams initiated by host h1 without pacing.

Step 9. Close throughput.pdf file and stop the server by pressing Ctrl+c in host h2’s
terminal. The user can see the throughput results in the server side too.

Step 10. Exit the parallel_streams/results directory by using the following command on
host h1’s terminal:

cd ../..

Figure 41. Exiting the reno/results directory.

8 Parallel streams and with pacing

Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal:

iperf3 -s

Lab 12: TCP Pacing

 Page 24

Figure 42. Host h2 running iPerf3 as server.

Step 2. Create and enter to a new directory parallel_streams_pacing:

mkdir parallel_streams_pacing && cd parallel_streams_pacing

Figure 43. Creating and entering a new directory parallel_streams_pacing.

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to
produce a JSON output and the redirection operator > to send the standard output to a
file. The -P is used to specify the number of parallel streams, and the --fq-rate is used
to enable pacing through the SO_MAX_PACING_RATE setsockopt call. In this test, pacing
is applied to a maximum rate of 1.9 Gbps per stream, and 5 * 1.9 Gbps (9.5 Gbps) total
for all streams. Note that assigning a pacing rate slightly less than the maximum
bandwidth (10 Gbps in our case) reduces packet lost and the variations of flows.

iperf3 -c 10.0.0.2 -t 30 -P 5 -J --fq-rate 1.9gbit > parallel_streams_pace.json

Figure 44. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds with pacing
enabled, and redirecting the output to parallel_streams_pace.json.

Step 4. Once the test is finished, type the command, to generate the output plots for
iPerf3’s JSON file run the following command:

plot_iperf.sh parallel_streams_pace.json

Figure 45. plot_iperf.sh script generating output results.

This plotting script generates PDF files for the following fields: congestion window
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf).
These files are stored in a directory results created in the same directory where the script
was executed.

Lab 12: TCP Pacing

 Page 25

Step 5. Navigate to the results folder using the cd command.

cd results/

Figure 46. Entering the results directory using the cd command.

Step 6. Open the throughput.pdf file, use the following command:

xdg-open throughput.pdf

Figure 47. Opening the throughput.pdf file using xdg-open.

Figure 48. Throughput of 5 parallel streams initiated by host h1 with pacing applied to a maximum
rate of 1.9 Gbps per stream.

The graph above shows how the advantages of applying pacing when using parallel
streams. Compared to figure 40, the flows have less variations and the fairness among
these flows is improved.

This concludes Lab 12. Stop the emulation and then exit out of MiniEdit.

References

1. A. Aggarwal, S. Savage, T. Anderson, "Understanding the performance of TCP
pacing," in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), Mar. 2000.

Lab 12: TCP Pacing

 Page 26

2. B. Tierney, N. Hanford, D. Ghosal, “Optimizing data transfer nodes using packet
pacing: a journey of discovery,” in Workshop on Innovating the Network for Data-
Intensive Science, Nov. 2015.

3. M. Ghobadi, Y. Ganjali, “TCP pacing in data center networks,” in IEEE Annual
Symposium on High-Performance Interconnects (HOTI), Aug. 2013.

4. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

5. Fair Queue traffic policing. [Online]. Available: http://man7.org/linux/man-
pages/man8/tc-fq.8.html

6. The centos project. [Online]. Available: https://www.centos.org
7. J. Corbet, “TSO sizing and the FQ scheduler,” LWN.net Online Magazine, Aug. 2013.

[Online]. Available: https://lwn.net/Articles/564978
8. B. Tierney, “Improving performance of 40G/100G data transfer nodes,” in 2016

Technology Exchange Workshop, Sep. 2016. [Online]. Available:
https://meetings.internet2.edu/2016-technologyexchange/detail/10004333/

9. I. Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM Special
Interest Group on Operating Systems Operating System Review, vol. 42, issue 5,
pp. 64-74, Jul. 2008.

10. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proceedings of the ACM SIGCOMM ’98
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 303-314, Sep. 1998.

11. A. Saeed, N. Dukkipati, V. Valancius, C. Contavalli, A. Vahdat, “Carousel: scalable
traffic shaping at end hosts,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 404-417, Aug. 2017.

