
 
 
 

NETWORK TOOLS AND PROTOCOLS 
 

Lab 1: Introduction to Mininet 
 

 
Document Version:  06-14-2019 

 
 

 
 

 
 
 
 
 
 

Award 1829698 
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput 

Networks for Big Science Data Transfers” 
 

 
 
 

  



    
Lab 1:  Introduction to Mininet 

  Page 2  

Contents 
 
Overview ............................................................................................................................. 3 

Objectives............................................................................................................................ 3 

Lab settings ......................................................................................................................... 3 

Lab roadmap ....................................................................................................................... 3 

1 Introduction to Mininet .............................................................................................. 3 

2 Invoking Mininet using the CLI .................................................................................... 5 

2.1 Invoking Mininet using the default topology ....................................................... 5 

2.2 Testing connectivity ............................................................................................. 8 

3 Building and emulating a network in Mininet using the GUI ..................................... 9 

3.1 Building the network topology ............................................................................. 9 

3.2 Testing connectivity ........................................................................................... 11 

3.3 Automatic assignment of IP addresses .............................................................. 13 

3.4 Saving and loading a Mininet topology .............................................................. 15 

References ........................................................................................................................ 16 

 
  



    
Lab 1:  Introduction to Mininet 

  Page 3  

Overview 
 
This lab provides an introduction to Mininet, a virtual testbed used for testing network 
tools and protocols. It demonstrates how to invoke Mininet from the command-line 
interface (CLI) utility and how to build and emulate topologies using a graphical user 
interface (GUI) application. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand what Mininet is and why it is useful for testing network topologies. 
2. Invoke Mininet from the CLI. 
3. Construct network topologies using the GUI. 
4. Save/load Mininet topologies using the GUI. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to Mininet. 
2. Section 2: Invoking Mininet using the CLI. 
3. Section 3: Building and emulating a network in Mininet using the GUI. 

 
 
1 Introduction to Mininet 
 
Mininet is a virtual testbed enabling the development and testing of network tools and 
protocols. With a single command, Mininet can create a realistic virtual network on any 
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides 
an inexpensive solution and streamlined development running in line with production 
networks1. Mininet offers the following features: 
 

• Fast prototyping for new networking protocols. 
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• Simplified testing for complex topologies without the need of buying expensive 
hardware. 

• Realistic execution as it runs real code on the Unix and Linux kernels. 

• Open source environment backed by a large community contributing extensive 
documentation. 

 

 
Figure 1. Hardware network vs. Mininet emulated network. 

 
Mininet is useful for development, teaching, and research as it is easy to customize and 
interact with it through the CLI or the GUI. Mininet was originally designed to experiment 
with OpenFlow2 and Software-Defined Networking (SDN)3. This lab, however, only focuses 
on emulating a simple network environment without SDN-based devices. 
 
Mininet’s logical nodes can be connected into networks. These nodes are sometimes 
called containers, or more accurately, network namespaces. Containers consume 
sufficiently few resources that networks of over a thousand nodes have created, running 
on a single laptop. A Mininet container is a process (or group of processes) that no longer 
has access to all the host system’s native network interfaces. Containers are then assigned 
virtual Ethernet interfaces, which are connected to other containers through a virtual 
switch4. Mininet connects a host and a switch using a virtual Ethernet (veth) link. The veth 
link is analogous to a wire connecting two virtual interfaces, as illustrated below.  
 

 
Figure 2. Network namespaces and virtual Ethernet links.  

 
Each container is an independent network namespace, a lightweight virtualization feature 
that provides individual processes with separate network interfaces, routing tables, and 
Address Resolution Protocol (ARP) tables. 
Mininet provides network emulation opposed to simulation, allowing all network 
software at any layer to be simply run as is; i.e. nodes run the native network software of 

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network
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the physical machine. In a simulator environment on the other hand, applications and 
protocol implementations need to be ported to run within the simulator before they can 
be used4. 
 
 
2 Invoking Mininet using the CLI 
 
The first step to start Mininet using the CLI is to start a Linux terminal. 
 
 
2.1 Invoking Mininet using the default topology 

 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 3. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. To start a minimal topology, enter the command sudo mn at the CLI. When 
prompted for a password, type password and hit enter. Note that the password will not 
be visible as you type it. 
 

 
Figure 4. Starting Mininet using the CLI. 

 



    
Lab 1:  Introduction to Mininet 

  Page 6  

The above command starts Mininet with a minimal topology, which consists of a switch 
connected to two hosts as shown below.  
 

 
Figure 5. Mininet’s default minimal topology. 

 
When issuing the sudo mn command, Mininet initializes the topology and launches its 
command line interface which looks like this:  
 
mininet> 

 
Step 3. To display the list of Mininet CLI commands and examples on their usage, type the 
command help in the Mininet CLI: 
 

 
Figure 6. Mininet’s help command. 

 
Step 4. To display the available nodes, type the command nodes: 
 

 
Figure 7. Mininet’s nodes command. 
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The output of this command shows that there are two hosts (host h1 and host h2) and a 
switch (s1). 
 
Step 5. It is useful sometimes to display the links between the devices in Mininet to 
understand the topology. Issue the command net in the Mininet CLI to see the available 
links. 
 

 
Figure 8. Mininet’s net command. 

 
The output of this command shows that: 
 

1. Host h1 is connected using its network interface h1-eth0 to the switch on 
interface s1-eth1. 

2. Host h2 is connected using its network interface h2-eth0 to the switch on 
interface s1-eth2. 

3. Switch s1: 
a. has a loopback interface lo. 
b. connects to h1-eth0 through interface s1-eth1. 
c. connects to h2-eth0 through interface s1-eth2. 

 
Mininet allows you to execute commands at a specific device. To issue a command for a 
specific node, you must specify the device first, followed by the command.  
 
Step 6. Issue the command h1 ifconfig.  
 

 
Figure 9. Output of h1 ifconfig command. 
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This command executes the ifconfig Linux command on host h1. The command shows 
host h1’s interfaces. The display indicates that host h1 has an interface h1-eth0 configured 
with IP address 10.0.0.1, and another interface lo configured with IP address 127.0.0.1 
(loopback interface). 
 
 
2.2 Testing connectivity 

 
Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1 
and host h2 respectively. To test connectivity between them, you can use the command 
ping. The ping command operates by sending Internet Control Message Protocol (ICMP) 
Echo Request messages to the remote computer and waiting for a response. Information 
available includes how many responses are returned and how long it takes for them to 
return.  
 
Step 1. On the CLI, type h1 ping 10.0.0.2. This command tests the connectivity 
between host h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a 
successful connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2) and 
successfully received the expected responses. 
 

 
Figure 10. Connectivity test between host h1 and host h2. 

 
Step 2. Stop the emulation by typing exit. 
 

 
Figure 11. Stopping the emulation using exit. 
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The command sudo mn -c is often used on the Linux terminal (not on the Mininet CLI) 
to clean a previous instance of Mininet (e.g., after a crash). 

 
 
3 Building and emulating a network in Mininet using the GUI 
 
In this section, you will use the application MiniEdit5 to deploy the topology illustrated 
below. MiniEdit is a simple GUI network editor for Mininet. 
 

 
Figure 12. Lab topology. 

 
 
3.1 Building the network topology 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 13. MiniEdit Desktop shortcut. 

 
MiniEdit will start, as illustrated below. 
 

 
Figure 14. MiniEdit Graphical User Interface (GUI). 
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The main buttons are: 
 

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard 
after selecting the device removes it from the topology. 

2. Host: allows addition of a new host to the topology. After clicking this button, click 
anywhere in the blank canvas to insert a new host. 

3. Switch: allows addition of a new switch to the topology. After clicking this button, 
click anywhere in the blank canvas to insert the switch. 

4. Link: connects devices in the topology (mainly switches and hosts). After clicking 
this button, click on a device and drag to the second device to which the link is to 
be established. 

5. Run: starts the emulation. After designing and configuring the topology, click the 
run button. 

6. Stop: stops the emulation. 
 
Step 2. To build the topology of Figure 12, two hosts and one switch must be deployed. 
Deploy these devices in MiniEdit, as shown below.  
 

 
Figure 15. MiniEdit’s topology. 

 
Use the buttons described in the previous step to add and connect devices. The 
configuration of IP addresses is described in Step 3.  
 
Step 3. Configure the IP addresses at host h1 and host h2. Host h1’s IP address is 
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the 
right click and selecting properties on the device. For example, host h2 is assigned the IP 
address 10.0.0.2/8 in the figure below. 
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Figure 16. Configuration of a host’s properties. 

 
 
3.2 Testing connectivity 

 
Before testing the connection between host h1 and host h2, the emulation must be 
started.  
 
Step 1. Click on the Run button to start the emulation. The emulation will start and the 
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.  
 

 
Figure 17. Starting the emulation. 

 
Step 2. Open a terminal on host h1 by holding the right click on host h1 and selecting 
Terminal. This opens a terminal on host h1 and allows the execution of commands on the 
host h1. Repeat the procedure on host h2.  
 

 
Figure 18. Opening a terminal on host h1. 
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The network and terminals at host h1 and host h2 will be available for testing. 
 

 
Figure 19. Terminals at host h1 and host h2. 

 
Step 3. On host h1’s terminal, type the command ifconfig to display its assigned IP 
addresses. The interface h1-eth0 at host h1 should be configured with the IP address 
10.0.0.1 and subnet mask 255.0.0.0.  
 

 
Figure 20. Output of ifconfig command on host h1. 

 
Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address 
10.0.0.2 and subnet mask 255.0.0.0. 
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Step 4. On host h1’s terminal, type the command ping 10.0.0.2. This command tests 
the connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure 

below shows a successful connectivity test. Host h1 (10.0.0.1) sent six packets to host h2 
(10.0.0.2) and successfully received the expected responses. 
 

 
Figure 21. Connectivity test using ping command. 

 
Step 5. Stop the emulation by clicking on the Stop button. 
 

 
Figure 22. Stopping the emulation. 

 
 
3.3 Automatic assignment of IP addresses 

 
In the previous section, you manually assigned IP addresses to host h1 and host h2. An 
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default, 
Mininet uses automatic assignment), which is described in this section.  
 
Step 1. Remove the manually assigned IP address from host h1. Hold right click on host 
h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as 
shown below. Repeat the procedure on host h2.  
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Figure 23. Host h1 properties. 

 
Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this 
value to 15.0.0.0/8, and then press the OK button. 
 

 
Figure 24. Modification of the IP Base (network address and prefix length). 

 
Step 3. Run the emulation again by clicking on the Run button. The emulation will start 
and the buttons of the MiniEdit panel will be disabled. 
 
Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting 
Terminal. 
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Figure 25. Opening a terminal on host h1. 

 
Step 5. Type the command ifconfig to display the IP addresses assigned to host h1. The 
interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask 255.0.0.0.  
 

 
Figure 26. Output of ifconfig command on host h1. 

 
You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host 
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address 
15.0.0.2 and subnet mask 255.0.0.0.  
 
Step 6. Stop the emulation by clicking on Stop button. 
 
 
3.4 Saving and loading a Mininet topology 

 
It is often useful to save the network topology, particularly when its complexity increases. 
MiniEdit enables you to save the topology to a file.  
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Step 1. To save your topology, click on File then Save. Provide a name for the topology 
and save on your machine. 
 

 
Figure 27. Saving the topology. 

 
Step 2. To load the topology, click on File then Open. Locate the topology file and click on 
Open. The topology will be loaded again to MiniEdit. 
 

 
Figure 28. Opening a topology. 

 
The upcoming labs’ topologies are already built and stored in the folder 
/home/admin/lab_topologies located in the Client’s home directory. The Open dialog is 
used to avoid manually rebuilding each lab’s topology. 
 
This concludes Lab 1. Stop the emulation and then exit out of MiniEdit and Linux terminal.  
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Overview 
 
This lab briefly introduces iPerf3 and explains how it can be used to measure and test 
network throughput in a designed network topology. It demonstrates how to invoke both 
client-side and server-side options from the command line utility. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand throughput and how it differs from bandwidth in network systems. 
2. Create iPerf3 tests with various settings on a designed network topology. 
3. Understand and analyze iPerf3’s test output. 
4. Visualize iPerf3’s output using a custom plotting script. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to iPerf3. 
2. Section 2: Lab topology. 
3. Section 3: Using iPerf3 (client and server commands). 
4. Section 4: Plotting iPerf3’s results. 

 
 
1 Introduction to iPerf 
 
Bandwidth is a physical property of a transmission media that depends on factors such as 
the construction and length of wire or fiber. To network engineers, bandwidth is the 
maximum data rate of a channel, a quantity measured in bits per second (bps)1. Having a 
high-bandwidth link does not always guarantee high network performance. In fact, 
several factors may affect the performance such as latency, packet loss, jitter, and others. 
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In the context of a communication session between two end devices along a network path, 
throughput is the rate in bps at which the sending process can deliver bits to the receiving 
process. Because other sessions will be sharing the bandwidth along the network path, 
and because these other sessions will recur, the available throughput can fluctuate with 
time2. Note, however, that sometimes the terms throughput and bandwidth are used 
interchangeably. 
 
iPerf3 is a real-time network throughput measurement tool. It is an open source, cross-
platform client-server application that can be used to measure the throughput between 
the two end devices. A typical iPerf3 output contains a timestamped report of the amount 
of data transferred and the throughput measured. 
 

 
Figure 1. Throughput measurement with iPerf3. 

 
Measuring throughput is particularly useful when experiencing network bandwidth issues 
such as delay, packet loss, etc. iPerf3 can operate on Transmission Control Protocol (TCP), 
User Datagram Protocol (UDP), and Stream Control Transmission Protocol (SCTP).  
 
In iPerf3, the user can set client and server configurations via options and parameters and 
can create data flows to measure the throughput between the two end hosts in a 
unidirectional or bidirectional way. iPerf3 outputs a timestamped report of the amount 
of data transferred and the throughput measured3. 
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet. 
  

 
Figure 2. Mininet’s default minimal topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
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Figure 3. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 2.mn topology file in the default directory, /home/admin/lab_topologies, and 
click on Open. 
 

 
Figure 4. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 5. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
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2.1 Starting host h1 and host h2 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 

Figure 6. Opening a terminal on host h1. 

 
Step 2. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 7. Connectivity test using ping command. 

 
The figure above indicates that there is connectivity between host h1 and host h2. Thus, 
we are ready to start the throughput measurement process.  
 
 
3 Using iPerf3 (client and server commands) 
 
Since the initial setup and configuration are done, it is time to start a simple throughput 
measurement. The user interacts with iPerf3 using the iperf3 command. The basic 
iperf3 syntax used on both the client and the server is as follows: 
 
iperf3 [-s|-c] [ options ]          
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3.1 Starting client and server 

 
Step 1. Hold the right-click on host h2 and select Terminal. This opens the terminal of host 
h2 and allows the execution of commands on that host.  
 

 

Figure 8. Opening a terminal on host h2. 

 
Step 2. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s 
terminal as shown in the figure below: 
 
iperf3 -s          

 

 
Figure 9. Host h2 running iPerf3 server. 

 
The parameter -s in the command above indicates that the host is configured as a server. 
Now, the server is listening on port 5201 waiting for incoming connections. 
 
Step 3. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in 
host h1’s terminal as shown in the figure below: 
 
iperf3 -c 10.0.0.2        
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Figure 10. Host h1 running iPerf3 as client.  

 

The parameter -c in command above indicates that host h1 is configured as a client. The 
parameter 10.0.0.2 is the server’s (host h2) IP address. Once the test is completed, a 
summary report on both the client and the server is displayed containing the following 
data: 
 

• ID: identification number of the connection.  

• Interval: time interval to periodically report throughput. By default, the time 
interval is 1 second. 

• Transfer: how much data was transferred in each time interval. 

• Bitrate: the measured throughput in in each time interval.  

• Retr: the number of TCP segments retransmitted in each time interval. This field 
increases when TCP segments are lost in the network due to congestion or 
corruption. 

• Cwnd: indicates the congestion windows size in each time interval. TCP uses this 
variable to limit the amount of data the TCP client can send before receiving the 
acknowledgement of the sent data. 

 
The summarized data, which starts after the last dashed line, shows the total amount of 
transferred data is 52.1 Gbyte and the throughput 44.8 Gbps.  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too. The summarized data on the server is similar 
to that of the client side’s and must be interpreted in the same way.  
 
 
3.2 Setting transmitting time period 

 
Setting the transmission time period is configured solely on the client. To change the 
default transmission time, apply the following steps: 
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Step 1. Start the iPerf3 server on host h2. 
 
iperf3 -s          

 

 
Figure 11. Host h2 running iPerf3 as server. 

 
Step 2. Start the iPerf3 client with the -t option followed by the number of seconds. 
 
iperf3 -c 10.0.0.2 -t 5        

 

 
Figure 12. Host h1 transmitting for 5 seconds. 

 
The above command starts an iPerf3 client for a 5-second time period transmitting at an 
average rate of 44.5 Gbps. 
 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.3 Setting time interval 

 
In this test, the user will configure the client to perform a throughput test with 2-seconds 
reporting time interval on both the client and the server. Note the default 1-second 
interval period in Figure 12.  
 
The -i option allows setting the reporting interval time in seconds. In this case the value 
should be set to 2 seconds on both the client and the server. 
 
Step 1. Setting the interval value on the server (host h2’s terminal): 
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iperf3 -s -i 2         

 

 
Figure 13. Host h2 running iPerf3 as server. 

 
Step 2. Setting the interval value on the client (host h1’s terminal): 
 
iperf3 -c 10.0.0.2 -i 2        

 

 
Figure 14. Host h1 and host h2 reporting every 2 seconds. 

 
Note that the -i option can be specified differently on the client and the server. For 
example, if the -i option is specified with the value 3 on the client only, then the client 
will be reporting every 3 seconds while the server will be reporting every second (the 
default -i value). 
 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.4 Changing the number of bytes to transmit 

 
In this test, the client is configured to send a specific amount of data by setting the 
number of bytes to transmit. By default, iPerf3 performs the throughput measurement 
for 10 seconds. However, with this configuration, the client will keep sending packets until 
all the bytes specified by the user were sent.  
 
Step 1. Type the following command on host h2’s terminal to start the iPerf3 server.  
 
iperf3 -s          
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Figure 15. Host h2 running iPerf3 as server. 

 
Step 2. This configuration is only set on the client (host h1’s terminal) using the -n option 
as follows: 
 
iperf3 -c 10.0.0.2 -n 16G       

 
The -n option in the above command indicates the amount of data to transmit: 16 Gbytes. 
The user can specify other scale values, for example, 16M is used to send 16 Mbytes. 
 

 
Figure 16. Host h1 sending 16 Gbps of data. 

 
Note the total time spent for sending the 16 Gbytes of data is 3.11 seconds and not the 
default transmitting time used by iPerf3 (10 seconds). 
 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.5 Specifying the transport-layer protocol 

 
So far, the throughput measurements were conducted on the TCP protocol, which is the 
default configuration protocol. In order to change the protocol to UDP, the user must 
invoke the option -u on the client side. Similarly, the option --sctp is used for the SCTP 
protocol. iPerf3 automatically detects the transport-layer protocol on the server side. 
 
Step 1. Start the iPerf3 server on host h2. 
 
iperf3 -s          
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Figure 17. Host h2 running iPerf3 as server. 

 
Step 2. Specify UDP as the transport-layer protocol using the -u option as follows. 
 
iperf3 -c 10.0.0.2 -u       

 

 
Figure 18. Host h1 sending UDP datagrams. 

 
Once the test is completed, it will show the following summarized data: 
 

• ID, Interval, Transfer, Bitrate: Same as TCP. 

• Jitter: the difference in packet delay. 

• Lost/Total: indicates the number of lost datagrams over the total number sent to 
the server (and percentage).  

 
After the dashed lines, the summary is displayed, showing the total amount of transferred 
data (1.25 Mbytes) and the maximum achieved bandwidth (1.05 Mbps), over a time 
period of 10 seconds. The Jitter, which indicates in milliseconds (ms) the variance of time 
delay between data packets over a network, has a value of 0.010ms. Finally, the lost 
datagrams value is 0 (zero) and the total datagram which the server has received was 906, 
and thus, the loss rate is 0%. These values are reported on the server as well.  
 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
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3.6 Changing port number 

 
If the user wishes to measure throughput on a specific port, the -p option is used to 
configure both the client and the server to send/receive packets or datagrams on the 
specified port. 
 