12. M. Shreedhar, G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE/ACM Transactions on Networking, vol. 4, issue 3, pp. 375-385, Jun. 1996.

NETWORK TOOLS AND PROTOCOLS

Lab 13: Impact of MSS on Throughput

Document Version: 06-14-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 13: Impact of MSS on Throughput

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to MSS .. 3

1.1 Maximum transmission unit (MTU) ... 3

1.2 Maximum segment size (MSS) ... 4

2 Lab topology.. 5

2.1 Starting hosts h1 and h2 .. 6

2.2 Emulating 10 Gbps WAN with packet loss ... 7

3 Modifying maximum transmission unit (MTU) ... 10

3.1 Identifying interface’s current MTU ... 10

3.2 Modifying MTU values on all interfaces .. 11

References .. 14

Lab 13: Impact of MSS on Throughput

 Page 3

Overview

This lab introduces Maximum Transmission Unit (MTU), Maximum Segment Size (MSS),
and their effect on network throughput in a high-bandwidth Wide Area Networks (WAN)
with packet losses. Throughput measurements are conducted in this lab to compare the
observed throughput while using a higher MSS against a normal MSS value.

Objectives

By the end of this lab, students should be able to:

1. Understand Maximum Transmission Unit (MTU).
2. Define Maximum Segment Size (MSS).
3. Identify interfaces’ default MTU value.
4. Modify the MTU of an interface.
5. Understand the benefit of using a high MSS value in a WAN that incurs packet

losses.
6. Emulate WAN properties in Mininet and achieve full throughput with high MSS.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to MSS.
2. Section 2: Lab topology.
3. Section 3: Modifying maximum transmission Unit (MTU) and analyzing

results.

1 Introduction to MSS

1.1 Maximum transmission unit (MTU)

Lab 13: Impact of MSS on Throughput

 Page 4

The Maximum Transmission Unit (MTU) specifies the largest packet size (in bytes),
including headers and data payload, that can be transmitted by the link-layer technology1.
Even though data rates have dramatically increased since Ethernet standardization, the
MTU remains at 1500 bytes. A frame carrying more than 1500 bytes is referred to as a
jumbo frame and can allow up to 9000 bytes.

Figure 1. Standard Ethernet Frame’s MTU

Figure 1 illustrates the standard Ethernet frame which has 1500 bytes MTU. Although
most gigabit networks run with no impact while using the standard MTU, large numbers
of frames increase CPU loads and overheads. In such cases jumbo frames can be used to
mitigate excess overhead, as demonstrated in figure 2.

Figure 2. Jumbo Ethernet Frame’s MTU

As shown in figure 2, jumbo frames impose lower overheads than normal frames (1500
MTU) by reducing the overall number of individual frames sent from source to destination.
Not only does this reduce the number of headers needed to move the data, CPU load is
also lessened due to a decrease in packet processing by routers and end devices.

1.2 Maximum segment size (MSS)

The Maximum Segment Size (MSS) is a parameter of the options field of the TCP header
that specifies the largest amount of data, specified in bytes, that a computer or
communications device can receive in a single TCP segment3. This value is specified in the
TCP SYN packet during TCP’s three-way handshake and is set permanently for the current
session.

The MSS must be set to a value equal to the largest IP datagram (minus IP and TCP
headers) that the host can handle in order to avoid fragmentation. Note that lowering the
MSS will remove fragmentation, however it will impose larger overhead.

Lab 13: Impact of MSS on Throughput

 Page 5

With highspeed networks, using half a dozen or so small probes to see how the network
responds wastes a huge amount of bandwidth. Similarly, when packet loss is detected,
the rate is decreased by a factor of two. TCP can only recover slowly from this rate
reduction. The speed at which the recovery occurs is proportional to the MTU. Thus, it is
recommended to use large frames.

In this lab, we show and compare the effect of jumbo frames versus standard frames in a
WAN that incurs packet losses.

2 Lab topology

Let’s get started with creating a simple Mininet topology using Miniedit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 3. Lab topology.

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by
clicking on Miniedit’s shortcut. When prompted for a password, type password.

Figure 4. Miniedit shortcut.

Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 13.mn topology file and click on Open.

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Lab 13: Impact of MSS on Throughput

 Page 6

Figure 5. Miniedit’s Open dialog.

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of Miniedit’s window
to start the emulation.

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting hosts h1 and h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host.

Lab 13: Impact of MSS on Throughput

 Page 7

Figure 7. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.2. This command tests the connectivity between host
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 8. Connectivity test using ping command.

2.2 Emulating 10 Gbps WAN with packet loss

This section emulates a WAN with packet loss. We will first set the bandwidth between
host 1 and host h2 to 10 Gbps. Then, we will emulate a 1% packet loss and measure the
throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 13: Impact of MSS on Throughput

 Page 8

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 1% packet loss on switch S1’s s1-eth2
interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1%

Figure 10. Adding 1% packet loss to switch S1’s s1-eth2 interface.

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the
same terminal, type the command below. This command sets the bandwidth to 10 Gbps
on switch S1’s s1-eth2 interface. The tbf parameters are the following:

• rate: 10gbit

• burst: 5,000,000

• limit: 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000

limit 15000000

Figure 11. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface.

Lab 13: Impact of MSS on Throughput

 Page 9

Step 4. The user can now verify the rate limit configuration by using the iperf3 tool to
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in

host h2’s terminal:

iperf3 -s

Figure 12. Host h2 running iPerf3 as server.

Step 5. Now to launch iPerf3 in client mode again by running the command iperf3 -c

10.0.0.2 in host h1’s terminal:

iperf3 -c 10.0.0.2 `

Figure 13. iPerf3 throughput test.

Note the measured throughput now is approximately 7.99 Gbps, which is different than
the value assigned in the tbf rule (10 Gbps). In the next section, the test is repeated but
using a higher MSS.

Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

Lab 13: Impact of MSS on Throughput

 Page 10

3 Modifying maximum transmission unit (MTU)

As explained previously, jumbo frames offer throughput improvements in networks
incurring packet losses. In this section, the user will change the MTU of a network
interface in Linux.

3.1 Identifying interface’s current MTU

Step 1. To identify the MTU of a network interface of a device, the ifconfig is used. On
host h1’s terminal, type in the following command:

ifconfig

Figure 14. Identifying interface’s MTU.

As shown in Figure 14, the interface h1-eth0 has an MTU of 1500 bytes. The same steps
can be performed on host h2’s interface.

Step 2. In order to identify the MTU on the switches’ interfaces, launch the Client’s
terminal located on the Desktop, and type in the following command:

ifconfig

Lab 13: Impact of MSS on Throughput

 Page 11

Figure 15. Identifying switches’ interfaces’ MTU.

Each switch in the topology has two interfaces: switch S1 has s1-eth1 and s1-eth2, switch
S2 interfaces are s2-eth1 and s2-eth2. The MTU value on all interfaces are 1500 bytes.

3.2 Modifying MTU values on all interfaces

To modify the MTU of a network interface use the following command:

Lab 13: Impact of MSS on Throughput

 Page 12

ifconfig <iface> mtu <bytes>

Step 1. To change the MTU to 9000 bytes, on host h1’s terminal, type in the following
command:

ifconfig h1-eth0 mtu 9000

Figure 17. Changing host h1’s interface MTU.

Step 2. To change the MTU to 9000 bytes, on host h2’s terminal, type in the following
command:

ifconfig h2-eth0 mtu 9000

Figure 18. Changing host h2’s interface MTU.

Step 3. Similarly, the MTU values of switch S1 and switch S2’s interfaces must be changed
to 9000 bytes. In order to modify the MTU values, type the following command on the
Client’s terminal. When prompted for a password, type password and hit Enter.

sudo ifconfig s1-eth1 mtu 9000

sudo ifconfig s1-eth2 mtu 9000

sudo ifconfig s2-eth1 mtu 9000

sudo ifconfig s2-eth2 mtu 9000

Figure 19. Changing MTU values on the switches.