Step 1. Start the iPerf3 server on host h2. Use the -p option to specify the listening port. 
 
iperf3 -s -p 3250            

 

 
Figure 19. Host h2 running iPerf3 as server on port 3250. 

 
Step 2. Start the iPerf3 client on host h1. Use the -p option to specify the server’s listening 
port. 
 
iperf3 -c 10.0.0.2 -p 3250            

 

 
Figure 20. Host h2 running on port 3250. 

 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.7 Export results to JSON file 

 
JSON (JavaScript Object Notation) is a lightweight data-interchange format. iPerf3 allows 
exporting the test results to a JSON file, which makes it easy for other applications to 
parse the file and interpret the results (e.g. plot the results). 
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Step 1. Start the iPerf3 server on host h2. 
 
iperf3 -s          

 

 
Figure 21. Host h2 running iPerf3 as server. 

 
Step 2. Start the iPerf3 client on host h1. Specify the -J option to display the output in 
JSON format. 
 
iperf3 -c 10.0.0.2 -J             

 

 
Figure 22. Host h1 using -J to output JSON to standard output (stdout). 

 
The -J option outputs JSON text to the screen through standard output (stdout) after the 
test is done (10 seconds by default). It is often useful to export the output to a file that 
can be parsed later by other programs. This can be done by redirecting the standard 
output to a file using the redirection operator in Linux >. 
 
iperf3 -c 10.0.0.2 -J > test_results.json      

 

 
Figure 23. Host h1 using -J to output JSON and redirecting stdout to file. 

 
After creating the JSON file, the ls command is used to verify that the file is created. The 
cat command can be used to display the file’s contents. 
 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too. 
 
 
3.8 Handle one client 

 
By default, an iPerf3 server keeps listening to incoming connections. To allow the server 
to handle one client and then stop, the -1 option is added to the server.  
 
Step 1. Start the iPerf3 server on host h2. Use the -1 option to accept only one client. 
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iperf3 -s -1               

 

 
Figure 24. Host h2 running a server with one connection only. 

 
Step 2. Start the iPerf3 client on host h1.  
 
iperf3 -c 10.0.0.2                

 

 
Figure 25. Host h1 running an iPerf3 client. 

 
After this test is finished, the server stops immediately. 
 
 
4 Plotting iPerf3 results 
 
In section 3.7, iPerf3’s result was exported to a JSON file to be processed by other 
applications. A script called plot_iperf.sh is installed and configured on the Client’s 

machine. It accepts a JSON file as input and generates PDF files plotting several variables 
produced by iPerf3. 
 
Step 1. Start the iPerf3 server on host h2. 
 
iperf3 -s          
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Figure 26. Host h2 running iPerf3 as server. 

 
Step 2. Start the iPerf3 client on host h1. Specify the -J option to produce the output in 
JSON format and redirect the output to the file test_results.json. Any data previously 
stored in this file will be replaced with current output as the > operator is being used  here. 
 
iperf3 -c 10.0.0.2 -J > test_results.json      

 

 
Figure 27. Host h1 using -J to output JSON and redirecting stdout to file. 

 
Step 3. To generate the output for iPerf3’s JSON file run the following command: 
 
plot_iperf.sh test_results.json             

 

 
Figure 28. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time 
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit 
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file 
(1.dat) which can be used by other applications. These files are stored in a directory 
results created in the same directory where the script was executed as shown in the figure 
below.  
 

 
Figure 29. Listing the current directory’s contents using the ls command.  

 
Step 4. Navigate to the results folder using the cd command. 
 
cd results/             
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Figure 30. Entering the results directory using the cd command. 

 
Step 5. To open any of the generated files, use the xdg-open command followed by the 
file name. For example, to open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 31. Opening the throughput.pdf file using xdg-open. 

 

 
Figure 32. throughput.pdf output. 

 
Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
This concludes Lab 2. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab introduces NETEM and explains how it can be used to emulate real-world 
scenarios while having control on parameters that affect the performance of networks. 
Network parameters include latency, jitter, packet loss, reordering, and corruption. 
Correlation values between network parameters will also be set to provide a more 
realistic network environment. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand delay in networks and how to measure it. 
2. Understand Linux queuing disciplines (qdisc) architecture. 
3. Deploy emulated WANs characterized by large delays using NETEM and Mininet. 
4. Perform measurements after introducing delays to an emulated WAN. 
5. Deploy emulated WANs characterized by delays, jitters, and corresponding 

correlation values.  
6. Modify the delay distribution of an emulated WAN. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to network emulators and NETEM. 
2. Section 2: Lab topology. 
3. Section 3: Adding/changing delay to emulate a WAN.  
4. Section 4: Restoring original values (deleting the rules). 
5. Section 5: Adding jitter to emulated WAN. 
6. Section 6: Adding correlation value for jitter and delay. 
7. Section 7: Delay distribution. 
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1 Introduction to network emulators and NETEM 
 
Network emulators play an important role for the research and development of network 
protocols and applications. Network emulators provide the ability to perform tests of 
realistic scenarios in a controlled manner, which is very difficult on production networks. 
This is particularly complex for researchers who develop and test tools for Wide Area 
Networks (WANs) and for multi-domain environments.  
 
 
1.1 NETEM 

 
One of the most popular network emulators is NETEM1,2, a Linux network emulator for 
testing the performance of real applications over a virtual network. The virtual network 
may reproduce long-distance WANs in the lab environment. These scenarios facilitate the 
test and evaluation of protocols and devices from the application layer to the data-link 
layer under a variety of conditions. NETEM allows the user to modify parameters such as 
delay, jitter, packet loss, duplication and re-ordering of packets.  
 
NETEM is implemented in Linux and consists of two portions: a small kernel module for a 
queuing discipline and a command line utility to configure it. Figure 1 shows the basic 
architecture of Linux queuing disciplines. The queuing disciplines exist between the IP 
protocol output and the network device. The default queuing discipline is a simple packet 
first-in first-out (FIFO) queue. A queuing discipline is a simple object with two interfaces. 
One interface queues packets to be sent and the other interface releases packets to the 
network device. The queuing discipline makes the policy decision of which packets to send, 
which packets to delay, and which packets to drop. A classful queueing discipline, such as 
NETEM, has configurable internal modules. 
 

Application

TCP

IP

Queueing 

discipline

Network device

User

Kernel

 
Figure 1. Linux queueing discipline. 

 
 
1.2 WANs and delay  

 
In networks, there are several processes and devices that contribute to the end-to-end 
delay between a sender node and a destination node. Many times, the end-to-end delay 
is dominated by the WAN’s propagation delay. Consider two adjacent switches A and B 
connected by a WAN. Once a bit is pushed onto the WAN by switch A, it needs to 
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propagate to switch B. The time required to propagate from the beginning of the WAN to 
switch B is the propagation delay. The bit propagates at the propagation speed of the 
WAN’s link. The propagation speed depends on the physical medium (that is, fiber optics, 
twisted-pair copper wire, etc) and is in the range of 2x108 meters/sec to 3x108 meters/sec, 
which is equal to, or a little less than, the speed of light. The propagation delay is the 
distance between two switches divided by the propagation speed. Once the last bit of the 
packet propagates to switch B, it and all the preceding bits of the packet are stored in 
switch B3. 
 
Network tools usually estimate delay for troubleshooting and performance 
measurements. For example, an estimate of end-to-end delay is the Round-Trip Time 
(RTT), which is the time it takes for a small packet to travel from sender to receiver and 
then back to the sender. The RTT includes packet-propagation delays, packet-queuing 
delays in intermediate routers and switches, and packet-processing. As mentioned above, 
if the propagation delay dominates other delay components (as in the case of many 
WANs), then RTT is also an estimate of the propagation delay. 
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet. 
 

 
Figure 2. Lab topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 3. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 3.mn topology file and click on Open. 
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Figure 4. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 5. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on host h1.  
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Figure 6. Opening a terminal on host h1. 

 
Step 2. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 7. Connectivity test using ping command. 

 
The figure above indicates that there is connectivity between host h1 and host h2. Thus, 
we are ready to start the throughput measurement process.  
 
 
3 Adding/changing delay to emulate a WAN 
 
The user invokes NETEM using the command line utility called tc 4, 5. With no additional 
parameters, NETEM behaves as a basic FIFO queue with no delay, loss, duplication, or 
reordering of packets. The basic tc syntax used with NETEM is as follows: 
 
sudo tc qdisc [add|del|replace|change|show] dev dev_id root netem opts     

 

• sudo: enable the execution of the command with higher security privileges. 

• tc: command used to interact with NETEM. 
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• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 
packets arriving from the IP protocol output (see Figure 1) are served. The queue 
discipline is applied to a packet queue to decide when to send each packet.  

• [add | del | replace | change | show]: this is the operation on qdisc. For 
example, to add delay on a specific interface, the operation will be add. To change 
or remove delay on the specific interface, the operation will be change or del. 

• dev_id: this parameter indicates the interface to be subject to emulation. 

• opts: this parameter indicates the amount of delay, packet loss, duplication, 
corruption, and others.  

 
 
3.1 Identify interface of host h1 and host h2  

 
According to the previous section, we must identify the interfaces on the connected hosts. 
 
Step 1. On host h1, type the command ifconfig to display information related to its 
network interfaces and their assigned IP addresses. 
 

 
Figure 8. Output of ifconfig command on host h1. 

 
The output of the ifconfig command indicates that host h1 has two interfaces: h1-eth0 
and lo. The interface h1-eth0 at host h1 is configured with IP address 10.0.0.1 and subnet 
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.  
 
Step 2. In host h2, type the command ifconfig as well.  
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Figure 9. Output of ifconfig command on host h2. 

 
The output of the ifconfig command indicates that host h2 has two interfaces: h2-eth0 
and lo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet 
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.  
 
 
3.2 Add delay to interface connecting to WAN 

 
Network emulators emulate delays by introducing them to an interface. For example, the 
delay introduced to a switch A’s interface that is connected to a switch B’s interface may 
represent the propagation delay of a WAN connecting both switches. In this section, you 
will use netem command to insert delay to a network interface.  
 
Step 1. In host h1, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem delay 100ms 

 
This command can be summarized as follows: 
 

• sudo: enable the execution of the command with higher security privileges. 

• tc: invoke Linux’s traffic control. 

• qdisc: modify the queuing discipline of the network scheduler. 

• add: create a new rule. 

• dev h1-eth0: specify the interface on which the rule will be applied. 

• netem: use the network emulator. 

• delay 100ms: inject delay of 100ms. 
 

 
Figure 10. Adding 100ms delay to the interface h1-eth0. 
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The above command adds a delay of 100 milliseconds (ms) to the output interface, 
exclusively. 
 
Step 2. The user can verify now that the connection from host h1 to host h2 has a delay 
of 100 milliseconds by using the ping command from host h1: 
 
ping 10.0.0.2 

 

  
Figure 11. Verifying latency after emulating delay using ping. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 100.069, 120.180, 200.587, and 40.203 milliseconds respectively.  
 
Note that the above scenario emulates 100 milliseconds latency on the interface of host 
h1 connecting to the switch. In order to emulate a WAN where the delay is bidirectional, 
a delay of 100 milliseconds must also be added to the corresponding interface on host h2. 
 
Step 3. In host h2’s terminal, type the following command:  
 
sudo tc qdisc add dev h2-eth0 root netem delay 100ms 

  

 
Figure 12. Adding 100ms delay to the interface h2-eth0. 

 
Step 4. The user can verify now that the connection between host h1 and host h2 has an 
RTT of 200 milliseconds (100ms from host h1 to host h2 plus 100ms from host h2 to host 
h1) by retyping the ping command on host h1’s terminal: 
 
ping 10.0.0.2 
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Figure 13. Verifying latency after emulating delay on both host h1 and host h2 using ping. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 200.078, 200.154, 204.447, and 0.511 milliseconds respectively.  
 
 
3.3 Changing the delay in emulated WAN 

 
In this section, the user will change the delay from 100 milliseconds to 50 milliseconds in 
both sender and receiver. The RTT will be 100 milliseconds now. 
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc change dev h1-eth0 root netem delay 50ms 

 

 
Figure 14. Changing delay on the interface h1-eth0. 

 
The new option added here is change, which changes the previously set delay to 50 
milliseconds. 
 
Step 2. Apply also the above step on host h2’s terminal to change the delay to 50ms: 
 
sudo tc qdisc change dev h2-eth0 root netem delay 50ms 

 

 
Figure 15. Changing delay to the interface h2-eth0. 

 
Step 3. The user can verify now that the connection from host h1 to host h2 has a delay 
of 100 milliseconds by using the ping command from host h1’s terminal: 
 
ping 10.0.0.2 
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Figure 16. Verifying latency after emulating 100ms delay using ping. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 100.079, 100.149, 100.411, and 0.131 milliseconds respectively.  
 
 
4 Restoring original values (deleting the rules) 
 
In this section, the user will restore the default configuration in both sender and receiver 
by deleting all the rules applied to the network scheduler of an interface.  
 
Step 1. In host h1’s terminal, type the following command: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 17. Deleting all rules on interface h1-eth0. 

 
The new option added here is del, which deletes the previously set rules on a given 
interface. As a result, the tc qdisc will restore its default values of the device h1-eth0. 
 
Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type the 
following command: 
 
sudo tc qdisc del dev h2-eth0 root netem 

 

 
Figure 18. Deleting all rules on interface h2-eth0. 

 
As a result, the tc queueing discipline will restore its default values of the device h2-eth0. 
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Step 3. The user can now verify that the connection from host h1 to host h2 has no explicit 
delay set by using the ping command from host h1’s terminal: 
 
ping 10.0.0.2 

 

 
Figure 19. Verifying latency after deleting all rules on both devices. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 0.044, 0.121, 0.386, and 0.132 milliseconds respectively.  
 
 
5 Adding jitter to emulated WAN 
 
Networks do not exhibit constant delay; the delay may vary based on other traffic flows   
contending for the same path. Jitter is the variation of delay time. The delay parameters 

are described by the average value (µ), standard deviation (), and correlation. By default, 

NETEM uses a uniform distribution, so that the delay is within µ ±  

 

 
5.1 Add jitter to interface connecting to WAN 

 
In this section, the user will add delay of 100 milliseconds with a random variation of ± 10 
milliseconds. Before doing so, make sure to restore the default configuration of the 
interfaces on host h1 and host h2 by applying the commands of Section 4. Then, apply the 
commands below. 
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 

 

 
Figure 20. Add 100ms delay with ± 10 millisecond. 
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The new value added here represents jitter which defines the delay variation. Therefore, 
all packets leaving host h1 via interface h1-eth0 will experience a delay of 100ms, with a 
random variation of ± 10ms. 
 
Step 2. The user can now verify that the connection from host h1 to host h2 has 100ms 
delay with ± 10 millisecond random variation by using the ping command on host h1’s 
terminal: 
 
ping 10.0.0.2 

 

 
Figure 21. Verifying RTT after adding 100 millisecond delay and 10 millisecond jitter on interface 
h1-eth0. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 93.603, 101.386, 109.494, and 6.303 milliseconds respectively. Note that 
we are only adding jitter to the interface of host h1 at this point. 
 
Step 3. In host h1’s terminal, type the following command to delete previous 
configurations: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 22. Deleting all rules on interface h1-eth0. 

 
 
6 Adding correlation value for jitter and delay 
 
The correlation parameter controls the relationship between successive pseudo-random 
values. In this section, the user will add a delay of 100 milliseconds with a variation of ± 
10 milliseconds while adding a correlation value. Before doing so, make sure to restore 
the default configuration of the interfaces on host h1 and host h2 by applying the 
commands of Section 4. Then, apply the commands below. 
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Step 1. In host h1 terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25% 

 

 
Figure 23. Adding a correlation value of 25%. 

 
The new value added here represents the correlation value for jitter and delay. Therefore, 
all packets leaving the device host h1 on the interface h1-eth0 will experience a 100ms 
delay time, with a random variation of ± 10 millisecond with the next random packet 
depending 25% on the previous one. 
 
Step 2. Now, the user can test the connection from host h1 to host h2 by using the ping 
command on host h1’s terminal: 
 
ping 10.0.0.2 

 

 
Figure 24. Verifying latency after setting the correlation value. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 90.891, 101.007, 109.215, and 6.328 milliseconds respectively.  
 
Step 3. In host h1’s terminal, type the following command to delete previous 
configurations: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 25. Deleting all rules on interface h1-eth0. 
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7 Delay distribution  
 
NETEM permits user to specify a distribution that describes how delays vary in the 
network. Usually delays are not uniform, so it may be convenient to use a non-uniform 
distribution such as normal, pareto, or pareto-normal. For this test, the user will specify 
a normal distribution for the delay in the emulated network. Before doing so, make sure 
to restore the default configuration of the interfaces on host h1 and host h2 by applying 
the commands of Section 4. Then, apply the commands below. 
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem delay 100ms 20ms distribution normal 

 
The new option added here (distribution) represents the delay distribution type. We 
define the delay to have a normal distribution, which provides a more realistic emulation 
of WAN networks. As a result, all packets leaving the host h1 on the interface h1-eth0 will 
experience delay time which is normally distributed between the range of 100ms ± 20ms. 
 

 
Figure 26. Adding normal distribution of delay. 

 
Step 2. The user can now verify if the configuration was successfully done in the previous 
step (Step 1) by using the ping command on host h1’s terminal: 
 
ping 10.0.0.2 

 

  
Figure 27. Verifying latency after using normal distribution. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 66.347, 89.405, 117.906, and 16.749 milliseconds respectively.  
 
This concludes Lab 3. Stop the emulation and then exit out of MiniEdit.  
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Overview 
 
This lab continues the description of NETEM and how to use it to emulate Wide Area 
Networks (WANs). Besides delay, this lab focuses on other parameters such as packet loss, 
packet duplication, reordering, and packet corruption. These parameters affect the 
performance of protocols and networks.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Deploy emulated WANs characterized by parameters such as delay, packet loss, 
packet corruption, packet reordering, and packet duplication. 

2. Measure the performance of WANs characterized by different parameter values. 
3. Visualize WAN performance measures. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Introduction to network emulators and NETEM. 
2. Section 2: Lab topology. 
3. Section 3: Adding/changing packet loss. 
4. Section 4: Adding packet corruption. 
5. Section 5: Adding packet reordering. 
6. Section 6: Adding packet duplication. 

 
 
1 Introduction to network emulators and NETEM 
 
Part I of Emulating WAN with NETEM described how to use NETEM to emulate WANs 
characterized by long delays. Part I also explained how the end-to-end delay can be 
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dominated by the WAN’s propagation delay and how the Round-Trip Time (RTT) 
estimates this delay.  
 
In addition to delay, many WANs and LANs are subject to packet loss, reordering, 
corruption, and duplication.  
 

h2h1

WAN

Delay, Loss, Reordering, Duplication, Corruption

 
Figure 1. Parameters affecting throughput in a WAN. 

 
The above situations are described follows:  
 

1. Packet loss: a condition that occurs when a packet travelling across a network fails 
to reach its destination. Packet loss may have a large impact on high-throughput 
high-latency networks. A common cause of packet loss is the inability of routers 
to hold packets arriving at a rate higher than the departure rate. Even in cases 
where the high packet arrival rate is only temporary (e.g., short-term traffic 
bursts), the router is limited by the amount of buffer memory used to momentarily 
store packets. When packet loss occurs, TCP reduces the congestion window and 
consequently the throughput by half. Packet loss must be mitigated by using best-
practice network designs, such as Science DMZ. 
 

2. Packet reordering: a condition that occurs when packets are received in a different 
order from which they were sent. Packet reordering, also known as out-of-order 
packet delivery, is typically the result of packets following different routes to reach 
their destination. Packet reordering may deteriorate the throughput of TCP 
connections in high-throughput high-latency networks. For each segment 
received out of order, a TCP receiver sends an acknowledgement (ACK) for the last 
correctly received segment. Once the TCP sender receives three 
acknowledgements for the same segment (triple duplicate ACK), the sender 
considers that the receiver did not correctly receive the packet following the 
packet that is being acknowledged three times. It then proceeds to reduce the 
congestion window and throughput by half.  
 