Lab 13: Impact of MSS on Throughput

 Page 13

Step 4. The user can now verify the effect of modifying the MTU values on the switches
and the effect of MSS by using the iperf3 tool to measure throughput. To launch iPerf3
in server mode, run the command iperf3 -s in host h2’s terminal:

iperf3 -s

Figure 20. Host h2 running iPerf3 as server.

Step 5. To launch iPerf3 in client mode type the command below. The -M option is used
to specify the MSS to be sent in the TCP handshake.

iperf3 -c 10.0.0.2 -M 9000

Figure 21. iPerf3 throughput test with a 9000 MSS value.

Notice the measured throughput now is approximately 10 Gbps, which is similar to the
value assigned in the tbf rule (10 Gbps).

Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see
the throughput results in the server side too. The summarized data on the server is similar
to that of the client side’s and must be interpreted in the same way.

This concludes Lab 13. Stop the emulation and then exit out of MiniEdit.

Lab 13: Impact of MSS on Throughput

 Page 14

References

1. Huh, Eui-Nam, and Hyunseung Choo, “Performance enhancement of TCP in high-
speed networks,” Information Sciences 178, no. 2 (2008), 352-362

NETWORK TOOLS AND PROTOCOLS

Lab 14: Router’s Bufferbloat

Document Version: 07-07-2019

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 14: Router’s Bufferbloat

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to bufferbloat ... 3

1.1 Packet delays .. 4

1.2 Bufferbloat ... 4

2 Lab topology.. 6

2.1 Starting host h1, host h2, and host h3 ... 7

2.2 Emulating high-latency WAN ... 8

2.4 Testing connection ... 9

3 Testing throughput on a network with a small buffer-size switch 10

3.1 Setting switch S1’s buffer size to 100⋅MTU ... 10

3.2 Bandwidth-delay product (BDP) and hosts’ buffer size 11

3.3 Throughput test.. 13

4 Testing throughput on a network with a 1⋅BDP buffer-size switch.......................... 13

4.1 Setting switch S1’s buffer size to 1⋅BDP ... 13

4.2 Throughput and latency tests .. 14

5 Testing throughput on a network with a large buffer-size switch 19

5.1 Setting switch S1’s buffer size to 10⋅BDP ... 19

5.2 Throughput and latency tests .. 20

References .. 25

Lab 14: Router’s Bufferbloat

 Page 3

Overview

This lab discusses bufferbloat, a condition that occurs when a router or network device
buffers too much data, leading to excessive delays. The lab describes the steps to conduct
throughput tests on switched networks with different buffer sizes. Note that as the
buffering process is similar in routers and switches, both terms are used interchangeably
in this lab.

Objectives

By the end of this lab, students should be able to:

1. Identify and describe the components of end-to-end delay.
2. Understand the buffering process in a router.
3. Explain the concept of bufferbloat.
4. Visualize queue occupancy in a router.
5. Analyze end-to-end delay and describe how queueing delay affects end-to-end

delay on networks with large routers’ buffer size.
6. Modify routers’ buffer size to solve the bufferbloat problem.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client1 machine.

Device

Account

Password

Client1 admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to bufferbloat.
2. Section 2: Lab topology.
3. Section 3: Testing throughput on a network with a small buffer-size switch.
4. Section 4: Testing throughput on a network with a 1⋅BDP buffer-size switch.
5. Section 5: Testing throughput on a network with a large buffer-size switch.

1 Introduction to bufferbloat

Lab 14: Router’s Bufferbloat

 Page 4

1.1 Packet delays

As a packet travels from a sender to a receiver, it experiences several types of delays at
each node (router / switch) along the path. The most important of these delays are the
processing delay, queuing delay, transmission delay, and propagation delay (see Figure
1)1.

Sender Receiver

Bottleneck bandwidth link (btlbw) Buffer
Router

PropagationTransmission

Queueing (waiting for

transmission)

Processing

Figure 1. Delay components: processing, queueing, transmission, and propagation delays.