3. Packet corruption: corruption of bits comprising a packet may (mostly) occur at 
the physical layer. Two adjacent devices are connected by a physical channel (e.g., 
fiber, twisted-pair copper wire, etc). The physical layer accepts a raw bit stream 
and delivers it to the data-link layer. If corruption occurs, some bits may have 
different values than those originally sent by the sender node. The receiver node 
then simply discards the packet. As a result, the TCP sender process will not 
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receive an acknowledgement for the corresponding segment and will consider it 
as a lost segment. The TCP sender process will subsequently decrease the 
congestion window and throughput by half.   
 

4. Packet duplication: a condition where multiple copies of a packet are present in 
the network and received by the destination. Packet duplication is the result of 
retransmissions, where a sender node retransmits unacknowledged (NACK) 
packets. 

 
Packet loss, reordering, and corruption (the last two are interpreted as packet loss also 
by the TCP sender) lead to a drastic reduction of throughput. In this lab, we will use the 
NETEM tool to emulate these situations affecting end-to-end performance. 
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet. 
 

 
Figure 2. Lab topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 3. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 4.mn topology file and click on Open. 
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Figure 4. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 5. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Testing connectivity between two hosts 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on host h1.  
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Figure 6. Opening a terminal on host h1. 

 
Step 2. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 

h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 7. Connectivity test using ping command. 

 
The figure above indicates that there is connectivity between host h1 and host h2. Thus, 
we are ready to start the throughput measurement process.  
 
 
3 Adding/changing packet loss 
 
The user invokes NETEM using the command line utility called tc 4, 5. With no additional 
parameters, NETEM behaves as a basic FIFO queue with no delay, loss, duplication, or 
reordering of packets. The basic tc syntax used with NETEM is as follows: 
 
sudo tc qdisc [add|del|replace|change|show] dev dev_id root netem opts     

 

• sudo: enable the execution of the command with higher security privileges. 

• tc: command used to interact with NETEM. 

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 
packets arriving from the IP protocol output are served. The queue discipline is 
applied to a packet queue to decide when to send each packet.  



    
Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption 

 
  Page 8  

• [add | del | replace | change | show]: this is the operation on qdisc. For 
example, to add delay on a specific interface, the operation will be add. To change 
or remove delay on the specific interface, the operation will be change or del. 

• dev_id: this parameter indicates the interface to be subject to emulation. 

• opts: this parameter indicates the amount of delay, packet loss, duplication, 
corruption, and others.  

 
 
3.1 Identify interface of host h1 and host h2  

 
In this section, we must identify the interfaces on the connected hosts. 
 
Step 1. On host h1, type the command ifconfig to display information related to its 
network interfaces and their assigned IP addresses. 
 

 
Figure 8. Output of ifconfig command on host h1. 

 
The output of the ifconfig command indicates that host h1 has two interfaces: h1-eth0 
and lo. The interface h1-eth0 at host h2 is configured with IP address 10.0.0.1 and subnet 
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.  
 
Step 2. In host h2, type the command ifconfig as well.  

 



    
Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption 

 
  Page 9  

 
Figure 9. Output of ifconfig command on host h2. 

 
The output of the ifconfig command indicates that host h2 has two interfaces: h2-eth0 
and lo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet 
mask 255.0.0.0. This interface must be used in tc when emulating the WAN.  
 
 
3.2 Add packet loss to the interface connecting to the WAN 

 
In a network, packets may be lost during transmission due to factors such as bit errors 
and network congestion. The rate of packets that are lost is often measured as a 
percentage of lost packets with respect to the number of sent packets. In this section, you 
will use netem command to insert packet loss on a network interface. 
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem loss 10% 

 

  
Figure 10. Adding 10% packet loss to host h1’s interface h1-eth0. 

 
The above command adds a 10% packet loss to host h1’s interface h1-eth0. 
 
Step 2. The user can verify now that the connection from host h1 to host h2 has packet 
losses by using the ping command from host h1’s terminal. The -c option specifies the 
total number of packets to send. 
 
ping 10.0.0.2 -c 200 
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Figure 11. ping command after introducing packet loss. 

 
In the figure 11, host h1 sends 200 ping packets to host h2. Note the icmp_seq values 
demonstrated in the figure above.  
 

You can see that icmp_seq=2, 6, 10 and 17 are missing due to packet losses. Resulting 
packet loss will likely vary in each emulation. 

 
Figure 12 shows the summary report of the previous command. By default, ping reports 
the percentage of packet loss after finishing the transmission. In our test, ping reported a 
packet loss rate of 10%. The measured packet loss rate will tend to become closer to the 
configured loss rate as more trials are performed. 
 

 
Figure 12. ping summary report showing 10% packet loss. 

 
Note that the above scenario emulates 10% packet loss on the unidirectional link from 
host h1 to host h2. If we want to emulate packet loss on both directions, a packet loss of 
10% must also be added to host h2. 
 
Step 3. In host h2’s terminal, type the following command:  
 
sudo tc qdisc add dev h2-eth0 root netem loss 10% 
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Figure 13. Adding 10% packet loss to host h2’s interface h2-eth0. 

 
Step 4. The user can verify now that the connection between host h1 and host h2 has 
more packets losses (10% from host h1 + 10% from host h2) by retyping the ping 
command on host h1’s terminal: 
 
ping 10.0.0.2 -c 200 

 

 
Figure 14. ping command after introducing packet loss. 

 
In the figure 14, host h1 sends 200 ping packets to host h2. Note the icmp_seq values 
demonstrated in the figure above.  
 

You can see that icmp_seq=3, 6, 10, 14, 23 and 27 are missing due to packet losses. 
Resulting packet loss will likely vary in each emulation. 

 
Figure 14 shows the summary report of the previous command. By default, ping reports 
the percentage of packet loss after finishing the transmission. In our test, ping reported a 
packet loss rate of 10%. The measured packet loss rate will tend to become closer to the 
configured loss rate as more trials are performed. 
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Figure 15. ping summary report showing 20.5% packet loss. 

 
The result above indicates that 159 out of 200 packets were received successfully (20.5% 
packet loss). 
 
 
3.3 Restore default values 

 
To remove the packet loss added in Section 3.2 and restore the default configuration, you 
must delete the rules of the interfaces on host h1 and host h2.  
 
Step 1. In host h1’s terminal, type the following command: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 16. Deleting all rules on interface h1-eth0. 

 
Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type the 
following command: 
 
sudo tc qdisc del dev h2-eth0 root netem 

 

 
Figure 17. Deleting all rules on interface h2-eth0. 

 
As a result, the tc queueing discipline will restore its default values of the device h2-eth0. 
 
Step 3. Now, the user can verify that the connection from host h1 to host h2 has no 
explicit packet loss configured by using the ping command from host h1’s terminal, press 
Ctrl+c to stop the test: 
 
ping 10.0.0.2 
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Figure 18. Verifying latency after deleting all rules on both devices. 

 
The result above indicates that all five packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 0.043, 0.112, 0.357, and 0.122 milliseconds respectively.  
 
 
3.4 Add correlation value for packet loss to interface connecting to WAN 

 
An optional correlation may be added. Adding correlation causes the random number 
generator to be less random and can be used to emulate packet burst losses1.  
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem loss 50% 50% 

 

 
Figure 19. Verifying latency after deleting all rules on both devices. 

 

The above command introduces a packet loss rate of 50%, and each successive probability 
depends 50% on the last one1. Note that a packet loss rate this high is unlikely. 

 
Step 2. The user can verify now that the connection from host h1 to host h2 has packet 
losses by using the ping command from host h1’s terminal.  
 
ping 10.0.0.2 -c 50 
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Figure 20. ping in progress showing successive packet loss. 

 
The result above shows an example where successive packets were dropped: [3, 4, 6, 10,], 
[13, 14, 16, 17, 20, 21], etc. 
 
Step 3. In host h1’s terminal, type the following command to delete previous 
configurations: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 21. Deleting all rules on interface h1-eth0. 

 
 
4 Adding packet corruption 
 
Besides packet loss, packet corruption can be introduced with NETEM. 
 
 
4.1 Add packet corruption to an interface connected to the WAN 

 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem corrupt 0.01% 

 
The new value added here represents packet corruption percentage (0.01%).  
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Figure 22. Adding packets corruption (0.01%) to interface h1-eth0. 

 
Step 2. The user can now verify the previous configuration by using the iperf3 tool to 
check the retransmissions. To launch iPerf3 in server mode, run the command iperf3 -
s in host h2’s terminal. 
 
iperf3 -s          

 

 
Figure 23. Host h2 running iPerf3 as server. 

 
Step 3. To launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in host 
h1’s terminal. 
 
iperf3 -c 10.0.0.2        

 

 
Figure 24. Retransmissions after packets corruption. 

 
The figure above shows the retransmission values on each time interval (1 second). The 
total number of retransmitted packets, due to packet corruption, is 3710. This verifies 
that packet corruption was indeed, applied to the interface on host h1. 
 
Step 4. In host h1’s terminal, type the following command to delete previous 
configurations: 
 
sudo tc qdisc del dev h1-eth0 root netem 
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Figure 25. Deleting all rules on interface h1-eth0. 

 
Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too. The summarized data on the server is similar 
to that of the client side’s and must be interpreted in the same way.  
 
 
5 Add packet reordering  
 
Packets are sometimes not delivered in the same order they were sent. In order to 
emulate reordering in NETEM, the reorder option is used. Proceed with the steps below.  
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root netem delay 10ms reorder 25% 50% 

 

 
Figure 26. Adding packet reordering. 

 
In this command, 25% of the packets (with a correlation value of 50%) will be sent 
immediately, while the remainder 75% will be delayed by 10ms.  
 
Step 2. The user can verify the effect of packet reorder by using the ping command on 
host h1’s terminal, press Ctrl+c to stop the test: 
 
ping 10.0.0.2 

 

 
Figure 27. ping test illustrating the effect of packet reordering. 

 
Consider the first four packets of the figure above. The first and second packets did not 
experience delay (one out of four, or 25%), while the next three packets experienced a 
delay of ~10 milliseconds (three out of four, or 75%). The measured reordering rate will 
tend to become closer to the configured reordering rate as more trials are performed. 
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It is possible that your first packet will experience delay, but this effect will eventually 
occur in future tests. 

 
Step 3. In host h1’s terminal, type the following command to delete previous 
configurations: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 28. Deleting all rules on interface h1-eth0. 

 
 
6 Add packet duplication 
 
Duplicate packets may be present in networks as a result of retransmissions. NETEM 
provides the option duplicate to inject duplicate packets. Before introducing packet 
corruption, make sure to restore the default configuration of the interfaces on host h1 
and host h2 by applying the commands of Section 3.3. Then, proceeds with the following 
steps.  
 
Step 1. In host h1’s terminal, type the following command:  
 
sudo tc qdisc change dev h1-eth0 root netem duplicate 50% 

 

 
Figure 29. Adding packet duplication. 

 
The above command will produce a duplication of 50% (i.e., 50% of the packets will be 
received twice at the destination).  
 
Step 2. The user can verify the effect of packet duplication by using the ping command 
on host h1’s terminal, press Ctrl+c to stop the test: 
 
ping 10.0.0.2 

 



    
Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption 

 
  Page 18  

 
Figure 30. ping test illustrating the effect of packet duplication. 

 
The result above indicates that five duplicate packets were received. Duplicate packets 
are also marked with (DUP!). The measured rate of duplicate packets will tend to become 
closer to the configured rate as more trials are performed. 
 
Step 3. In host h1’s terminal, type the following command to delete previous 
configurations: 
 
sudo tc qdisc del dev h1-eth0 root netem 

 

 
Figure 31. Deleting all rules on interface h1-eth0. 

 
This concludes Lab 4. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab explains the Token Bucket Filter (TBF) queuing discipline which shapes 
incoming/outgoing traffic to limit the bandwidth. Throughput measurements are also 
conducted in this lab to verify the bandwidth-limiting configuration with TBF. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand the Token Bucket algorithm. 
2. Use Token Bucket Filter (tbf), which is a Linux implementation of the Token Bucket 

algorithm on network interfaces. 
3. Understand how to combine queueing disciplines in Linux Traffic Control (tc). 
4. Combine tbf and NETEM. 
5. Emulate WAN properties in Mininet. 
6. Visualize iPerf3’s output after modifying the network’s parameters. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to Token Bucket algorithm. 
2. Section 2: Lab Topology. 
3. Section 3: Rate limiting on end-hosts. 
4. Section 4: Rate limiting on switches. 
5. Section 5: Combining NETEM and TBF. 

 
 
1 Introduction to Token Bucket algorithm  
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When simulating a Wide Area Network (WAN), it is sometimes necessary to limit the 
bandwidth of devices (end hosts and networking devices) to observe the network’s 
behavior in different conditions.  
 
The Token Bucket is an algorithm used in packet-switching networks to limit the 
bandwidth and the burstiness of the traffic. In summary, token bucket consists of adding 
tokens (represented as packets or packets’ bytes) at a fixed rate to a fixed-capacity bucket. 
When a new packet arrives, the bucket is inspected to check the number of available 
tokens; if at least n tokens are available, n tokens are removed from the bucket, and the 
packet is sent to the network. Else, no tokens are removed, and the packet is considered 
non-conformant. In such case, the packet might be dropped, enqueued, or transmitted 
but marked as non-conformant. This algorithm is illustrated in Figure 1. 
 

 
Figure 1. Token bucket filter. 

 
The rate, which is the transmission speed, is determined by the frequency at which tokens 
are added to the bucket. 
 
Another important property of the token bucket algorithm is burstiness; when the bucket 
becomes completely occupied (i.e. no packets are consuming tokens), new packets will 
consume tokens right away, without being limited. Burstiness is defined as the number of 
tokens that can fit in the bucket, or the bucket size.  
 
To provide limits and control over the bursts, token bucket implementations often create 
another smaller bucket with a size equal to the Maximum Transmission Unit (MTU), and 
a rate much faster than the original bucket (the peak rate). Its rate defines the maximum 
speed of bursts.  
 
The token bucket algorithm implemented in Linux is the Token Bucket Filter (tbf), which 
is a queuing discipline used in conjunction with the Linux Traffic Control (tc) to shape 
traffic.  
 
Figure 2 depicts the main parameters used by tbf. 
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Figure 2. tbf parameters and architecture. 

 
The basic tbf syntax used with tc is as follows: 
 
tc qdisc [add | ...] dev [dev_id] root tbf limit [BYTES] burst [BYTES] rate 

[BPS] [mtu BYTES] [ peakrate BPS ] [ latency TIME ]    

 

• tc: Linux traffic control tool. 

• qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 
packets arriving from the IP protocol output are served. The queue discipline is 
applied to a packet queue to decide when to send each packet.  

• [add | del | replace | change | show]: this is the operation on qdisc. For 
example, to add the token bucket algorithm on a specific interface, the operation 
will be add. To change or remove it, the operation will be change or del, 
respectively. 

• dev [dev_id]: this parameter indicates the interface is to be subject to emulation. 

• tbf: this parameter specifies the Token Bucket Filter algorithm. 

• limit [BYTES]: size of the packet queue in bytes. 

• burst [BYTES]: number of bytes that can fit in the bucket. 

• rate [BPS]: transmission speed, determined by the frequency at which tokens 
are added to the bucket. 

• mtu [BYTES]: maximum transmission unit in bytes. 

• peakrate [BPS]: the maximum speed of a burst. 

• latency [TIME]: the maximum time a packet can wait in the queue. 
 
In this lab, we will use the tbf queueing discipline to emulate the aforementioned 
parameters affecting the network behavior. 
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
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Figure 3. Lab topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 4. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 5.mn topology file and click on Open. 
 

 
Figure 5. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2
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Figure 6. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 

 
Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host 
h1 and allows the execution of commands on that host.  
 

 
Figure 7. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 

connectivity test. 
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Figure 8. Connectivity test using ping command. 

 
Figure 8 indicates that there is connectivity between host h1 and host h2.  
 
 
3 Rate limiting on end-hosts 
 
The tc command can be applied on the network interface of a device to shape egress 
traffic. In this section, the user will limit the sending rate of an end-host using the Token 
Bucket Filter (tbf), which is an implementation of the Token bucket algorithm. 
 
 
3.1 Identify interface of host h1 and host h2  

 
According to the previous section, we must identify the interfaces on the connected hosts. 
 
Step 1. On host h1, type the command ifconfig to display information related to its 
network interfaces and their assigned IP addresses. 
 

 
Figure 9. Output of ifconfig command on host h1. 
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The output of the ifconfig command indicates that host h1 has two interfaces: h1-eth0 
and lo. The interface h1-eth0 at host h1 is configured with IP address 10.0.0.1 and subnet 
mask 255.0.0.0. This interface must be used in tc when emulating the network.  
 
Step 2. In host h2’s command line, type the command ifconfig as well.  
 

 
Figure 10. Output of ifconfig command on host h2. 

 
The output of the ifconfig command indicates that host h2 has two interfaces: h2-eth0 
and lo. The interface h2-eth0 at host h1 is configured with IP address 10.0.0.2 and subnet 
mask 255.0.0.0. This interface must be used in tc when emulating the network.  
 
 
3.2 Emulating 10 Gbps high-latency WAN 

 
In this section, you will use tbf command on a network interface to control the egress 
rate.  
 
Step 1. Modify the bandwidth of host h1 typing the command below. This command sets 
the bandwidth to 10 Gbps on host h1’s h1-eth0 interface. The tbf parameters are the 
following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev h1-eth0 root tbf rate 10gbit burst 5000000 limit 15000000 

 

 
Figure 10. Limiting rate with TBF to 10 Gbps. 



    
Lab 5:  Setting WAN Bandwidth with Token Bucket Filter (TBF) 

 
  Page 10  

 
This command can be summarized as follows: 
 

• sudo: enable the execution of the command with higher security privileges. 

• tc: invoke Linux’s traffic control. 

• qdisc: modify the queuing discipline of the network scheduler. 

• add: create a new rule. 

• dev h1-eth0 root: specify the interface on which the rule will be applied. 

• tbf: use the token bucket filter algorithm. 

• rate: specify the transmission rate (10 Gbps). 

• burst: number of bytes that can fit in the bucket (5,000,000). 

• limit: queue size in bytes (15,000,000). 
 
Burst calculation: tbf requires setting a burst value when limiting the rate. This value 
must be high enough to allow your configured rate. Specifically, it must be at least the 
specified rate / HZ, where HZ is clock rate, configured as a kernel parameter, and can be 
extracted using the following command: 
 
egrep '^CONFIG_HZ_[0-9]+' /boot/config-`uname -r` 

 

 
Figure 11. Retrieving system’s HZ. 

 
The HZ on Client1 is 250. Thus, to calculate the burst, we divide 10 Gbps by 250: 
 
10 Gbps = 10,000,000,000 bps 
 

Burst = 
10,000,000,000 

250
= 40,000,000 bits 

 
Burst = 40,000,000 bits = 5,000,000 bytes 
 
The resulting value is to be used in the command as the burst value.  
 
Step 2. The user can now verify the previous configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal as shown in the figure below: 
 
iperf3 -s          

 

 
Figure 12. Host h2 running iPerf3 as server. 
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Step 3. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in 
host h1’s terminal as shown below: 
 
iperf3 -c 10.0.0.2        

 

 
Figure 13. iPerf3’s report after limiting the rate on host h1 to 10 Gbps. 

 
The figure above shows the iPerf3 report after limiting the rate on host h1 using tbf. The 
average achieved throughputs are 9.57 Gbps (sender) and 9.53 Gbps (receiver). Since we 
executed the command on host h1’s terminal, the rule was applied to host h1’s network 
interface. However, it is also possible to limit the rate on the switch interfaces as 
explained next. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
4 Rate limiting on switches 
 
The previous section explained how to use the token bucket filter on end-hosts’ network 
interfaces. In this section, we will explain how to apply the filter on switch interfaces. By 
limiting the rate on switch S1’s s1-eth2 interface, all communication sessions between 
switch S1 and switch S2 will be filtered by the applied rule(s). 
 