• Processing delay: The time required to examine the packet’s header and
determine where to direct the packet. For high-speed routers, this delay is on the
order of microseconds or less.

• Transmission delay: The time required to put the bits on the wire. It is given by the
packet size (in bits) divided by the bandwidth of the link (in bps). For example, for
a 10 Gbps and 1,500-byte packet (12,000 bits), the transmission time is T = 12,000
/ 10x109 = 0.0012 milliseconds or 1.2 microseconds.

• Queueing delay: The time a packet waits for transmission onto the link. The length
of the queuing delay of a packet depends on the number of earlier-arriving packets
that are queued and waiting for transmission onto the link. Queuing delays can be
on the order of microseconds to milliseconds.

• Propagation delay: Once a bit is placed into the link, it needs to propagate to the
other end of the link. The time required to propagate across the link is the
propagation delay. In local area networks (LANs) and datacenter environments,
this delay is small (microseconds to few milliseconds); however, in Wide Area
Networks (WANs) / long-distance connections, the propagation delay can be on
the order of hundreds of milliseconds.

1.2 Bufferbloat

In modern networks composed of high-speed routers and switches, the processing and
transmission delays may be negligible. The propagation delay can be considered as a
constant (i.e., it has a fixed value). Finally, the dynamics of the queues in routers results
in varying queueing delays. Ideally, this delay should be minimized.

Lab 14: Router’s Bufferbloat

 Page 5

An important consideration that affects the queuing delay is the router’s buffer size.
While there is no consensus on how large the buffer should be, the rule of thumb has
been that the amount of buffering (in bits) in a router’s port should equal the average
Round-Trip Time (RTT) (in seconds) multiplied by the capacity C (in bits per seconds) of
the port2, 3:

Router′s buffer size = C ⋅ RTT [bits]

A large-enough router’s buffer size is essential for networks transporting big flows, as it
absorbs transitory packet bursts and prevents losses. However, if a buffer size is
excessively large, queues can be formed and substantial queueing delay be observed. This
high latency produced by excess buffering of packets is referred to as bufferbloat.

The bufferbloat problem is caused by routers with large buffer size and end devices
running TCP congestion control algorithms that constantly probe for additional
bandwidth4. Consider Figure 2, where RTprop refers to the end-to-end propagation delay
from sender to receiver and then back (round-trip), and BDP refers to the bandwidth-
delay product given by the product of the capacity of the bottleneck link along the path
and RTprop. RTprop is a constant that depends on the physical distance between end devices.
In the application limited region, the throughput increases as the amount of data
generated by the application layer increases, while the RTT remains constant. The
pipeline between sender and receiver becomes full when the inflight number of bits is
equal to BDP, at the edge of the bandwidth limited region. Note that traditional TCP
congestion control (e.g., Reno, Cubic, HTCP) will continue to increase the sending rate
(inflight data) beyond the optimal operating point, as they probe for more bandwidth.
This process is known as TCP additive increase rule. Since no packet loss is noted in the
bandwidth limited region despite the increasing TCP rate (which is absorbed by the
router’s buffer), TCP keeps increasing the sending rate / inflight data, until eventually the
router’s buffer is full and a packet is drop (the amount of bits in the network is equal to
BDP plus the buffer size of the router). Beyond the application limited region, the increase
in queueing delay causes the bufferbloat problem.

Lab 14: Router’s Bufferbloat

 Page 6

R
T

T
T

h
ro

u
g

h
p

u
t

Inflight data

btlbw

RTprop

Buffer limitedBandwidth limitedApp. limited

Optimal operating point

Operating point of traditional congestion control algorithms

BDP = RTprop · btlbw BDP + buffer size

Packet loss
Bufferbloat starts:

queueing delay increases

at router’s queue

Optimal operating point

Operating point of

traditional algorithms

Figure 2. Throughput and RTT as a function of inflight data5.

In this lab, the reader will conduct experiments and measure the throughput and RTT
under different network conditions. By modifying a router’s buffer size, the bufferbloat
problem will be observed.

2 Lab topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology
uses 10.0.0.0/8 which is the default network assigned by Mininet.

Figure 3. Lab topology.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

Lab 14: Router’s Bufferbloat

 Page 7

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 4. MiniEdit shortcut.

Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate
the Lab 14.mn topology file and click on Open.

Figure 5. MiniEdit’s Open dialog.

Step 3. Before starting the measurements between end hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to start
the emulation.

Figure 6. Running the emulation.

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.

2.1 Starting host h1, host h2, and host h3

Lab 14: Router’s Bufferbloat

 Page 8

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host
h1 and allows the execution of commands on that host.

Figure 7. Opening a terminal on host h1.

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On host h1,
type the command ping 10.0.0.3. This command tests the connectivity between host
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful
connectivity test.

Figure 8. Connectivity test using ping command.

2.2 Emulating high-latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the
Linux terminal icon.

Lab 14: Router’s Bufferbloat

 Page 9

Figure 9. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password, type
password and hit Enter. This command introduces 10ms delay to switch S1’s s1-eth2

interface.

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms

Figure 10. Adding delay of 10ms to switch S1’s s1-eth2 interface.

2.4 Testing connection

To test connectivity, you can use the command ping.

Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c.
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets
to host h3 (10.0.0.3), successfully receiving responses back.

Figure 11. Output of ping 10.0.0.3 command.

Lab 14: Router’s Bufferbloat

 Page 10

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop
the test, press Ctrl+c.

Figure 12. Output of ping 10.0.0.3 command.

The result above indicates that all four packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output
above verifies that delay was injected successfully, as the RTT is approximately 20ms.

3 Testing throughput on a network with a small buffer-size switch

In this section, you are going to change the switch S1’s buffer size to 100 ⋅MTU and
emulate a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then,
you will test the throughput between host h1 and host h3. In this section, the MTU is 1600
bytes, thus the tbf limit value will be set to 100 ⋅ MTU = 160,000 bytes.

3.1 Setting switch S1’s buffer size to 100⋅MTU

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and

hit Enter.

• rate: 1gbit

• burst: 500,000

• limit: 160,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000

limit 160000

Lab 14: Router’s Bufferbloat

 Page 11

Figure 13. Limiting rate to 1 Gbps and setting the buffer size to 100⋅MTU on switch S1’s interface.

3.2 Bandwidth-delay product (BDP) and hosts’ buffer size

In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency)
is 20ms.

BW = 1,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 1,000,000,000 · 0.02 = 20,000,000 bits
 = 2,500,000 bytes ≈ 2.5 Mbytes

1 Mbyte = 10242 bytes

BDP = 2.5 Mbytes = 2.5 · 10242 bytes = 2,621,440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer
size on the switch to 10·BDP. To ensure that the bottleneck is not the hosts’ buffers, we
configure the buffers to 10·BDP (26,214,400).

Step 1. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled (2·10·BDP) as Linux only allocates
half of the assigned value.

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Figure 14. Receive window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when

Lab 14: Router’s Bufferbloat

 Page 12

applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 15. Send window change in sysctl.

Step 3. Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 16. Receive window change in sysctl.

Step 4. To change the current send-window size value(s), use the following command on
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the
assigned value.

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Figure 17. Send window change in sysctl.

The returned values are measured in bytes. 10,240 represents the minimum buffer size
that is used by each TCP socket. 87,380 is the default buffer which is allocated when
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be
allocated for a TCP socket.

Lab 14: Router’s Bufferbloat

 Page 13

3.3 Throughput test

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 18. Starting iPerf3 server on host h3.

Step 2. Type the following iPerf3 command in host h1’s terminal.

iperf3 -c 10.0.0.3

Figure 19. Running iPerf3 client on host h1.

The figure above shows the iPerf3 test output report. The average achieved throughput
is 74.1 Mbps (sender) and 72.2 Mbps (receiver), and the number of retransmissions is 582.
Note that the maximum throughput (1 Gbps) was not achieved. This is due to having a
small buffer on the switch (100 · MTU).