In previous tests, we applied the command on host h1’s terminal; switches, however, we 
do not have terminals where commands can be set and applied. Recall that we are using 
Mininet for this emulation, which creates virtual interfaces emulating the switch 
functionality. Therefore, these virtual interfaces can be identified using the ifconfig 
command, but this time, it should be issued on the client’s terminal (e.g., the terminal 
located on the Desktop) and not on end-hosts (host h1 or host h2). 
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Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 14. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. Type in the terminal the command ifconfig to display information related to its 
network interfaces. 
 

 



    
Lab 5:  Setting WAN Bandwidth with Token Bucket Filter (TBF) 

 
  Page 13  

 
Figure 15. Output of ifconfig command on the client’s terminal. 

 
Figure 15 shows the network interfaces of the client: 
 

• s1-eth1 is the interface connecting switch S1 to host h1. 

• s1-eth2 is the interface connecting switch S1 to switch S2. 

• s2-eth1 is interface connecting switch S2 to host h2. 

• s2-eth2 is interface connecting switch S2 to switch S1. 
 
Step 3. Remove the previous configuration on host h1. Write the following command on 
host h1’s terminal: 
 
sudo tc qdisc del dev h1-eth0 root 

 

  
Figure 16. Deleting all rules on host h1’s network scheduler. 

 
Step 4. Apply tbf rate limiting rule on switch S1’s interface which connects it to switch 
S2 (s1-eth2). In the Client1’s terminal, type the command below. When prompted for a 
password, type password and hit enter. The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth2 root tbf rate 10gbit burst 5000000 limit 15000000 

 

 
Figure 17. Limiting rate with TBF to 10 Gbps on switch S1’s interface. 
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Step 5. The user can now verify the previous configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal as shown in Figure 18: 
 
iperf3 -s          

 

 
Figure 18. Host h2 running iPerf3 as server. 

 
Step 6. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in 
host h1’s terminal as shown in the figure below: 

iperf3 -c 10.0.0.2        

 

 
Figure 19. iPerf3’s report after limiting the rate on switch S1 to 10 Gbps. 

 
Again, the reported values match the desired throughput (10 Gbps). In practice, the 
reported throughput will not achieve the target (10 Gbps) but will achieve a throughput 
slightly less than the target. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
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5 Combining NETEM and TBF 
 
NETEM is used to introduce delay, jitter, packet corruption, etc. TBF on the other hand 
can be used to limit the rate. However, this is not enough for emulating real networks, 
particularly WANs. Therefore, it is also possible to combine multiple impairments and 
activate them at the same time. 
 

 
Figure 20. Chaining qdiscs hierarchy. 

 
As shown in Figure 20, the first qdisc (qdisc1) is attached to the root label. Then, 
subsequent qdiscs can be attached to their parents by specifying the correct label. In this 
section, we will look at how to combine NETEM and TBF in order to have more properties 
emulated in our network. Specifically, we will introduce delay, jitter, and packet 
corruption, while specifying the rate on switch S1’s interface. 
 
Step 1. In the Client’s terminal, type the following command to remove the previous 
configuration on switch S1. 
 
sudo tc qdisc del dev s1-eth2 root 

 

 
Figure 21. Deleting all rules on switch S1’s s1-eth2. 

 
Step 2. In the client’s terminal, type the command below. When prompted for a password, 
type password and hit Enter. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 10ms 
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Figure 22. Adding delay of 10ms to switch S1’s s1-eth2 interface. 

 
The new keyword in this command is handle and its value reflects the number shown in 
Figure 22 above each qdisc. This means that our NETEM qdisc is attached to the root with 
the handle 1:. 
 
Step 3. The user can now verify the previous configuration by using the ping tool to 
measure the Round-Trip Time (RTT). On the terminal of host h1, type ping 10.0.0.2. To 
stop the test, press Ctrl+c. The figure below shows a successful connectivity test. Host 

h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses back.  
 
ping 10.0.0.2          

 

 
Figure 23. Output of ping 10.0.0.2 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 10.083, 10.210, 10.575, and 0.222 milliseconds, respectively. Essentially, 
the standard deviation is an average of how far each ping RTT is from the average RTT. 
The higher the standard deviation, the more variable the RTT is. 
 
Step 4. Now to add the second rule which applies rate limiting using tbf, issue the 
command shown below on the client’s terminal. The tbf parameters are the following: 
 

• rate: 2gbit 

• burst: 1,000,000 

• limit: 2,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 2gbit burst 1000000 

limit 2000000 
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Figure 24. Adding a new rule while combining it with the previous. 

 
Step 5. The user can now verify the previous configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal as shown in Figure 25: 
 
iperf3 -s          

 

 
Figure 25. Host h2 running iPerf3 as server. 

 
Step 6. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in host h1’s terminal as shown in Figure 26: 
 
iperf3 -c 10.0.0.2      

 

 
Figure 26. iPerf3 throughput test after combining qdiscs. 

 
The figure above shows the iPerf3 test output report. The average achieved throughputs 
are 1.86 Gbps (sender) and 1.84 Gbps (receiver).  
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
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This concludes Lab 5. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab reviews key features and behavior of Transmission Control Protocol (TCP) that 
have a large impact on data transfers over high-throughput, high-latency networks. The 
lab describes the behavior of TCP’s congestion control algorithm, its impact on 
throughput, and how to modify the congestion control algorithm in a Linux machine.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Describe the basic operation of TCP congestion control algorithm and its impact 
on high-throughput networks. 

2. Explain the concepts of congestion window, bandwidth probing, and Additive-
Increase Multiplicative-Decrease (AIMD). 

3. Understand TCP throughput calculation. 
4. Understand the impact of packet loss on high-latency networks. 
5. Deploy emulated WANs in Mininet. 
6. Modify the TCP congestion control algorithm in Linux using sysctl tool. 
7. Compare TCP Reno, HTCP, and Cubic with injected packet loss. 
8. Compare TCP Reno, HTCP, and Cubic with both injected delay and packet loss. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP. 
2. Section 2: Lab topology. 
3. Section 3: Introduction to sysctl. 
4. Section 4: Congestion control algorithms and sysctl. 
5. Section 5: iPerf3 throughput test. 

 
 
1 Introduction to TCP 
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1.1 TCP review 

 
Big data applications require the transmission of large amounts of data between end 
devices. Data must be correctly delivered from one device to another; e.g., from an 
instrument to a Data Transfer Node (DTN). Reliability is one of the services provided by 
TCP and a reason why TCP is the protocol used by most data transfer tools. Thus, 
understanding the behavior of TCP is essential for the design and operation of networks 
used to transmit big data.  
 
TCP receives data from the application layer and places it in the TCP send buffer, as shown 
in Figure 1(a). Data is typically broken into Maximum Segment Size (MSS) units. Note that 
“segment” here refers to the Protocol Data Unit (PDU) at the transport layer, and 
sometimes the terms packet and segment are interchangeably used. The MSS is simply 
the Maximum Transmission Unit (MTU) minus the combined lengths of the TCP and IP 
headers (typically 40 bytes). Ethernet’s normal MTU is 1,500 bytes. Thus, MSS’s typical 
value is 1,460. The TCP header is shown in Figure 1(b). 
 

Application 

TCP send 

buffer

MSS MSS

Source port
2

0
 b

y
te

s
Destination port

Sequence number

Acknowledgment number

DO R Ctrl bits Window

Checksum Urgent pointer

Application 
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buffer

(a) (b)

Options Padding

Segments

 
Figure 1. (a) TCP Connection. (b) TCP header. 

 
For reliability, TCP uses two fields of the TCP header to convey information to the sender: 
sequence number and acknowledgement (ACK) number. The sequence number is the 
byte-stream number of the first byte in the segment. The acknowledgement number that 
the receiver puts in its segment is the sequence number of the next byte the receiver is 
expecting from the sender. In the example of Figure 2(a), after receiving the first two 
segments containing sequence number 90 (which contains bytes 90-99) and 100 (bytes 
100-109), the receiver sends a segment with acknowledge number 110. This segment is 
called cumulative acknowledgement.  
 
 
1.2 TCP throughput 

 
The TCP rate limitation is defined by the receive buffer shown in Figure 1(a). If this buffer 
size is too small, TCP must constantly wait until an acknowledgement arrives before 
sending more segments. This limitation is removed by setting a large receive buffer size.  
 
A second limitation is imposed by the congestion control mechanism operating at the 
sender side, which keeps track of a variable called congestion window. The congestion 
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window, referred to as cwnd (in bytes), imposes a constraint on the rate at which a TCP 
sender can send traffic. The cwnd value is the amount of unacknowledged data at the 
sender. To see this, note that at the beginning of every Round-Trip Time (RTT), the sender 
can send cwnd bytes of data into the connection; at the end of the RTT the sender receives 
acknowledgments for the data. Thus, the sender’s send rate is roughly cwnd/RTT 
bytes/sec. By adjusting the value of cwnd, the sender can therefore adjust the rate at 
which it sends data into the connection. 
 

TCP Throughput ≈  
cwnd

RTT 
  [bytes/second] 
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Figure 2. (a) TCP operation. (b) Adaptation of TCP’s congestion window. 

 
 
1.3 TCP packet loss event 

 
TCP is a reliable transport protocol that requires each segment be acknowledged. If an 
acknowledgement for an outstanding segment is not received, TCP retransmits that 
segment. Alternatively, instead of waiting for a timeout-triggered retransmission, the 
sender can also detect a packet loss before the timeout by detecting duplicate ACKs. A 
duplicate ACK is an ACK that re-acknowledges a segment for which the sender has already 
received. If the TCP sender receives three duplicate ACKs for the same segment, TCP 
interprets this event as packet loss due to congestion and reduces the congestion window 
cwnd by half. This congestion window reduction is known as multiplicative decrease.  
 
In steady state (ignoring the initial TCP period when a connection begins), a packet loss 
will be detected by a triple duplicate ACK. After decreasing cwnd by half, and as long as 
no other packet loss is detected, TCP will slowly increase cwnd again by 1 MSS per RTT. 
This congestion control phase essentially produces an additive increase in the congestion 
window. For this reason, TCP congestion control is referred to as an Additive-Increase 
Multiplicative-Decrease (AIMD) form of congestion control. AIMD gives rise to the “saw 
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tooth” behavior shown in Figure 2(b), which also illustrates the idea of TCP “probing” for 
bandwidth—TCP linearly increases its congestion window size (and hence its transmission 
rate) until a triple duplicate-ACK event occurs. It then decreases its congestion window 
size by a factor of two but then again begins increasing it linearly, probing to see if there 
is additional available bandwidth. 
 
 
1.4 Impact of packet loss in high-latency networks 

 
During the additive increase phase, TCP only increases cwnd by 1 MSS every RTT period. 
This feature makes TCP very sensitive to packet loss on high-latency networks, where the 
RTT is large.  
 
Consider Figure 3, which shows the TCP throughput of a data transfer across a 10 Gbps 
path. The packet loss rate is 1/22,000, or 0.0046%. The purple curve is the throughput in 
a loss-free environment; the green curve is the theoretical throughput computed 
according to the equation below, where L is the packet loss rate.  
 

 
Figure 3. Throughput vs Round-Trip Time (RTT), for two devices connected via a 10 Gbps path. 
The performance of two TCP implementations are provided: Reno1 (blue) and Hamilton TCP2 
(HTCP) (red). The theoretical performance with packet losses (green) and the measured 
throughput without packet losses (purple) are also shown3. 
 

TCP Throughput ≈  
MSS

RTT √𝐿
   [bytes / second] 

 
The equation above indicates that the throughput of a TCP connection in steady state is 
directly proportional to the maximum segment size (MSS) and inversely proportional to 
the Round-Trip Time (RTT) and the square root of the packet loss rate (L). The red and 
blue curves are real throughput measurements of two popular implementations of TCP: 
Reno1 and Hamilton TCP (HTCP)2. Because TCP interprets losses as network congestion, it 
reacts by decreasing the rate at which packets are sent. This problem is exacerbated as 
the latency increases between the communicating hosts. Beyond LAN transfers, the 
throughput decreases rapidly to less than 1 Gbps. This is often the case when research 
collaborators sharing data are geographically distributed.  
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TCP Reno is an early congestion control algorithm. TCP Cubic4, HTCP5, and BBR6 are more 
recent congestion control algorithms, which have demonstrated improvements with 
respect to TCP Reno.  
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 4. Lab topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 5. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 6.mn topology file and click on Open. 
 

 
Figure 6. MiniEdit shortcut. 

 

10 Gbps

h1 s1 h2
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Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 7. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on host h1.  
 

 
Figure 8. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
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Figure 9. Connectivity test using ping command. 

 
Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are 
ready to start the throughput measurement process.  
 
 
2.2 Emulating 10 Gbps high-latency WAN with packet loss 

 
This section emulates a high-latency WAN, which is used to validate the results observed 
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 10 Gbps. Then 
we will emulate packet losses between switch S1 and switch S2 and measure the 
throughput. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 10. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit enter.  
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01% 
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Figure 11. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2; on the 
same terminal, type the command below. This command sets the bandwidth to 10 Gbps 
on switch S1’s s1-eth2 interface. The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

  

 
Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface. 

 

 
2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 13. Output of ping 10.0.0.2 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
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Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the 
standard deviation is an average of how far each ping RTT is from the average RTT. The 
higher the standard deviation the more variable the RTT is. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test 
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 
 
3 Introduction to sysctl 
 
sysctl is a tool for dynamically changing parameters in the Linux operating system7. It 
allows users to modify kernel parameters dynamically without rebuilding the Linux kernel.  
 
Step 1. Run the command below on the Client1’s terminal. When prompted for a 
password, type password and hit enter.  
 
sudo sysctl -a 

 

 
Figure 14. Listing all system parameters in Linux. 

 
This command produces a large output containing the kernel parameters and their values. 
This is represented in a key-value pair. For instance, net.ipv4.ip_forward = 0 implies 
that the key net.ipv4.ip_forward has the value 0. 
 
 
3.1 Read sysctl parameters 

 
It is often useful to search for specific keys without having to manually locate the needed 
key. This can be achieved using the following command: 
 
sysctl <key> 

 
Where <key> is replaced by the needed key. For example, the command sysctl 
net.ipv4.ip_forward returns net.ipv4.ip_forward = 0. 
 
Step 1. Run the following command on the host h1’s terminal: 
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sysctl net.ipv4.ip_forward 

 

 
Figure 15. Reading the value of a given key. 

 
 
3.2 Write sysctl parameters 

 
It is also very useful to modify kernel parameters on the fly. The -w switch is added to 
the sysctl to “write” a value for a specific key.  
 
sysctl -w <key>=<value> 

 
Step 1. For example, if the user decides to enable IP forwarding (i.e., to configure a device 
as a router), then the following command is used: 
 
sudo sysctl -w net.ipv4.ip_forward=1 

 
Run the above command on the host h1’s terminal: 
 

 
Figure 16. Modifying a system parameter. 

 
The changes made to a parameter using this command are temporary. Therefore, a new 
boot resets the value of a key to its default value. Also, when stopping MiniEdit’s 
emulation, the configured parameters are reset. 
 
 
3.3 Configuring sysctl.conf file 

 
If the user wishes to permanently modify the value of a specific key, then the key-value 
pair must be stored within the file /etc/sysctl.conf.  
 
Step 1. In the Linux terminal, open the /etc/sysctl.conf file using your favorite text editor. 
Run the following command on the Client1’s terminal. When prompted for a password, 
type password and hit enter. 
 
sudo featherpad /etc/sysctl.conf 

 
This is a text file that can be edited in any text editor (vim, nano, etc.). For simplicity, we 
use a Graphical User Interface (GUI)-based text editor (featherpad). 
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Figure 17. Opening the /etc/sysctl.conf file. 

 
Step 2. Keys and values are appended to this file. Enable IP forwarding permanently on 
the system by append net.ipv4.ip_forward=1 to the /etc/sysctl.conf file and save it. 
Once you have saved the file, close the text editor.  
 
net.ipv4.ip_forward=1 
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Figure 18. Appending key+value to the /etc/sysctl.conf file and saving. 

 
Step 3. To refresh the system with the new parameters, the -p switch is passed to the 
sysctl command as follows: 
 
sudo sysctl -p 

 
When prompted for a password, type password and hit enter. 
 

 
Figure 19. Loading new sysctl.conf parameters. 

 
Now, even after a new system boot (or reboot), the system will have IP forwarding 
enabled. 
 
 
4 Congestion control algorithms and sysctl 
 
Congestion control algorithms can be inspected and modified using the sysctl command 
and the /etc/sysctl.conf file. Specifically, the following operations are possible: 
 

1. Check the installed congestion control algorithms on the system. 
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2. Inspect the default congestion control algorithm (i.e., the current algorithm used 
by the system). 

3. Modify the congestion control algorithm.  
 
 
4.1 Inspect and install/load congestion control algorithms 

  
In Linux, it is possible to check the available TCP congestion control algorithms installed 
on the system with the command below.  
 
Step 1. Execute the command below on the Client1’s terminal. 
 
sysctl net.ipv4.tcp_available_congestion_control 

 

 
Figure 20. Displaying the system’s available congestion control algorithms. 

 
Usually, the default congestion control algorithm is CUBIC or Reno, depending on the 
installed operating system. A list of some of the possible output is: 
 

• reno: Traditional TCP used by almost all other Operating Systems. Characterized 
by slow start, congestion avoidance, and fast retransmission via triple duplicate 
ACKs. 

• cubic: CUBIC-TCP. Optimized congestion control algorithm for high bandwidth 
networks with high latency. Operates in a similar but more systematic fashion than 
BIC-TCP, in which its congestion window is a cubic function of time since the last 
packet loss, with the inflection point set to the window prior to the congestion 
event. 

• bic: BIC-TCP.  Congestion window utilizes a binary search algorithm to find the 
largest congestion window that will last the maximum amount of time. 

• htcp: Hamilton TCP. A loss-based algorithm using additive-increase and 
multiplicative-decrease to control TCP’s congestion window. 

• vegas: TCP Vegas. Emphasizes packet delay, rather than packet loss, as a signal to 
help determine the rate at which to send packets. 

• bbr: a new algorithm, discussed in future labs. Measures bottleneck bandwidth 
and Round-Trip Propagation (RTP) time in its execution of congestion control. 

 
If the above command does not return a specific congestion control algorithm, it means 
that it is not loaded on the distribution.  
 
Step 2. The command used in Step 1 listed three algorithms: reno cubic bbr. To install 
a new algorithm, its corresponding kernel module must be loaded. This can be done using 



    
Lab 6:  Understanding Traditional TCP Congestion Control 

  Page 16  

insmod or modprobe commands. For example, to load the BIC-TCP module, use the 
following command on the Client1’s terminal:  
 
sudo modprobe tcp_bic 

 

 
Figure 21. Loading tcp_bic module into the Linux kernel. 

 
modprobe and insmod commands require high sudo privileges to insert kernel modules. 

When prompted for a password, type password and hit enter. 
 
Step 3. To verify that the BIC-TCP algorithm is loaded, execute the below command on 
the Client1’s terminal. 
 
sysctl net.ipv4.tcp_available_congestion_control 

 

 
Figure 22. Displaying the system’s available congestion control algorithms after loading TCP-BIC. 
 
 
4.2 Inspect the default (current) congestion control algorithm 

 
To check which TCP congestion control is currently being used by the Linux kernel, the 
net.ipv4.tcp_congestion_control sysctl key is read. This key can be read on an end-host’s 
terminal (host h1 or host h2) or on the Client1’s terminal. 
 
Step 1. Execute the following command on the Client1’s terminal to determine the 
current congestion control algorithm. 
 
sysctl net.ipv4.tcp_congestion_control 

 

 
Figure 23. Current TCP congestion control algorithm. 
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The output shows that the default congestion control algorithm is Cubic. Note that 
applications can set this value (congestion control algorithm) for individual connections. 
 
 
4.3 Modify the default (current) congestion control algorithm 

 
To temporarily change the TCP congestion control algorithm, the sysctl command is 
used with the -w switch on the net.ipv4.tcp_congestion_control key.  
 
Step 1. To modify the current algorithm to TCP Reno, the following command is used. 
Execute the command below on the Client1’s terminal. When prompted for a password, 
type password and hit enter. 
 
sudo sysctl -w net.ipv4.tcp_congestion_control=reno    

 

 
Figure 24. Modifying the congestion control algorithm to reno. 

 
If no error occurred in the assignment (e.g., the module is not installed on the system), 
the output echoes back the new key-value pair, i.e.:  
net.ipv4.tcp_congestion_control=reno  
   
Step 2. Execute the following command on the Client1’s terminal  to determine the 
current congestion control algorithm. 
 
sysctl net.ipv4.tcp_congestion_control 

 

 
Figure 25. Current TCP congestion control algorithm after modifying to reno. 

 
The output shows that the default congestion control algorithm is now Reno instead of 
Cubic.  
 
 
5 iPerf3 throughput test 
 
In this section, the throughput between host h1 and host h2 is measured using different 
congestion control algorithms, namely Reno, HTCP, and Cubic. Moreover, the test is 
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repeated using various injected delays to observe the throughput variations depending 
on each congestion control algorithm and the selected RTT.  
 
 
5.1 Throughput test without delay 

 
In this test, we measure the throughput between host h1 and host h2 without introducing 
delay on the switch S1’s s1-eth2 interface.  
 
 
5.1.1 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 26. Changing TCP congestion control algorithm to reno on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 

iperf3 -s            

 

 
Figure 27. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1 ’s terminal. The -O option is used to 
specify the number of seconds to omit in the resulting report. Note that this option is a 
capitalized ‘O’, not a zero. 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          
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Figure 28. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughput 
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1890 
(due to the injected packet loss-- 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
5.1.2 Hamilton TCP (HTCP) 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=htcp 
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Figure 29. Changing TCP congestion control algorithm to htcp on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 30. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal: 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 31. Running iPerf3 client on host h1. 
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The figure above shows the iPerf3 test output report. The average achieved throughput 
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1789 
(due to the injected packet loss-- 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
5.1.3 TCP Cubic 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=cubic 

 

 
Figure 32. Changing TCP congestion control algorithm to cubic on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 

iperf3 -s            

 

 
Figure 33. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal: 

iperf3 -c 10.0.0.2 -t 20 -O 10          
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Figure 34. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughput 
is 9.56 Gbps (sender) and 9.56 Gbps (receiver), and the number of retransmissions is 1845 
(due to the injected packet loss-- 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
5.2 Throughput test with 30ms delay 

 
In this test, we measure the throughput between host h1 and host h2 while introducing 
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps: 
 
Step 1. On the client’s terminal, run the following command to modify the previous rule 
to include 30ms delay. When prompted for a password, type password and hit enter. 
 
sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms 
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Figure 35. Injecting 30ms delay on switch S1’s s1-eth2 interface. 

 
Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following 
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w 
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in 
future labs. 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’ 

 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’ 

 

 
Figure 36. Modifying the TCP buffer size on host h1. 

 
Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following 
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w 
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.  
 
 

 
Figure 37. Modifying the TCP buffer size on host h2. 

 
 
5.2.1 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 38. Changing TCP congestion control algorithm to reno on host h1. 
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Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 39. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify 
the number of seconds to omit in the resulting report. 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 40. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughput 
is 472 Mbps (sender) and 472 Mbps (receiver), and the number of retransmissions is 45. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
5.2.2 Hamilton TCP (HTCP) 
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Step 1. In host h1’s terminal, change the TCP congestion control algorithm to HTCP by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=htcp 

 

 
Figure 41. Changing TCP congestion control algorithm to htcp on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 

iperf3 -s            

 

 
Figure 42. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal: 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 43. Running iPerf3 client on host h1. 
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The figure above shows the iPerf3 test output report. The average achieved throughput 
is 344 Mbps (sender) and 344 Mbps (receiver), and the number of retransmissions is 93.  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
5.2.3 TCP Cubic 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=cubic 

 

 
Figure 44. Changing TCP congestion control algorithm to cubic on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 45. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal: 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          
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Figure 46. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughput 
is 938 Mbps (sender) and 939 Mbps (receiver), and the number of retransmissions is 180. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
  
This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and Linux 
terminal.  
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Overview 
 
This lab describes a new type of TCP congestion control algorithm called Bottleneck 
Bandwidth and Round-Trip Time (BBR). The lab conducts experimental results using TCP 
BBR and contrasts these results with those obtained using traditional congestion control 
algorithms such as a Reno and HTCP.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Describe the basic operation of TCP BBR. 
2. Describe differences between rate-based congestion control and window-based 

loss-based congestion control. 
3. Modify the TCP congestion control algorithm in Linux using sysctl tool. 
4. Compare the throughput performance of TCP Reno and BBR in high-throughput 

high-latency networks. 
 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP. 
2. Section 2: Lab Topology. 
3. Section 3: iPerf3 Throughput Test. 

 
 
1 Introduction to TCP 
 
 
1.1 Traditional TCP congestion control review 
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TCP congestion control was introduced in the late 1980s. For many years, the main 
algorithm of congestion control was TCP Reno1. Subsequently, multiple algorithms were 
proposed based on Reno’s enhancements. The goal of congestion control is to determine 
how much capacity is available in the network, so that a source knows how many packets 
it can safely have in transit (inflight). Once a source has these packets in transit, it uses 
the arrival of an acknowledgement (ACK) as a signal that one of its packets has left the 
network and that it is therefore safe to insert a new packet into the network without 
adding to the level of congestion. By using ACKs to pace the transmission of packets, TCP 
is said to be self-clocking2. 
 
A major task of the congestion control algorithm is to determine the available capacity. 
In steady state, TCP Reno maintains an estimate of the Round-Trip Time (RTT) -the time 
to send a packet and receive the corresponding ACK-.  If the ACK stream shows that no 
packets are lost in transit, Reno increases the sending rate by one additional segment 
each RTT interval. This period is known as the additive increase. Note that “segment” here 
refers to the protocol data unit (PDU) at the transport layer, and that sometimes the 
terms packet and segment are interchangeably used. Eventually, the increasing flow rate 
saturates the bottleneck link at a router, which drops a packet. The TCP receiver signals 
the missing packet by sending an ACK in response to an out-of-order received segment, 
as illustrated in Figure 1(a). Once the TCP sender receives three duplicate ACKs for the 
same out-of-order segment, it interprets this event as packet loss due to congestion and 
reduces the sending rate by half. This reduction is known as multiplicative decrease. Once 
the loss is repaired, Reno resumes the additive increase phase. This iteration of additive 
increase multiplicative decrease (AIMD) periods is shown in Figure 1(b). 
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Figure 1. (a) TCP operation. (b) Evolution of TCP’s congestion window. 

 
 
1.2 Traditional congestion control limitations 
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While Reno has proven to perform adequately in the past, when the bulk of the TCP 
connections carried trivial applications such as web browsing and email, it faces severe 
limitations in high-throughput connections that are needed for grid computing and big 
science data transfers. Reno’s average TCP throughput can be approximated by the 
following equation2: 
 

TCP Throughput ≈  
MSS

RTT √𝐿
   [bytes / second] 

 
The equation above indicates that the throughput of a TCP connection in steady state is 
directly proportional to the maximum segment size (MSS) and inversely proportional to 
the product of Round-Trip Time (RTT) and the square root of the packet loss rate (L). 
Essentially, the equation above indicates that the TCP throughput is very sensitive to 
packet loss. In such environments Reno cannot achieve high throughput, especially in 
high-latency scenarios. Figure 2 validates the above equation. It shows the throughput as 
a function of RTT, for two devices connected by a 10 Gbps path. The performance of two 
TCP AIMD-based implementations are provided: Reno1 (blue) and Hamilton TCP3, better 
known as HTCP (red). The theoretical performance (using the above equation) with 
packet losses (green) and the measured throughput without packet losses (purple) are 
also shown. Figure 2 is reproduced from4. 
 

 
Figure 2. Throughput vs Round-Trip Time (RTT) for two devices connected via a 10 Gbps path. The 
performance of two TCP implementations are provided: Reno1 (blue) and HTCP (red). The 
theoretical performance with packet losses (green) and the measured throughput without packet 
losses (purple) are also shown. 
 
 
1.3 TCP BBR 

 
The main issue surrounding  traditional congestion control algorithms in high-speed high-
latency networks is that the sender cannot recover from the packet loss and multiplicative 
decrease, even when the packet losses are sporadic. When the RTT is large, increasing the 
congestion window (and thus the sending rate) by only 1 MSS every RTT is too slow. 
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BBR5 is a new congestion control algorithm that does not adhere to the AIMD rule and 
the above equation. BBR is a rate-based algorithm, meaning that at any given time it sends 
data at a rate that is independent of current packet losses. Note that this feature is a 
drastic departure from traditional congestion control algorithms, which operate by 
reducing the sending rate by half each time a packet loss is detected.   
 
The behavior of BBR can be described using Figure 3, which shows a TCP’s viewpoint of 
an end-to-end connection. At any time, the connection has exactly one slowest link, or 
bottleneck bandwidth (btlbw), that determines the location where queues are formed. 
When router buffers are large, traditional congestion control keeps them full (i.e., they 
keep increasing the rate during the additive increase phase). When buffers are small, 
traditional congestion control misinterprets a loss as a signal of congestion, leading to low 
throughput. The output port queue increases when the input link arrival rate exceeds 
btlbw. The throughput of loss-based congestion control is less than btlbw because of the 
frequent packet losses. 
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Figure 3. TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified 
TCP interpretation of the connection. (b) Throughput and RTT, as a function of in-flight data. 

 
Figure 3(b) illustrates the RTT and throughput with the amount of data inflight5. RTTmin is 
the propagation time with no queueing component (the network is not congested). In the 
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application limited region, the delivery rate/throughput increases as the amount of data 
generated by the application layer increases, while the RTT remains constant. The 
pipeline between sender and receiver becomes full when the inflight number of bits is 
equal to the bandwidth multiplied by the RTT. This number is also called bandwidth-delay 
product (BDP) and quantifies the number of bits that can be inflight if the sender 
continuously sends segments. In the bandwidth limited region, the queue size at the 
router of Figure 3(a) starts increasing, resulting in an increase of the RTT. The throughput 
remains constant, as the bottleneck link is fully utilized. Finally, when no buffer is available 
at the router to store arriving packets (the number of inflight bits is equal to BDP plus the 
buffer size of the router), these are dropped.  
 
It is important to understand that packets to be sent are paced at the estimated 
bottleneck rate, which is intended to avoid network queuing that would otherwise be 
encountered when the network performs rate adaptation at the bottleneck point. The 
intended operational model here is that the sender is passing packets into the network at 
a rate that is not anticipated to encounter queuing at any point within the entire path. 
This is a significant contrast to protocols such as Reno, which tends to send packet bursts 
at the epoch of the RTT and relies on the network’s queues to perform rate adaptation in 
the interior of the network if the burst sending rate is higher than the bottleneck capacity. 
 
BBR also periodically probes for additional bandwidth. It spends one RTT interval 
deliberately sending at a rate that is higher than the current estimate bottleneck 
bandwidth. Specifically, it sends data at 125% the bottleneck bandwidth. If the available 
bottleneck bandwidth has not changed, then the increased sending rate will cause a 
queue to form at the bottleneck. This will cause the ACK signaling to reveal an increased 
RTT, but the bottleneck bandwidth estimate will be unaltered. If this is the case, then the 
sender will subsequently send at a compensating reduced sending rate for an RTT interval. 
The reduced rate is set to 75% the bottleneck bandwidth, allowing the bottleneck queue 
to drain. On the other hand, if the available bottleneck bandwidth estimate has increased 
because of this probe, then the sender will operate according to this new bottleneck 
bandwidth estimate. The entire cycle duration lasts eight RTTs and is repeated indefinitely 
in steady state.  
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Figure 4. The rate used by the sender is the estimate bottleneck bandwidth (btlbw). During the 
probe period (1 RTT duration), the sender probes for additional bandwidth, sending at a rate of 
125% of the bottleneck bandwidth. During the subsequent period, drain (1 RTT duration), the 
sender reduces the rate to 75% of the bottleneck bandwidth, thus allowing any bottleneck queue 
to drain. 
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2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 5. Lab topology. 

 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 6. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 7.mn topology file and click on Open. 
 

 
Figure 7. MiniEdit’s Open dialog. 
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Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 8. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 
 

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 
Figure 9. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
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Figure 10. Connectivity test using ping command. 

 
Figure 10 indicates that there is connectivity between host h1 and host h2. Thus, we are 
ready to start the throughput measurement process.  
 
 
2.2 Emulating 1 Gbps high-latency WAN with packet loss 

 
This section emulates a high-latency WAN, which is used to validate the results observed 
in Figure 3. We will first set the bandwidth between host h1 and host h2 to 1 Gbps. Then 
we will emulate packet losses between switch S1 and switch S2, and measure the 
throughput.  
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 11. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. In the terminal, type the below command. When prompted for a password, type 
password and hit enter. This command basically introduces a 0.01% packet loss rate on 
switch S1’s s1-eth2 interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 0.01% 
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Figure 12. Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 1 Gbps 
on switch S1’s s1-eth2 interface. The tbf parameters are the following: 
 

• rate: 1gbit 

• burst: 500,000 

• limit: 2,500,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000 

limit 2500000 

 

 
Figure 13. Limiting the bandwidth to 1 Gbps on switch S1’s s1-eth2 interface. 

 
 
2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 14. Output of ping 10.0.0.2 command. 
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The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 0.064, 0.269, 0.869, and 0.346 milliseconds, respectively. Essentially, the 
standard deviation is an average of how far each ping RTT is from the average RTT. The 
higher the standard deviation the more variable the RTT is. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test 
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 
 
3 iPerf3 throughput test 
 
In this section, the throughput between host h1 and host h2 is measured using two 
congestion control algorithms: Reno and BBR. Moreover, the test is repeated using 
various injected delays to observe the throughput variations depending on each 
congestion control algorithm and the selected RTT.  
 
 
3.1 Throughput test without delay 

 
In this test, we measure the throughput between host h1 and host h2 without introducing 
delay on the switch S1’s s1-eth2 interface.  
 
 
3.1.1 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 15. Changing TCP congestion control algorithm to reno on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 16. Starting iPerf3 server on host h2. 
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Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used to specify 
the number of seconds to omit in the resulting report. 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 17. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughputs 
are 956 Mbps (sender) and 956 Mbps (receiver), and the number of retransmissions is 
161 (due to the injected packet loss - 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.1.2 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
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sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 18. Changing TCP congestion control algorithm to bbr on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 19. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal: 
 
iperf3 -c 10.0.0.2 -t 20 -O 10          

 

 
Figure 20. Running iPerf3 client on host h1. 
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Figure 20 shows the iPerf3 test output report. The average achieved throughputs are 937 
Mbps (sender) and 937 Mbps (receiver), and the number of retransmissions is 92 (due to 
the injected packet loss - 0.01%).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3.2 Throughput test with 30ms delay 

 
In this test, we measure the throughput between host h1 and host h2 while introducing 
30ms delay on the switch S1’s s1-eth2 interface. Apply the following steps: 
 
Step 1. In order to add delay to the switch 1 or interface s1-eth2, go back to the Client’s 
terminal, run the following command to modify the previous rule to include 30ms delay: 
 
sudo tc qdisc change dev s1-eth2 root handle 1: netem loss 0.01% delay 30ms 

 

 
Figure 21. Injecting 30ms delay on switch S1’s s1-eth2 interface. 

 
Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following 
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w 
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained later in 
future labs. 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’ 

 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’ 

 

 
Figure 22. Modifying the TCP buffer size on host h1. 

 
Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the following 
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl -w 
net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’.  
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’ 
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sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’ 

 

 
Figure 23. Modifying the TCP buffer size on host h2. 

 
 
3.2.1 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 24. Changing TCP congestion control algorithm to reno on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 25. Starting iPerf3 server on host h2. 

 
Step 3. Create and enter to a new directory reno on host h1’s terminal: 
 
mkdir reno && cd reno      

 

 
Figure 26. Creating and entering a new directory reno. 

 
Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to 
produce a JSON output and the redirection operator > to send the standard output to a 
file. 
 
iperf3 -c 10.0.0.2 -t 30 -J > reno.json       
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Figure 27. Running iPerf3 client on host h1 and redirecting the output to reno.json. 

 
Step 5. Once the test is finished, type the following command to generate the output 
plots for iPerf3’s JSON file: 
 
plot_iperf.sh reno.json             

 

 
Figure 28. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time 
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit 
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file 
(1.dat) to be used by applicable programs. These files are stored in a directory results 
created in the same directory where the script was executed as shown in the figure below.  
 
Step 6. Navigate to the results folder using the cd command. 
 
cd results/        

 

 
Figure 29. Entering the results directory using the cd command. 

 
Step 7. To open any of the generated files, use the xdg-open command followed by the 
file name. For example, to open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 30. Opening the throughput.pdf file using xdg-open. 
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Figure 31. Reno’s throughput. 

 
Step 8. Close the throughput.pdf file and open the cwnd.pdf file using the following 
command: 
 
xdg-open cwnd.pdf 

 

 
Figure 32. Opening the throughput.pdf file using xdg-open. 

 

 
Figure 33. Reno’s congestion window. 
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Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
Step 10. Exit the /reno/results directory by using the following command on host h1’s 
terminal: 
 
cd ../.. 

 

 
Figure 34. Exiting the /reno/results directory. 

 
 
3.2.2 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 35. Changing TCP congestion control algorithm to bbr on host h1. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal: 
 
iperf3 -s            

 

 
Figure 36. Starting iPerf3 server on host h2. 

 
Step 3. Create and enter to a new directory bbr host h1’s terminal: 
 
mkdir bbr && cd bbr      

 

 
Figure 37. Creating and entering a new directory bbr . 
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Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to 
produce a JSON output and the redirection operator > to send the standard output to a 

file. 
 
iperf3 -c 10.0.0.2 -t 30 -J > bbr.json       

 

 
Figure 38. Running iPerf3 client on host h1 and redirecting the output to bbr.json. 

 

Step 5. To generate the output plots for iPerf3’s JSON file run the following command: 
 
plot_iperf.sh bbr.json             

 

 
Figure 39. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), Round-Trip Time 
variance (RTT_Var.pdf), throughput (throughput.pdf), maximum transmission unit 
(MTU.pdf), bytes transferred (bytes.pdf). The plotting script also generates a CSV file 
(1.dat) to be used by applicable programs. These files are stored in a directory results 
created in the same directory where the script was executed as shown in the figure below.  
 
Step 6. Navigate to the results folder using the cd command. 
 
cd results/      

 

 
Figure 40. Entering the results directory using the cd command. 

 
Step 7. To open any of the generated files, use the xdg-open command followed by the 
file name. For example, to open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 41. Opening the throughput.pdf file using xdg-open. 
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Figure 42. BBR’s throughput. 

 
Step 8. Figure 42 shows that in steady state, BBR has already attained the maximum 
throughput, which is over 900 Mbps (the bottleneck bandwidth is 1 Gbps, with an 
observed effective bandwidth of ~937 Gbps). Note also the periodic (short) drain intervals, 
where the throughput decreases to ~75% of maximum throughput, as discussed in 
Section 1.3.  To proceed, close the throughput.pdf file and open the cwnd.pdf file using 
the following command: 
 
xdg-open cwnd.pdf 

 

 
Figure 43. Opening the cwnd.pdf file using xdg-open. 
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Figure 44. BBR’s congestion window. 

 
Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
Step 10. Exit the /bbr/results directory by using the following command on host h1’s 
terminal: 
 
cd ../.. 

 

 
Figure 45. Exiting the /bbr/results directory. 

 
It is clear from the above test that when introducing delay, BBR preforms significantly 
better than Reno.  
 
This concludes Lab 7. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab explains the bandwidth-delay product (BDP) and how to modify the TCP buffer 
size in Linux systems. Throughput measurements are also conducted to test and verify 
TCP buffer configurations based on the BDP.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand BDP. 
2. Define and calculate TCP window size. 
3. Modify the TCP buffer size with sysctl, based on BDP calculations. 
4. Emulate WAN properties in Mininet. 
5. Achieve full throughput in WANs by modifying the size of TCP buffers. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP buffers, BDP, and TCP window. 
2. Section 2: Lab topology. 
3. Section 3: BDP and buffer size experiments. 
4. Section 4: Modifying buffer size and throughput test. 