4 Testing throughput on a network with a 1⋅BDP buffer-size switch

In this section, you are going to change the switch S1’s buffer size to 1⋅BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then, you will
test the throughput between host h1 and host h3. The BDP is 2,621,440 bytes, thus the
tbf limit value will be set to 2,621,440.

4.1 Setting switch S1’s buffer size to 1⋅BDP

Lab 14: Router’s Bufferbloat

 Page 14

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 1gbit

• burst: 500,000

• limit: 2,621,440

sudo tc qdisc change dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000

limit 2621440

Figure 20. Limiting rate to 1 Gbps and setting the buffer size to 1⋅BDP on switch S1’s interface.

4.2 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 21. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type password and hit Enter.

sudo plot_q.sh s1-eth2

Figure 22. Plotting the queue occupancy on switch S1’s s1-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s1-eth2 interface on switch S1, the queue
occupancy is constantly 0.

Lab 14: Router’s Bufferbloat

 Page 15

Figure 23. Queue occupancy on switch S1’s s1-eth2 interface.

Step 3. In host h1, create a directory called 1BDP and navigate into it using the following
command:

mkdir 1BDP && cd 1BDP

Figure 24. Creating and navigating into directory 1BDP.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 25. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Figure 26. Typing ping command on host h2.

Lab 14: Router’s Bufferbloat

 Page 16

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 27. Queue occupancy on switch S1’s s1-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 · 106, which is the
maximum buffer size we configure on the switch.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command.

plot_iperf.sh out.json && cd results

Figure 28. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Figure 29. Opening the throughput.pdf file.

Lab 14: Router’s Bufferbloat

 Page 17

Figure 30. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is approximately 900 Mbps. We can see now that the maximum
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 1BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

Figure 31. Opening the RTT.pdf file.

Figure 32. Measured round-trip time.

Lab 14: Router’s Bufferbloat

 Page 18

The graph above shows that the RTT was between 25000 microseconds (25ms) and 40000
microseconds (40ms). The output shows that there is no bufferbloat problem as the
average latency is slightly greater than the configured delay (20ms).

Step 11. Close the RTT.pdf window then open the congestion window (cwnd) file using
the command below.

xdg-open cwnd.pdf

Figure 33. Opening the cwnd.pdf file.

Figure 34. Congestion window evolution.

The graph above shows the evolution of the congestion window which peaked at 4.5
Mbytes. In the next test, we see how buffer size on the switch affect the congestion
window evolution.

Step 12. Close the cwnd.pdf window then go back to h2’s terminal to see the ping output.

Lab 14: Router’s Bufferbloat

 Page 19

Figure 35. ping test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 25.630, 32.669, 64.126, and 4.359 milliseconds, respectively. The output
also verifies that there is no bufferbloat problem as the average latency (32.669) is slightly
greater than the configured delay (20ms).

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

5 Testing throughput on a network with a large buffer-size switch

In this section, you are going to change the switch S1’s buffer size to 10⋅BDP and emulate
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then, you will
test the throughput between host h1 and host h3. The BDP is 2,621,440 bytes, thus the
tbf limit value will be set to 26,214,400.

5.1 Setting switch S1’s buffer size to 10⋅BDP

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s
terminal, type the command below. When prompted for a password, type password and
hit Enter.

• rate: 1gbit

• burst: 500,000

• limit: 26,214,400

Lab 14: Router’s Bufferbloat

 Page 20

sudo tc qdisc change dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst

500000 limit 26214400

Figure 36. Limiting rate to 1 Gbps and setting the buffer size to 10⋅BDP on switch S1’s interface.

5.2 Throughput and latency tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal.

iperf3 -s

Figure 37. Starting iPerf3 server on host h3.

Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in
real-time. When prompted for a password, type password and hit Enter.

sudo plot_q.sh s1-eth2

Figure 38. Plotting the queue occupancy on switch S1’s s1-eth2 interface.

A new window opens that plots the queue occupancy as shown in the figure below. Since
there are no active flows passing through s1-eth2 interface on switch S1, the queue
occupancy is constantly 0.

Lab 14: Router’s Bufferbloat

 Page 21

Figure 39. Queue occupancy on switch S1’s s1-eth2 interface.