 
 
1  Introduction to TCP buffers, BDP, and TCP window 
 
 
1.1 TCP buffers 

 
The TCP send and receive buffers may impact the performance of Wide Area Networks 
(WAN) data transfers. Consider Figure 1. At the sender side, TCP receives data from the 



    
Lab 8: BDP and Setting TCP Buffer Size 

 
  Page 4  

application layer and places it in the TCP send buffer. Typically, TCP fragments the data in 
the buffer into maximum segment size (MSS) units. In this example, the MSS is 100 bytes. 
Each segment carries a sequence number, which is the byte-stream number of the first 
byte in the segment. The corresponding acknowledgement (Ack) carries the number of 
the next expected byte (e.g., Ack-101 acknowledges bytes 1-100, carried by the first 
segment). At the receiver, TCP receives data from the network layer and places it into the 
TCP receive buffer. TCP delivers the data in order to the application. E.g., bytes contained 
in a segment, say segment 2 (bytes 101-200), cannot be delivered to the application layer 
before the bytes contained in segment 1 (bytes 1-100) are delivered to the application. 
At any given time, the TCP receiver indicates the TCP sender how many bytes the latter 
can send, based on how much free buffer space is available at the receiver.  
 

...

1-100

...

From Application

To Network

TCP send buffer

To Application 
(in-order delivery)

From Network

101-200201-300

801-900 701-800

301-400

TCP receive buffer

201-300 101-200 1-100

401-500501-600...

Ack-101 Ack-201 ...

Seq. number
(first byte in segment)

Ack number (next expected byte)
 

Figure 1. TCP send and receive buffers. 

 
 
1.2 Bandwidth-delay product 

 
In many WANs, the round-trip time (RTT) is dominated by the propagation delay. Long 
RTTs along and TCP buffer size have throughput implications. Consider a 10 Gbps WAN 
with a 50-millisecond RTT. Assume that the TCP send and receive buffer sizes are set to 1 
Mbyte (1 Mbyte = 10242 bytes = 1,048,576 bytes = 1,048,576 ⋅ 8 bits = 8,388,608 bits).  
With a bandwidth (Bw) of 10 Gbps, this number of bits is approximately transmitted in  
 

Ttx =  
# bits

Bw
=

8,388,608

10 ⋅ 109
= 0.84 milliseconds. 

 
I.e., after 0.84 milliseconds, the content of the TCP send buffer will be completely sent. 
At this point, TCP must wait for the corresponding acknowledgements, which will only 
start arriving at t = 50 milliseconds. This means that the sender only uses 0.84/50 or 1.68% 
of the available bandwidth.  
 
The solution to that above problem lies in allowing the sender to continuously transmit 
segments until the corresponding acknowledgments arrive back. Note that the first 
acknowledgement arrives after an RTT. The number of bits that can be transmitted in a 
RTT period is given by the bandwidth of the channel in bits per second multiplied by the 
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RTT. This quantity is referred to as the bandwidth-delay product (BDP). For the above 
example, the buffer size must be greater than or equal to the BDP: 
 

TCP buffer size ≥ BDP = (10 ⋅ 109)(50 ⋅ 10−3) = 500,000,000 bits = 62,500,000 bytes. 
 
The first factor (10 ⋅ 109) is the bandwidth; the second factor (50 ⋅ 10-3) is the RTT. For 
practical purposes, the TCP buffer can be also expressed in Mbytes (1 Mbyte = 10242 
bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression, in Mbytes, is  
 

TCP buffer size ≥ 62,500,000 bytes = 59.6 Mbytes ≈ 60 Mbytes. 

 
 
1.3 Practical observations on setting TCP buffer size 

 
Linux systems configuration. Linux assumes that half of the send/receive TCP buffers are 
used for internal structures. Thus, only half of the buffer size is used to store segments. 
This implies that if a TCP connection requires certain buffer size, then the administrator 
must configure the buffer size equals to twice that size. For the previous example, the 
TCP buffer size must be: 
 

TCP buffer size ≥ 2 ⋅ 60 Mbytes = 120 Mbytes.  
 
Packet loss scenarios and TCP BBR1. TCP provides a reliable, in-order delivery service. 
Reliability means that bytes successfully received must be acknowledged. In-order 
delivery means that the receiver only delivers bytes to the application layer in sequential 
order. The memory occupied by those bytes will be deallocated from the receive buffer 
after passing the bytes to the application layer. This process has some performance 
implications, as illustrated next. Consider Figure 2, which shows a TCP receive buffer. 
Assume that the segment carrying bytes 101-200 is lost. Although the receiver has 
successfully received bytes 201-900, it cannot deliver to the application layer until bytes 
101-200 are received. Note that the receive buffer may become full, which would block 
the sender from utilizing the channel.  
 

 
Figure 2. TCP receive buffer. Although bytes 301-900 have been received, they cannot be 
delivered to the application until the segment carrying bytes 201-300 are received. 

 
While setting the buffer size equal to the BDP is acceptable when traditional congestion 
control algorithms are used (e.g., Reno2, Cubic3, HTCP4), this size may not allow the full 
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utilization of the channel with BBR1. In contrast to other algorithms, BBR does not reduce 
the transmission rate after a packet loss. For example, suppose that a packet sent at t = 0 
is lost, as shown in Figure 3. At t = RTT, the acknowledgement identifying the packet to 
retransmit is received. By then, the sender has sent BDP bits, which will be stored in the 
receive buffer. This data cannot be delivered yet to the application, because of the in-
order delivery requirement. Since the receive buffer has a capacity of BDP only, the 
sender is temporarily blocked until the acknowledgement for the retransmitted data is 
received at t = 2⋅RTT. Thus, the throughput over the period t = 0 to t = 2⋅RTT is reduced 
by half: 
 

throughput =  
# bits transmitted

period
=

Bw ⋅ RTT

2 ⋅ RTT
=

Bw

2
. 

 

T=RTT

t=0

BDP

Missing data. Buffered data 
can’t be released to 
application

Missing data arrives. Ready 
for in-order delivery

Data delivered to application. 
Buffer is drainedt=2RTT

Sender is blocked (TCP 
receive buffer full)

...

Sender resumes 
transmission

Sender Receiver

TCP receive buffer 
(BDP capacity)

Packet loss
Data segment

Legend:

Ack identifying packet 
to retransmit

ACK / SACK
Retransmission

 
Figure 3. A scenario where a TCP receive buffer size of BDP cannot prevent throughput 
degradation.  
 

With BBR, to fully utilize the available bandwidth, the TCP send and receive buffers must 
be large enough to prevent such situation. Figure 4 shows an example on how a TCP buffer 
size of 2⋅BDP mitigates packet loss. 
 

High to moderate packet loss scenarios, using TCP BBR: 
 

TCP send/receive buffer ≥ several BDPs (e.g., 4 ⋅ BDP) 
 

 
Continuing with the example of Section 1.2, in a Linux system using TCP BBR, the 
send/receive buffers for a BDP of 60 Mbytes in a high to moderate packet loss scenario 
should be: 
 

TCP buffer size ≥ (2 ⋅ 60 Mbytes)  ⋅ 4 = 480 Mbytes.  
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The factor 2 is because of the Linux systems configuration, and the factor 4 is because of 
the use of TCP BBR in a high to moderate packet loss scenario. 
 

t=RTT

t=0

2BDP

Missing data. Still ~BDP 
buffer capacity available

Data delivered to application. 
Buffer is drained

t=2RTT

...

Sender Receiver

Missing data 
arrives. Ready for 
in-order delivery

ACK / SACK identifying 
packet to retransmit

 
Figure 4. A scenario where a TCP buffer size of 2⋅BDP mitigates packet loss. 

 
 
1.4 TCP window size calculated value 

 
The receiver must constantly communicate with the sender to indicate how much free 
buffer space is available in the TCP receive buffer. This information is carried in a TCP 
header field called window size. The window size has a maximum value of 65,535 bytes, 
as the header value allocated for the window size is two bytes long (16 bits; 216-1 = 65,535). 
However, this value is not large enough for high-bandwidth high-latency networks. 
Therefore, TCP window scale option was standardized in RFC 13235. By using this option, 
the calculated window size may be increased up to a maximum value of 1,073,725,440 
bytes. When advertising its window, a device also advertises the scale factor (multiplier) 
that will be used throughout the session. The TCP window size is calculated as follows: 
 
 

Scaled TCPWin =  TCPWin ⋅ Scaling Factor 
 

 
As an example, consider the following example. For an advertised TCP window of 2,049 
and a scale factor of 512, then the final window size is 1,049,088 bytes. Figure 5 displays 
a packet inspected in Wireshark protocol analyzer for this numerical example. 
 

 
Figure 5. Window Scaling in Wireshark. 
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1.5 Zero window 

 
When the TCP buffer is full, a window size of zero is advertised to inform the other end 
that it cannot receive any more data. When a client sends a TCP window of zero, the 
server will pause its data transmission, and waits for the client to recover. Once the client 
is recovered, it digests data, and inform the server to resume the transmission again by 
setting again the TCP window. 
 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using Miniedit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 6. Lab topology. 

 
Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by 
clicking on Miniedit’s shortcut. When prompted for a password, type password. 
 

 

Figure 7. Miniedit shortcut. 

 
Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the lab8.mn topology file and click on Open. 
 

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2
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Figure 8. Miniedit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of Miniedit’s window 
to start the emulation.  
 

 
Figure 9. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 
 

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
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Figure 10. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 11. Connectivity test using ping command. 

 
Figure 11 indicates that there is connectivity between host h1 and host h2.  
 
 
2.2 Emulating 10 Gbps high-latency WAN 

 
This section emulates a high-latency WAN by introducing delays to the network. We will 
first set the bandwidth between hosts 1 and 2 to 10 Gbps. Then, we will emulate a 20 ms 
delay and measure the throughput. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
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Figure 12. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit enter. This command introduces 20ms delay on S1’s s1-eth2 interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms 

 

 
Figure 13. Adding 20ms delay to switch S1’s s1-eth2 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switches S1 and S2: on the same 
terminal, type the command below. This command sets the bandwidth to 10 Gbps on S1’s 
s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

Figure 14. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface. 

 
Step 3. On h1’s terminal, type ping 10.0.0.2. This command tests the connectivity 
between host h1 and host h2. The test was initiated by h1 as the command is executed 
on h1’s terminal.  
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To stop the test, press Ctrl+c. The figure below shows a successful connectivity test. 
Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving responses 
back.  
 

 
Figure 15. Output of ping 10.0.0.2 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the round-trip time 
(RTT) were 20.092, 25.353, 41.132, and 9.111 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 4. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
H2’s terminal: 
 
iperf3 -s          

 

 
Figure 16. Host h2 running iperf3 as server. 

 
Step 5. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in h1’s terminal:  
 
iperf3 -c 10.0.0.2      
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Figure 17. iPerf3 throughput test. 

 
Notice the measured throughput now is approximately 3 Gbps, which is different than 
the value assigned in our tbf rule. Next, we explain why the 10 Gbps maximum 
theoretical bandwidth is not achieved. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3 BDP and buffer size 
 
In connections that have a small BDP (either because the link has a low bandwidth or 
because the latency is small), buffers are usually small. However, in high-bandwidth high-
latency networks, where the BDP is large, a larger buffer is required to achieve the 
maximum theoretical bandwidth.  
 
 
3.1 Window size in sysctl 

 
The tool sysctl is used for dynamically changing parameters in the Linux operating system. 
It allows users to modify kernel parameters dynamically without rebuilding the Linux 
kernel. 
 
The sysctl key for the receive window size is net.ipv4.tcp_rmem and the send window 
size is net.ipv4.tcp_wmem 
 
Step 1. To read the current receiver window size value of host h1, use the following 
command on h1’s terminal: 
 
sysctl net.ipv4.tcp_rmem 
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Figure 18. Receive window read in sysctl. 

 
Step 2. To read the current send window size value of host h1, use the following command 
on h1’s terminal: 
 
sysctl net.ipv4.tcp_wmem 

 

 
Figure 19. Send window read in sysctl. 

 
The returned values of both keys (net.ipv4.tcp_rmem and net.ipv4.tcp_wmem) are 
measured in bytes. The first number represents the minimum buffer size that is used by 
each TCP socket. The middle one is the default buffer which is allocated when applications 
create a TCP socket. The last one is the maximum receive buffer that can be allocated for 
a TCP socket. 
 
The default values used by Linux are: 
 

• Minimum: 10,240 

• Default: 87,380 

• Maximum: 16,777,216 
 
In the previous test (10 Gbps, 20ms delay), the buffer size was not modified on end-hosts. 
The BDP for the above test is: 

 
BDP = (10 ⋅ 109) ⋅ (20 ⋅ 10−3) =  200,000,000 bits = 25,000,000 bytes ≈ 25 Mbytes. 

  
Note that this value is significantly greater than the maximum buffer size (16 Mbytes), 
and therefore, the pipe is not getting filled, which leads to network resources 
underutilization. Moreover, since Linux systems by default uses half of the send/receive 
TCP buffers for internal kernel structures (see Section 1.3 Linux systems configuration), 
only half of the buffer size is used to store TCP segments. Figure 20 shows the calculated 
window size of a sample packet of the previous test- approximately 8 Mbytes. This is 50% 
of the default buffer size used by Linux (16 Mbytes). 
 

 
Figure 20. Sample window size from previous test. 

 
Note that the observation in Figure 20 reinforces the best practice described in Section 
1.3: in Linux systems, the TCP buffer size must be at least twice the BDP. 
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4 Modifying buffer size and throughput test 
 
This section repeats the throughput test of Section 4 after modifying the buffer size 
according to the formula describe above. This test assumes the same network parameters 
introduced in the previous test, therefore, the bandwidth is limited to 10 Gbps, and the 
RTT (delay or latency) is 20ms. The send and receive buffer sizes should be set to at least 
2 · BDP (if BBR is used as the congestion control algorithm, this should be set to even a 
larger value, as described in Section 1). We will use 25 Mbytes value for the BDP instead 
of 25,000,000 bytes (1 Mbyte = 10242 bytes). 
 

BDP =  25 Mbytes = 25 ⋅ 10242 bytes =  26,214,400 bytes 

 
TCP buffer size = 2 ·  BDP =  2 · 26,214,400 bytes = 52,428,800 bytes 

 
Step 1. To change the TCP receive receive-window size value(s), use the following 
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

  
Figure 21. Receive window change in sysctl. 

 
The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be 
allocated for a TCP socket. 
 
Step 2. To change the current send-window size value(s), use the following command on 
h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 22. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2. 
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Step 3. To change the current receiver-window size value(s), use the following command 
on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 23. Receive window change in sysctl. 

 
Step 4. To change the current send-window size value(s), use the following command on 
h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 24. Send window change in sysctl. 

 
Step 5. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
h2’s terminal: 
 
iperf3 -s          

 

 
Figure 25. Host h2 running iPerf3 as server. 

 
Step 6. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in h1’s terminal: 
 
iperf3 -c 10.0.0.2      
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Figure 26. iPerf3 throughput test. 

 
Note the measured throughput now is approximately 10 Gbps, which is close to the value 
assigned in our tbf rule (10 Gbps).  
 
This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and Linux terminal. 
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Overview 
 
This lab introduces TCP parallel streams in Wide Area Networks (WANs) and explains how 
they are used to achieve higher throughput. Then, throughput tests using parallel streams 
are conducted.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Understand TCP parallel streams. 
2. Describe the advantages of TCP parallel streams. 
3. Specify the number of parallel streams in an iPerf3 test. 
4. Conduct tests and measure performance of parallel streams on an emulated WAN. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP parallel streams. 
2. Section 2: Lab topology. 
3. Section 3: Parallel streams in a high-latency high-bandwidth WAN. 
4. Section 4: Parallel streams with packet loss. 

 
 
1 Introduction to TCP parallel streams 
 
 
1.1 Parallel stream fundamentals 

 
Parallel Streams are multiple TCP connections opened by an application to increase 
performance and maximize the throughput between communicating hosts. With parallel 
streams, data blocks for a single file transmitted from a sender to a receiver are 
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distributed over the multiple streams. Figure 1 shows the basic model. A control channel 
is established between the sender and the receiver to coordinate the data transfer. The 
actual transfer occurs over the parallel streams, collectively referred to as data channels. 
In this context, the term stream is a synonym of flow and connection. 
 

DP1

Sender

CP

Receiver

DP2

DP3

DP1

DP2

DP3

Stream 1

Stream 2

Stream 3

Control channel
CP

Legend:

CP: Control process

DP: Data process

Data channels

 
Figure 1. Data transfer model with parallel streams.  

 
 
1.2 Advantages of parallel streams 

 
Transferring large files over high-latency WANs with parallel streams have multiple 
benefits, as describe next.  
  
Combat random packet loss not due congestion: assume that packet loss occurs 
randomly rather than due congestion. In steady state, the average throughput of a single 
TCP stream is given by1:  

𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭 ≈  
𝐌𝐒𝐒

𝐑𝐓𝐓 √𝑳
 bytes per second, 

where MSS is the maximum segment size and L is the packet loss rate. The above equation 
indicates that the throughput is directly proportional to the MSS and inversely 
proportional to RTT and the square root of L. When an application uses K parallel streams 
and if RTT, packet loss, and MSS are the same in each stream, the aggregate average 
throughput is the aggregation of the K single stream throughputs2: 
 

 

Aggregate average throughput ≈  ∑
𝑀𝑆𝑆

𝑅𝑇𝑇√𝐿
= 𝐾 ⋅

𝑀𝑆𝑆

𝑅𝑇𝑇√𝐿
𝐾
𝑖=1  bytes per second. 

 

 
Thus, an application opening K parallel connections essentially creates a large virtual MSS 
on the aggregate connection that is K times the MSS of a single connection2. 
 
The TCP throughput follows the additive increase multiplicative decrease (AIMD) rule: TCP 
continuously probes for more bandwidth and increases the throughput of a connection 
by approximately 1 MSS per RTT as long as no packet loss occurs (additive increase phase). 
When a packet loss occurs, the throughput is reduced by half (multiplicative decrease 
event). Figure 2 illustrates the AIMD behavior for two connections with different MSSs. 
The MSS of the green connection is six than the MSS of the red connection. Since during 
the additive increase phase TCP increases the throughput by one MSS every RTT, the 
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speed at which the throughput increases is proportional to the MSS (i.e., the larger the 
MSS the faster the recovery after a packet loss). 
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to MSS
Additive increase
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decrease

 
Figure 2. Additive increase multiplicative decrease (AIMD) behavior. The green curve corresponds 
to the throughput when the MSS is six times that of the red curve.   

 
Mitigate TCP round-trip time (RTT) bias: when different flows with different RTTs share 
a given bottleneck link, TCP’s throughput is inversely proportional to the RTT3. This is also 
noted in the equations discussed above. Hence, low-RTT flows get a higher share of the 
bandwidth than high-RTT flows. Thus, for transfers across high-latency WANs, one 
approach to combat the higher (unfair) bandwidth allocated to low-latency connections 
is by using parallel streams. By doing so, even if each high-latency stream receives less 
amount of bandwidth than low-latency flows, the aggregate throughput of the parallel 
streams can be high.  
 
Overcome TCP buffer limitation: TCP receives data from the application layer and places 
it in the TCP buffer, as shown in Figure 3. TCP implements flow control by requiring the 
receiver indicate how much spare room is available in the TCP receive buffer. For a full 
utilization of the path, the TCP send and receive buffers must be greater than or equal to 
the bandwidth-delay product (BDP). This buffer size value is the maximum number of bits 
that can be outstanding (in-flight) if the sender continuously sends segments. If the buffer 
size is less than the bandwidth-delay product, then throughput will not be maximized. 
One solution to overcome small TCP buffer size situations is by using parallel streams. 
Essentially, an application opening K parallel connections creates a large buffer size on 
the aggregate connection that is K times the buffer size of a single connection.  
 

TCP data 
in buffer

Spare room

TCP receive buffer

To application 
layer

From 
IP

Receiver

TCP data in 
buffer

Spare 
room

TCP send buffer

From 
application layer

To IP

Sender

 

Figure 3. TCP send and receive buffers.  

 



    
Lab 9: TCP Parallel Streams 

 
  Page 6  

In this lab, we will explore the use of parallel streams to overcome TCP buffer limitation 
and to mitigate random packet loss. 
 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  

 

 
Figure 4. Lab topology. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 5. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 9.mn topology file and click on Open. 
 

 
Figure 6. MiniEdit’s Open dialog. 

 

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2
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Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 7. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 
Figure 8. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminals.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 

h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 



    
Lab 9: TCP Parallel Streams 

 
  Page 8  

 
Figure 9. Connectivity test using ping command. 

 
Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are 
ready to start the throughput measurement process.  
 
 
2.2 Emulating 10 Gbps high-latency WAN 

 
This section emulates a high-latency WAN. We will first emulate 20ms delay between 
switch S1 and switch S2 to measure the throughput. Then, we will set the bandwidth 
between host h1 and host h2 to 10 Gbps.  
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 10. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit enter. This command introduces 20ms delay on switch S1’s s1-eth2 
interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms 

 



    
Lab 9: TCP Parallel Streams 

 
  Page 9  

 
Figure 11. Adding delay of 20ms to switch S1’s s1-eth2 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 10 Gbps 
on switch S1’s s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

 
Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface. 

 
 
2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 13. Output of ping 10.0.0.2 command. 
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The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.080, 25.284, 40.883, and 9.006 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test 
should be relatively close to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 
Step 3. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 14. Starting iPerf3 server on host h2. 

 
Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. To stop the test, press Ctrl+c. 
 
iperf3 -c 10.0.0.2          

 

 
Figure 15. Running iPerf3 client on host h1. 

 
Although the link was configured to 10 Gbps, the test results show that the achieved 
throughput is 3.22 Gbps. This is because the TCP buffer size is less than the bandwidth-
delay product. In the upcoming section, we run a throughput test without modifying the 
TCP buffer size, but with multiple parallel streams. 
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Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3 Parallel streams to overcome TCP buffer limitation 
 
In this section, parallel streams are specified by the client when executing the throughput 
test in iPerf3. The iPerf3 server should start as usual, without specifying any additional 
options or parameters. 
 
Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s 
terminal as shown the figure below: 
 
iperf3 -s          

 

 
Figure 16. Host h2 running iPerf3 as server. 

 
Step 2. Now the iPerf3 client should be launched with the -P option specified (not to be 
confused with the -p option which specifies the listening port number). This option 
specifies the number of parallel streams. Run the following command in host h1’s 
terminal: 
 
iperf3 -c 10.0.0.2 -P 8    

 

 
Figure 17. iPerf3 throughput test with parallel streams. 



    
Lab 9: TCP Parallel Streams 

 
  Page 12  

 
The above command uses 8 parallel streams. Note that 8 sockets are now opened on 
different local ports, and their streams are connected to the server, ready for transmitting 
data and performing the throughput test. 
 

 
Figure 18. iPerf3 throughput test with parallel streams summary output. 

 
Note the measured throughput now is approximately 9.5 Gbps, which is close to the value 
assigned in the tbf rule (10 Gbps).  
 
Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
4 Parallel streams to combat packet loss 
 
Packet loss is inevitable in real-world networks. This section explores the use of parallel 
streams to mitigate packet loss not due congestion (i.e., random packet loss), and 
compares the performance of single and parallel streams.  
 
 
4.1 Limit rate and add packet loss on switch S1’s s1-eth2 interface 

 
In this topology, rate limiting is applied on switch S1’s interface which connects it to 
switch S2 (s1-eth2) and 1% packet loss is introduced.  
 
Step 1. Before applying any additional configuration, the previous rules assigned on the 
switch’s interface must be deleted. To remove these, type the following command on the 
Client’s terminal. When prompted for a password, type password and hit enter. 
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sudo tc qdisc del dev s1-eth2 root 

 

 
Figure 19. Deleting previous rules on switch S1’s s1-eth2 interface. 

 
Step 2. On the same terminal, type the below command to add 1% packet loss.  
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1% 

 

 
Figure 20. Adding 1% packet loss to switch S1’s s1-eth2 interface. 

 
Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 10 Gbps 
on switch S1’s s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

 
Figure 21. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface. 

 
Step 3. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal as shown the figure below: 
 
iperf3 -s            
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Figure 22. Starting iPerf3 server on host h2. 

 
Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. To stop the test, press Ctrl+c. 
 
iperf3 -c 10.0.0.2          

 

 
Figure 23. Running iPerf3 client on host h1. 

 
Note the measured throughput now is approximately 7.6 Gbps, which is different than 
the value assigned in the tbf rule (10 Gbps).  
 
Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
4.2 Test with parallel streams 

 
Step 1. Now the test is repeated while using parallel streams. To launch iPerf3 in server 
mode, run the command iperf3 -s in host h2’s terminal as shown in Figure 24: 
 
iperf3 -s          
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Figure 24. Host h2 running iPerf3 as server. 

 
Step 2. Now the iPerf3 client should be launched with the -P option specified (not to be 
confused with the -p option which specifies the listening port number). This option 
specifies the number of parallel streams. Run the following command in host h1’s 
terminal: 
 
iperf3 -c 10.0.0.2 -P 8    

 

 
Figure 25. Host h1 running iPerf3 as client with 8 parallel streams. 

 
The above command uses 8 parallel streams. Note that 8 sockets are now opened on 
different local ports, and their streams are connected to the server, ready for transmitting 
data and performing the throughput test. 
 

 
Figure 26. iPerf3 throughput test with parallel streams summary output. 
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Note the measured throughput now is approximately 9.6 Gbps, which is close to the value 
assigned in our tbf rule (10 Gbps). In conclusion, parallel streams are beneficial when the 
packet loss rate is high. As shown in the previous test, when using parallel streams, the 
host was able to achieve the maximum theoretical bandwidth. 
 
This concludes Lab 9. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab introduces TCP fairness in Wide Area Networks (WAN) and explains how 
competing TCP connections converge to fairness. The lab describes how to calculate the 
TCP fairness index, a metric that quantifies how fair the aggregate connection is divided 
between active connections. Finally, the lab conducts throughput tests in an emulated 
high-latency network and derives the fairness index. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Define TCP fairness. 
2. Calculate TCP fairness index. 
3. Emulate a WAN and calculating fairness index among parallel streams. 
4. Emulate a WAN and calculating fairness index among competing TCP connections.  

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Fairness concepts. 
2. Section 2: Lab topology. 
3. Section 3: Calculating fairness among parallel flows. 
4. Section 4: Calculating fairness index with different congestion control 

algorithms. 
 
 
1 Fairness concepts 
 
 
1.1 TCP bandwidth allocation 
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Many networks do not use any bandwidth reservation mechanism for TCP flows passing 
through a router. Instead, routers simply make forwarding decisions based on the 
destination field of the IP header. As a result, flows may attempt to use as much 
bandwidth as possible. In this situation, it is the TCP congestion control algorithm that 
allocates bandwidth to the competing flows.  
 
Consider the scenario where two TCP flows share a bottleneck link with bandwidth 
capacity R, as illustrated in Figure 1. Assume that the two senders are in equal conditions 
(round-trip time, maximum segment size, configuration parameters) and that they use 
the same congestion control algorithm. Furthermore, assume that the two flows are in 
steady state and that the congestion control algorithm operates according to the additive 
increase multiplicative decrease (AIMD) rule1. A fair bandwidth allocation would result in 
a bandwidth partition of R/2 to each flow.  
 

Bottleneck 

R
Sender 

TCP flow 2

Sender 

TCP flow 1

Router Router

 
Figure 1. Two TCP flows that share a bottleneck link of capacity R. 

 
Figure 2 shows the bandwidth allocation region for the two flows1. The bandwidth 
allocation to flow 1 is on x-axis and to flow 2 is on the y-axis. If TCP is to share the 
bottleneck bandwidth equally between the two flows, then the bandwidth will fall along 
the fairness line emanating from the origin. Note that the origin (0, 0) is a fair but 
undesirable solution. When the allocations sum to 100% of the bottleneck capacity, the 
allocation is efficient. This is shown by the efficiency line. Note that potential efficient 
solutions include points A (R, 0) and points B (0, R). On point A, flow 1 receives 100% of 
the capacity, and on point B flow 2 receives 100% of the capacity. Clearly, these solutions 
are not desirable, as they lead to starvation and unfairness.  
 
Assume that the sending rates of senders 1 and 2 at a given time are indicated by point 
p1. As the amount of aggregate bandwidth jointly consumed by the two flows is less than 
R, no loss will occur, and TCP will gently increase the bandwidth allocation (this process is 
called additive increase phase). Eventually, the bandwidth jointly consumed by the two 
connections will be greater than R, and a packet loss will occur at a point, say p2. TCP 
reacts to a packet loss by aggressively decreasing the sending rate by half (this operation 
is called multiplicate decrease). The resulting bandwidth allocations are realized at point 
p3. Since the joint bandwidth use is less than R at point p3, TCP will again increase the 
allocation to flows 1 and 2. Eventually, the TCP additive increase phase will lead to the 
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operating point p4, where a loss will again occur, and the two flows again will see a 
decrease in the bandwidth allocation, and so on. The bandwidth realized by the two flows 
eventually will fluctuate along the fairness line, near the optimal operating point Opt (R/2, 
R/2). Chiu and Jain1 describe the reasons of why TCP converges to a fair and efficient 
allocation. This convergence occurs independently of the starting point2, 3. 
 

B (0, R)

A (R, 0)

Opt (R/2, R/2)

Bandwidth Sender 1
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n
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p5

Start
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(up at 45
o
)

Multiplicative decrease

(line points to origin)

Legend:

 
Figure 2. Bandwidth allocation region realized by two competing TCP flows.  

 
 
1.2 TCP fairness index calculation 

 
A useful index to quantify fairness is Jain’s index4. The index has the following properties: 
 

1. Population size independence: the index is applicable to any number of flows. 
2. Scale and metric independence: the index is independent of scale, i.e., the unit of 

measurement does not matter.  
3. Boundedness: the index is bounded between 0 and 1. A totally fair system has an 

index of 1 and a totally unfair system has an index of 0.  
4. Continuity: the index is continuous. Any change in allocation is reflected in the 

fairness index.  
 
Jain’s fairness index is given by the following equation:  
 

𝐼 =  
(∑ 𝑇𝑖

𝑛
𝑖=1 )2

𝑛 ∑ 𝑇𝑖
2𝑛

𝑖=1

 

 
where 

• 𝐼 is the fairness index, with values between 0 and 1. 

• 𝑛 is the total number of flows. 

• 𝑇1, 𝑇2, . . . , 𝑇𝑛 are the measured throughput of individual flows. 
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As an example of fairness index calculation, consider the three flows shown in Figure 3. 
Given the bottleneck capacity of 9 Gbps, assume that the bandwidth allocations for flows 
1, 2, and 3 are 5 Gbps, 3 Gbps, and 1 Gbps. The fairness index for this allocation is: 
 

𝐼 =
(∑ 𝑇𝑖

3
𝑖=1 )2

3 ∑ 𝑇𝑖
23

𝑖=1

=  
(5 ⋅ 109 + 3 ⋅ 109 +  1 ⋅ 109)2

3 ⋅ ((5 ⋅ 109)2 + (3 ⋅ 109)2 +  (1 ⋅ 109)2)
= 0.77 

 
 

Bottleneck 

9 Gbps

Sender 

TCP flow 3

Sender 

TCP flow 1

Router Router

Sender 

TCP flow 2

5 Gbps

1 Gbps

3 Gbps

 
Figure 3. Three TCP flows that share a bottleneck link of capacity 9 Gbps. 

 
Note that by property 2 (scale and metric independence), the fairness index of the above 
example is the same as that of an allocation of 5 Mbps, 3 Mbps, and 1 Mbps (or more 
generally, an allocation of 5, 3, and 1 units). Also, note that an optimal fair allocation of 3 
Gbps to each flow would produce a fairness index of 1. 
 
 
2 Lab topology 
 
Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 4. Lab topology 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1
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h3

h3-eth0

s1-eth2
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h2

h2-eth0
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h4

10.0.0.4

s2-eth2

s2-eth3
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Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 5. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 10.mn topology file and click on Open. 
 

 
Figure 6. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 7. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 



    
Lab 10: TCP Fairness 

2.1 Starting host h1 and host h2 

 
Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 
Figure 8. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 9. Connectivity test using ping command. 

 
Figure 9 indicates that there is connectivity between host h1 and host h2. Thus, we are 
ready to start the throughput measurement process.  
 
 
2.2 Emulating 10 Gbps high-latency WAN 

 
This section emulates a high-latency WAN. We will first emulate 20ms delay between 
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth 
between host h1 and host h2 to 10 Gbps.  
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Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 10. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
Command-Line Interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system for execution.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 20ms delay on switch S1’s s1-eth1 
interface. 
 
sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms 

 

 
Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 10 Gbps 
on switch S1’s s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

 
Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface. 
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2.3 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 13. Output of ping 10.0.0.2 command. 

 

The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.1. The ping output in this test 

should be relatively close to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 
Step 3. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 14. Starting iPerf3 server on host h2. 

 
Step 4. Launch iPerf3 in client mode on host h1 ’s terminal. 
 
iperf3 -c 10.0.0.2          
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Figure 15. Running iPerf3 client on host h1. 

 
Although the link was configured to 10 Gbps, the test results show that the achieved 
throughput is 3.20 Gbps. This is because the TCP buffer size was not modified at this point.  
 
Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
Step 6. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation: 
 
𝐵𝑊 = 10,000,000,000 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 
 
𝑅𝑇𝑇 = 0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 
𝐵𝐷𝑃 = 10,000,000,000 ∗ 0.02 =  200,000,000 𝑏𝑖𝑡𝑠 
          = 25,000,000 𝑏𝑦𝑡𝑒𝑠 ≈ 25 𝑀𝑏𝑦𝑡𝑒𝑠  
 

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes 
value for the BDP instead of 25,000,000 bytes. 

 
1 𝑀𝑏𝑦𝑡𝑒 =  10242 𝑏𝑦𝑡𝑒𝑠 
 
𝐵𝐷𝑃 =  25 𝑀𝑏𝑦𝑡𝑒𝑠 = 25 ∗ 10242 𝑏𝑦𝑡𝑒𝑠 =  26,214,400 𝑏𝑦𝑡𝑒𝑠 
 
2 ·  𝐵𝐷𝑃 =  2 · 26,214,400 𝑏𝑦𝑡𝑒𝑠 = 52,428,800 𝑏𝑦𝑡𝑒𝑠  
 
Now, we have calculated the maximum value of the TCP sending and receiving buffer size. 
In order to apply the new values, on host h1’s terminal type the command showed down 
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 
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Figure 16. Receive window change in sysctl. 

 
Step 7. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 17. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2. 
 
Step 8. To change the current receive-window size value(s), use the following command 
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 18. Receive window change in sysctl. 

 
Step 9. To change the current send-window size value(s), use the following command on 
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 19. Send window change in sysctl. 

 
Step 10. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal: 
 
iperf3 -s          
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Figure 20. Host h2 running iPerf3 as server. 

 
Step 11. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in host h1’s terminal: 
 
iperf3 -c 10.0.0.2      

  

 
Figure 21. iPerf3 throughput test. 

 
Note the measured throughput now is approximately 9.38 Gbps, which is close to the 
value assigned in our tbf rule (10 Gbps).  
 
Step 12. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3 Calculating fairness among parallel flows 
 
In this section, an iPerf3 test that includes several parallel streams is conducted, followed 
by the calculation of the fairness index. 
 
Step 1. Now a test is conducted using parallel streams. To launch iPerf3 in server mode, 
run the command iperf3 -s in host h2’s terminal as shown in Figure 22: 
 
iperf3 -s          
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Figure 22. Host h2 running iPerf3 as server. 

 
Step 2. Now the iPerf3 client should be launched with the -P option specified to start 
parallel streams. The -J option is also specified to indicate that JSON output is desired, 
and the redirection operator > to store the output in a file. Run the following command 
in host h1’s terminal as shown in Figure 23: 
 
iperf3 -c 10.0.0.2 -P 8 -J > out.json      

 

 
Figure 23. Host h1 running iPerf3 as client with 8 parallel streams and saving output in file. 

 
Step 3. The client includes a script called fairness.sh. Basically, this script accepts as 
input the JSON file exported by iPerf3 and calculates the fairness index. Run the following 
command to calculate the fairness index: 
 
fairness.sh out.json      

 

 
Figure 24. Calculating the fairness index between the parallel streams. 

 
In the above test, the fairness index is .91395, or 91% fair. Note that this result may vary 
according to the result of your emulation test. 
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
4 Calculating fairness among several hosts with the same congestion 

control algorithm 
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In the previous section, we calculated the fairness index among several parallel streams, 
all initiated by a single host. In this section we calculate the fairness index among two 
transmitting devices. Specifically, an iPerf3 client is executed on host h1 and connected 
to host h2 (iPerf3 server); another iPerf3 client is executed on host h3 and connected to 
host h4 (iPerf3 server). 
 
To calculate the fairness index, the transmitting hosts should initiate their transmissions 
simultaneously. Since it is difficult to start the clients at the same time, the client’s 
machine provides a script that automates this process.  
 
Step 1. Close the terminals of host h1 and host h2.  
 
Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.  
 

 
Figure 25. Opening Mininet’s terminal. 

 

 
Figure 26. Mininet’s terminal. 

 
Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.  
 
source concurrent_same_algo         
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Figure 27. Running the tests simultaneously for 120 seconds. Both host h1 and host h3 are using 
Reno. 

 

 
Figure 28. Throughput of host h1 and host h3. 

 
The above graph shows that the throughput of host h1 is close to that of host h3. 
Therefore, the fairness index should be close to 1 (100%). Note that this result may vary 
according to the result of your emulation test. 
 
Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is 
displayed at the end as shown in the figure below. 
 



    
Lab 10: TCP Fairness 

 
Figure 29. Calculated fairness index. 

 
The above figure shows a fairness index of .99595. This value indicates that the bottleneck 
bandwidth was 99% fairly shared among host h1 and host h3. Note that this result may 
vary according to the result of your emulation test. 
 
 
 
5 Calculating fairness among hosts with different congestion control 

algorithms 
 
In the previous test, we calculated the fairness index while using the same congestion 
control algorithm (Reno). In this section we repeat the test, but with host h1 using Reno 
and host h3 using BBR. 
 
Step 1. Go back to Mininet’s terminal, i.e., the one launched when MiniEdit was started.  

 

 
Figure 30. Opening Mininet’s terminal. 

 
Step 2. Issue the following command on Mininet’s terminal as shown in the figure below.  
 
source concurrent_diff_algo         
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Figure 31. Running the tests simultaneously for 20 seconds. Host h1 is using Reno while host h3 
is using BBR. 

 

 
Figure 32. Throughput of host h1 and host h3. 

 
The above graph shows that the device configured with BBR has a larger bandwidth 
allocation than that configured with Reno. Therefore, the fairness index will not be close 
to 1 (100%). 
 
Step 3. Close the graph window and go back to Mininet’s terminal. The fairness index is 
displayed at the end as shown in the figure below. 
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Figure 33. Calculated fairness index. 

 
The above figure shows a fairness index of .86036 (~ 86%), which is very far from 100%. 
This value indicates that the bottleneck bandwidth was 86% fairly shared among host h1 
and host h3. Note that this result may vary according to the result of your emulation test. 
 
This concludes Lab 10. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab reviews the internal architecture of routers and switches. These devices are 
essential in high-speed networks, as they must be capable of absorbing transient packet 
bursts generated by large flows and thus avoid packet loss. The lab describes the buffer 
requirements to absorb such traffic fluctuations, which are then validated by 
experimental results. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Describe the internal architecture of routers and switches. 
2. Understand the importance of buffers of routers and switches to prevent packet 

loss. 
3. Conduct experiments with routers and switches of variable buffer sizes. 
4. Calculate the buffer size required by routers and switches to absorb transient 

bursts. 
5. Use experimental results to draw conclusions and make appropriate decision 

related to routers’ and switches’ buffers. 
 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Introduction. 
2. Section 2: Lab topology. 
3. Section 3: Testing throughput with 100*MTU switch’s buffer size. 
4. Section 4: Testing throughput with one BDP switch’s buffer size. 
5. Section 5: Emulating high-latency WAN with packet loss. 