Step 3. Exit from 1BDP/results directory, then create a directory 10BDP and navigate into
it using the following command.

cd ../../ && mkdir 10BDP && cd 10BDP

Figure 40. Creating and navigating into directory 1BDP.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The
-J option is used to display the output in JSON format. The redirection operator > is used
to store the JSON output into a file.

iperf3 -c 10.0.0.3 -t 90 -J > out.json

Figure 41. Running iPerf3 client on host h1.

Step 5. Type the following ping command in host h2’s terminal without executing it.

ping 10.0.0.3 -c 90

Figure 42. Typing ping command on host h2.

Lab 14: Router’s Bufferbloat

 Page 22

Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2
terminal. Then, go back to the queue plotting window and observe the queue occupancy.

Figure 43. Queue occupancy on switch S1’s s1-eth2 interface.

The graph above shows that the queue occupancy peaked at 2.5 ⋅107, which is the
maximum buffer size we configure on the switch. Note that the buffer is almost always
fully occupied, which will lead to an increase in the latency as demonstrated next.

Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting
the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command:

plot_iperf.sh out.json && cd results

Figure 44. Generate plotting files and entering the results directory.

Step 9. Open the throughput file using the command below on host h1.

xdg-open throughput.pdf

Figure 45. Opening the throughput.pdf file.

Lab 14: Router’s Bufferbloat

 Page 23

Figure 46. Measured throughput.

The figure above shows the iPerf3 test output report for the last 90 seconds. The average
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also
achieved (1 Gbps) when we set the switch’s buffer size to 10⋅BDP.

Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using
the command below.

xdg-open RTT.pdf

Figure 47. Opening the RTT.pdf file.

Figure 48. Measured Round-Trip Time.

Lab 14: Router’s Bufferbloat

 Page 24

The graph above shows that the RTT increased from approximately 50000 microseconds
(50ms) to 230000 microseconds (230ms). The output above shows that there is a
bufferbloat problem as the average latency is significantly greater than the configured
delay (20ms). Since the buffer on the switch is accommodating a large congestion window,
latency is increased as new incoming packets have to wait in the highly occupied queue.

Step 11. Close the RTT.pdf window then open the congestion window (cwnd) file using
the command below.

xdg-open cwnd.pdf

Figure 49. Opening the cwnd.pdf file.

Figure 50. Congestion window evolution.

The graph above shows the evolution of the congestion window. Note how the
congestion window peaked at 25.2 Mbytes compared to the previous test where it
peaked at approximately 4.5 Mbytes. Since the queue size was configured with a large
value, TCP continued to increase the congestion window as no packet losses were inferred.

Step 12. Close the cwnd.pdf window then go back to h2’s terminal to see the ping output.

Lab 14: Router’s Bufferbloat

 Page 25

Figure 51. ping test result.

The result above indicates that all 90 packets were received successfully (0% packet loss)
and that the minimum, average, maximum, and standard deviation of the Round-Trip
Time (RTT) were 34.239, 167.046, 219.647, and 73.715 milliseconds, respectively. The
output also verifies that there is a bufferbloat problem as the average latency (167.046)
is significantly greater than the configured delay (20ms).

Step 13. To stop iperf3 server in host h3 press Ctrl+c.

This concludes Lab 14. Stop the emulation and then exit out of MiniEdit.

References

1. J. Kurose, K. Ross, “Computer networking, a top-down approach,” 7th Edition,
Pearson, 2017.

2. C. Villamizar, C. Song, “High performance TCP in ansnet,” ACM Computer
Communications Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.

3. R. Bush, D. Meyer, “Some internet architectural guidelines and philosophy,”
Internet Request for Comments, RFC Editor, RFC 3439, Dec. 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3439.txt.

4. J. Gettys, K. Nichols, “Bufferbloat: dark buffers in the internet,” Communications
of the ACM, vol. 9, no. 1, pp. 57-65, Jan. 2012.

Lab 14: Router’s Bufferbloat

 Page 26

5. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, vol 60, no. 2, pp. 58-66, Feb.
2017.