 
 
1 Introduction 
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1.1 Introduction to switching 

 
Two essential functions performed by routers are routing and forwarding. Routing refers 
to the determination of the route taken by packets. Forwarding refers to the switching of 
a packet from the input port to the appropriate output port. The term switching is also 
used interchangeably with forwarding. Traditional routing approaches such as static and 
dynamic routing (e.g., Open Shortest Path First (OSPF)1, BGP2) are used in the 
implementation of high-speed networks, e.g., Science DMZs. Routing events, such as 
routing table updates, occur at the millisecond, second, or minute timescale, and best 
practices used in regular enterprise networks are applicable to high-speed networks as 
well. These functions are sometimes collectively referred to as the control plane and are 
usually implemented in software and execute on the routing processor (typically a 
traditional CPU), see Figure 1.  On the other hand, with transmission rates of 10 Gbps and 
above, the forwarding operations related to moving packets from input to output 
interfaces at very high speed must occur at the nanosecond timescale. Thus, forwarding 
operations, collectively referred to as forwarding or data plane, are executed in 
specialized hardware and optimized for performance.  
 

 
Figure 1. A generic router architecture. 

 
Since forwarding functionality is common in both routers and switches, this lab reviews 
the architecture and forwarding-related attributes of switches. These attributes are 
applicable to routers as well; thus, for this lab, the terms switch and router are used 
interchangeably.  
 
 
1.2 Router architecture 

 
Consider the generic router architecture that is shown in Figure 1. Modern routers may 
have a network processor (NP) and a table derived from the routing table in each port, 
which is referred to as the forwarding table (FT) or forwarding information base (FIB). The 
router in Figure 1 has two input ports, iP1 and iP2, with their respective queues. iP1 has 
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three packets in its queue, which will be forwarded to output ports oP1 (green packets) 
and oP2 (blue packet) by the fabric. A switch fabric moves packets from input to output 
ports. Switch fabric designs are shared memory, crossbar network, and bus. In shared 
memory switches, packets are written into a memory location by an input port and then 
read from that memory location by the output port. Crossbar switches implement a 
matrix of pathways that can be configured to connect any input port to any output port. 
Bus switches use a shared bus to move packets from the input ports to the output ports3. 
 
Router queues/buffers absorb traffic fluctuations. Even in the absence of congestion, 
fluctuations are present, resulting mostly from coincident traffic bursts4. Consider an 
input buffer implemented as a first-in first-out in the router of Figure 1. As iP1 and iP2 
both have one packet to be forwarded to oP1 at the front of the buffer, only one of them, 
say the packet at iP2, will be forwarded to oP1. The consequence of this is that not only 
the first packet must wait at iP1. Also, the second packet that is queued at iP1 must wait, 
even though there is no contention for oP2. This phenomenon is known as Head-Of-Line 
(HOL) blocking5. To avoid HOL blocking, many switches use output buffering, a mixture of 
internal and output buffering, or techniques emulating output buffering such as Virtual 
Output Queueing (VOQ). 
 
 
1.3 Where does packet loss occur?  

 
Packet queues may form at both the input ports and the output ports. The location and 
extent of queueing (either at the input port queues or the output port queues) will 
depend on the traffic load, the relative speed of the switching fabric, and the line speed5. 
However, in modern switches with large switching rate capability, queues are commonly 
formed at output or transmission ports. A main contributing factor is the coincident 
arrivals of traffic bursts from different input ports that must be forwarded to the same 
output port. If transmission rates of input and output ports are the same, then packets 
from coincident arrivals must be momentarily buffered.  
 
Note, however, that buffers will only prevent packet losses in case of transient traffic 
bursts. If those were not transient but permanent, such as approximately constant bit 
rates from large file transfers, the aggregate rate of input ports will surpass the rate of 
the output port. Thus, the output buffer would be permanently full, and the router would 
drop packets. 
 

Packet loss occurs when a router drops the packet. It is the queues within a router, where 
such packets are dropped and lost.  

 
 
1.4 Buffer size 

 
From the above observation, a key question is how large should buffers be to absorb the 
fluctuations generated by TCP flows. The rule of thumb has been that the amount of 
buffering (in bits) in a router’s port should equal the average Round-Trip Time (RTT) (in 
seconds) multiplied by the capacity C (in bits per seconds) of the port6, 7.  
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Router′s buffer size =  C ⋅ RTT [bits]    (single / small number of flows) 

 
Note that RTT is the average of individual RTTs. For example, if there are five TCP flows 
sharing a router’s link (port), the RTT used in the equation above is the average value of 
the five flows, and the capacity C is the router’s port capacity. E.g., for 250 millisecond 
connections and a 10 Gbps port, the router’s buffer size equals 2.5 Gbits. The above 
quantity is a conservative value that can be used in high-throughput high-latency 
networks.  
 
In 2004, Appenzeller et al.8 presented a study that suggests that when there is a large 
number of TCP flows passing through a link, say N (e.g., hundreds, thousands or more), 
the amount of buffering can be reduced to: 
 

Router′s buffer size =  
C ⋅RTT

√𝑁
 [bits]   (large number of flows N) 

 
This result is observed when there is no dominant flow and the router aggregates 
hundreds, thousands, or more flows. The observed effect is that the fluctuation of the 
sum of congestion windows are smoothed, and the buffer size at an output port can be 
reduced to the expression given above. Note that N can be very large for campus and 
backbone networks, and the reduction in needed buffer size can become considerable. 
 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using Miniedit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 2. Lab topology. 

 

The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0
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Figure 3. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 11.mn topology file and click on Open. 
 

 
Figure 4. Miniedit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 5. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1, host h2, host h3 and host h4 
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Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
 

 
Figure 6. Opening a terminal on host h1. 

 

Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 7. Connectivity test using ping command. 

 
Step 4. Test connectivity between the end-hosts using the ping command. On host h3, 
type the command ping 10.0.0.4. This command tests the connectivity between host 
h3 and host h4. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
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Figure 8. Connectivity test using ping command. 

 
 
2.2 Modifying hosts’ buffer size 

 
The following tests the bandwidth is limited to 10 Gbps, and the RTT (delay or latency) is 
20ms.  
 

In order to have enough TCP buffer size, we will set the sending and receiving buffer 
to 5 · BDP in all hosts. 

 
BW = 10,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 10,000,000,000 · 0.02 =  200,000,000 bits 
          = 25,000,000 bytes ≈ 25 Mbytes  
 

The send and receive buffer sizes should be set to 5 · BDP. We will use the 25 Mbytes 
value for the BDP instead of 25,000,000 bytes. 

 
1 Mbyte =  10242 bytes 
 
BDP =  25 Mbytes = 25 · 10242 bytes =  26,214,400 bytes 
 
5 ·  BDP =  5 · 26,214,400 bytes = 131,072,000 bytes  
 
Step 1. Now, we have calculated the maximum value of the TCP sending and receiving 
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the 
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’ 
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Figure 9. Receive window change in sysctl. 

 
The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
applications create a TCP socket. 131,072,000 is the maximum receive buffer that can be 
allocated for a TCP socket. 
 
Step 2. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’ 

 

 
Figure 10. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2, host h3, and host h4. 
 
Step 3. To change the current receiver-window size value(s), use the following command 
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’ 

 

 
Figure 11. Receive window change in sysctl. 

 
Step 4. To change the current send-window size value(s), use the following command on 
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’ 

 

 
Figure 12. Send window change in sysctl. 
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Step 5. To change the current receiver-window size value(s), use the following command 
on host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’ 

 

 
Figure 13. Receive window change in sysctl. 

 
Step 6. To change the current send-window size value(s), use the following command on 
host h3’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’ 

 

 
Figure 14. Send window change in sysctl. 

 
Step 7. To change the current receiver-window size value(s), use the following command 
on host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’ 

  

 
Figure 15. Receive window change in sysctl. 

 
Step 8. To change the current send-window size value(s), use the following command on 
host h4’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
131,072,000 (maximum). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’ 

 

 
Figure 16. Send window change in sysctl. 
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2.3 Emulating high-latency WAN 

 
This section emulates a high-latency WAN. We will first emulate 20ms delay between 
switches, setting 10ms delay on switch S1 and 10ms delay on switch S2, resulting in 20ms 
of Round-Trip Time (RTT).  
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
 

 
Figure 17. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 10ms delay to switch S1’s s1-eth1 
interface. 
 
sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 10ms 

 

 
Figure 18. Adding delay of 10ms to switch S1’s s1-eth1 interface. 

 
Step 3. Similarly, repeat again the previous step to set a 10ms delay to switch S2’s 
interface. When prompted for a password, type password and hit Enter. This command 
introduces 10ms delay on switch S2’s s2-eth1 interface. 
 
sudo tc qdisc add dev s2-eth1 root handle 1: netem delay 10ms 

 

 
Figure 19. Adding delay of 10ms to switch S2’s s2-eth1 interface. 
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2.4 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 20. Output of ping 10.0.0.2 command. 

 

The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.096, 20.110, 20.135, and 0.101 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h3, type ping 10.0.0.4. The ping output in this test 
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 

 
Figure 21. Output of ping 10.0.0.4 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.094, 20.212, 20.529, and 0.252 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
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3 Testing throughput with 100⋅MTU switch’s buffer size 
 
In this section, you are going to change the switch S1’s buffer size to 100 ⋅MTU and 
emulate a 10 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then, 
you will test the throughput between host h1 and host h2 while there is another TCP flow 
between host h3 and host h4. On each test, you will modify the congestion control 
algorithm in host h1, namely, cubic, reno and bbr. The congestion control algorithm will 
still be cubic in host h3 for all tests. In this section, the MTU is 1600 bytes, thus the tbf 
limit value will be set to 100 ⋅ MTU = 160,000 bytes. 
 
 
3.1 Setting switch S1’s buffer size to 100⋅MTU 

 
Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 

hit Enter. 
 

• rate: 10gbit  

• burst: 5,000,000  

• limit: 160,000 
 
sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 160000 

 

 
Figure 22. Limiting rate to 10 Gbps and setting the buffer size to 100⋅MTU on switch S1’s interface. 

 
 
3.2 TCP Cubic 

 

The default congestion avoidance algorithm in the following test is cubic thus, there is 
no need to specify it manually. 

 
Step 1. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 23. Starting iPerf3 server on host h2. 
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Step 2. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 24. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously thus, you will type the 
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them. 

 
Step 3. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

C  
Figure 25. Typing iPerf3 client command on host h1. 

 
Step 4. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 26. Typing iPerf3 client command on host h3. 

 
Step 5. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
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Figure 27. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 86.4 Mbps (sender) and 86.1 Mbps (receiver), and the number of 
retransmissions is 994. Host h3’s results are similar to the above, however we are just 
focused on host h1’s results. 
 
Step 6. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
 
3.3 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 28. Changing TCP congestion control algorithm to reno in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            
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Figure 29. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 30. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously thus, you will type the 
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 31. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 32. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
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Figure 33. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 78.7 Mbps (sender) and 78.3 Mbps (receiver), and the number of 
retransmissions is 1129. Host h3’s results are similar to the figure above, however we are 
just focused on host h1’s results. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 

user can see the throughput results in the server side too.  
 
 
3.4 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 34. Changing TCP congestion control algorithm to bbr in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            



    
Lab 11:  Router’s Buffer Size 

 
  Page 19  

  

 
Figure 35. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 36. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously, thus you will type the 
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 37. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 38. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
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Figure 39. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 3.48 Gbps (sender) and 3.47 Gbps (receiver), and the number of 
retransmissions is 75818. Note that the congestion control algorithm used in host h1 is 
bbr and in host h3 is cubic. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
 
4 Testing throughput with one BDP switch’s buffer size 
 
In this section, you are going to change the switch S1 buffer size to one BDP (26,214,400) 
using the Token Bucket Filter (tbf). Then, you will test the throughput between host h1 
and host h2 while there is another TCP flow between host h3 and host h4. On each test, 
you will modify the congestion control algorithm in host h1 namely, cubic, reno and bbr. 
The congestion control algorithm will still cubic in host 3 for all tests. In this section, the 
tbf limit value will be set to one BDP = 26,214,400 bytes. 
 
 
4.1 Changing switch S1’s buffer size to one BDP 

 
Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 
hit Enter. 
 

• rate: 10gbit  
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• burst: 5,000,000  

• limit: 26,214,400 
 
sudo tc qdisc change dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 

5000000 limit 26214400 

 

 
Figure 40. Changing the buffer size to one BDP on switch S1’s s1-eth1 interface. 

 
 

4.2 TCP Cubic 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=cubic 

 

 
Figure 41. Changing TCP congestion control algorithm to cubic in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 42. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            
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Figure 43. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously, thus you will type the 
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 44. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 45. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 

 

 
Figure 46. Running iPerf3 client on host h1. 
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The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 4.57 Gbps (sender) and 4.57 Gbps (receiver), and the number of 
retransmissions is 0. Note that the congestion avoidances algorithm used in host h1 and 
host h2 is cubic. Similar results are found in host h3 terminal. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
 
4.3 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 47. Changing TCP congestion control algorithm to reno in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 48. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 49. Starting iPerf3 server on host h4. 
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The following two steps should be executed almost simultaneously, thus you will type the 
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 50. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 51. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
 

 
Figure 52. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 2.74 Gbps (sender) and 2.74 Gbps (receiver), and the number of 
retransmissions is 1982. Note that the congestion avoidances algorithm used in host h1 
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is reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however 
we are just focused on host h1’s results. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
 
4.4 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 53. Changing TCP congestion control algorithm to bbr in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 54. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 55. Starting iPerf3server on host h4. 

 

The following two steps should be executed almost simultaneously thus, you will type the 
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
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iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 56. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 57. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 

 

 
Figure 58. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 5.64 Gbps (sender) and 5.63 Gbps (receiver), and the number of 
retransmissions is 16,110. Note that the congestion avoidances algorithm used in host h1 
is bbr and in host h3 is cubic. Host h3’s results are similar to the figure above, however 
we are just focused on host h1’s results. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
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5 Emulating high-latency WAN with packet loss 
 
This section emulates a high-latency WAN with packet loss. We already have set a 20ms 
RTT on the switches. Now, you will add 0.01% packet loss on the switch S1. Note that the 
switch S1’s buffer size is set to one BDP. 
 

Step 1. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 0.01% packet loss on switch S1’s s1-
eth1 interface. 
 
sudo tc qdisc change dev s1-eth1 root handle 1: netem delay 10ms loss 0.01% 

 

 
Figure 59. Adding delay of 0.01% to switch S1’s s1-eth1 interface. 

 
 
5.1 TCP Cubic 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Cubic by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=cubic 

 

 
Figure 60. Changing TCP congestion control algorithm to cubic in host h1. 

 

Note that host h3’s congestion control algorithm is Cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            

  

 
Figure 61. Starting iPerf3 server on host h2. 
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Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

 

 
Figure 62. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously thus, you will type the 
commands displayed in Step 3 and Step 4 then, in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 63. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 64. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
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Figure 65. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 1.02 Gbps (sender) and 1.02 Gbps (receiver), and the number of 
retransmissions is 3088. Note that the congestion control algorithm used in host h1 and 
host h2 is cubic. Host h3’s results are similar to the figure above, however we are just 
focused on host h1’s results. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
 
5.2 TCP Reno 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=reno 

 

 
Figure 66. Changing TCP congestion control algorithm to reno in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 
iperf3 -s            
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Figure 67. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 68. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously, thus you will type the 
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 69. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 70. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
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Figure 71. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 726 Mbps (sender) and 718 Mbps (receiver), and the number of 
retransmissions is 19,496. Note that the congestion control algorithm used in host h1 is 
reno and in host h2 is cubic. Host h3’s results are similar to the figure above, however we 
are just focused on host h1’s results. 
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
 
5.3 TCP BBR 

 
Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR by 
typing the following command:  
 
sysctl -w net.ipv4.tcp_congestion_control=bbr 

 

 
Figure 72. Changing TCP congestion control algorithm to bbr in host h1. 

 

Note that host h3’s congestion control algorithm is cubic by default. 

 
Step 2. Launch iPerf3 in server mode on host h2’s terminal. 
 



    
Lab 11:  Router’s Buffer Size 

 
  Page 32  

iperf3 -s            

  

 
Figure 73. Starting iPerf3 server on host h2. 

 
Step 3. Launch iPerf3 in server mode on host h4’s terminal. 
 
iperf3 -s            

  

 
Figure 74. Starting iPerf3 server on host h4. 

 

The following two steps should be executed almost simultaneously, thus you will type the 
commands displayed in Step 3 and Step 4, then in Step 5 you will execute them. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 75. Typing iPerf3 client command on host h1. 

 
Step 5. Type the following iPerf3 command in host h3’s terminal without executing it. 
 
iperf3 -c 10.0.0.2 -t 90      

 

 
Figure 76. Typing iPerf3 client command on host h3. 

 
Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h3 
terminal. 
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Figure 77. Running iPerf3 client on host h1. 

 

The figure above shows the iPerf3 test output report by the last 20 seconds. The average 
achieved throughput is 8.72 Gbps (sender) and 8.71 Gbps (receiver), and the number of 
retransmissions is 25,740. Note that the congestion avoidances algorithm used in host h1 
is bbr and in host h3 is cubic.  
 
Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s terminals. The 
user can see the throughput results in the server side too.  
 
This concludes Lab 11. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab introduces TCP pacing, which is a technique that evenly spaces out packets and 
minimizes traffic burstiness and packet losses. The focus in this lab is on Fair Queueing 
(FQ)-based pacing in high-latency Wide Area Networks (WANs). The lab describes the 
steps to conduct throughput tests that encompass TCP pacing and to compare the 
performance of TCP pacing against regular (non-paced) TCP. 
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Define TCP pacing. 
2. Understand FQ-based pacing. 
3. Enable TCP pacing in Linux. 
4. Compare the performance of paced TCP vs. non-paced TCP. 
5. Understand pacing effect on parallel streams. 
6. Emulate a WAN and calculate the coefficient of variation of flows. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to TCP pacing. 
2. Section 2: Lab topology. 
3. Section 3: Enabling TCP pacing with tc and fq. 
4. Section 4: Enabling TCP pacing from application. 
5. Section 5: Concurrent transmission without pacing. 
6. Section 6: Concurrent transmission with pacing. 
7. Section 7: Parallel streams and without pacing. 
8. Section 8: Parallel streams and with pacing. 
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1 Introduction to TCP pacing 
 
 
1.1 TCP pacing essentials 

 
Data transmission can be bursty, resulting in packets being buffered at routers and 
switches and dropped at times. End devices can contribute to the problem by sending a 
large number of packets in a short period of time. If those packets were transmitted at a 
steady pace, the formation of queues could be reduced, avoiding packet losses. 
 
TCP pacing is a technique by which a transmitter evenly spaces or paces packets at a pre-
configured rate. It has been applied for years in enterprise networks1, with mixed results. 
However, its recent application to data transfers in high-throughput high-latency 
networks and science demilitarized zones (Science DMZs) suggests that its use has several 
advantages2. TCP pacing has also been applied to datacenter environments3. 
 
The existing TCP congestion control algorithms, except for BBR4, indicate how much data 
is allowed for transmission. Those algorithms do not provide a time period over which 
that data should be transmitted and how the data should be spread to mitigate potential 
bursts. The rate, however, can be enforced by a packet scheduler such as a fair queue 
(FQ)5. The packet scheduler organizes the flow of packets of each TCP connection through 
the network stack to meet policy objectives. Some Linux distributions such as CentOS6 
implement FQ scheduling in conjunction with TCP pacing4, 7. 
 
FQ is intended for locally generated traffic (e.g., a sender device, such as data transfer 
node (DTN) in Science DMZs). Figure 1 illustrates the operation of FQ pacing. Application 
1 generates green packets, and application 2 generates blue packets. Each application 
opens a TCP connection. FQ paces each connection according to the desired rate, evenly 
spacing out packets within an application based on the desired rate. The periods T1 and 
T2 represent the time-space used for connections 1 and 2 respectively. 
 

 
Figure 1. TCP pacing. Packets of applications 1 and 2 are evenly spaced by T1 and T2 time units. 

 
TCP pacing reduces the typical TCP sawtooth behavior8 and is effective when there are 
rate mismatches along the path between the sender and the receiver. This is the case, for 
example, when the ingress port of a router has a capacity of 100 Gbps, and the egress 
port has a capacity of 10 Gbps. Because of the TCP congestion control mechanism, the 
sawtooth behavior always emerges. As TCP continues to increase the size of the 
congestion window, eventually the bottleneck link becomes full while the rest of the links 
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become underutilized. These mismatches produce a continuous circle of additive 
increases and multiplicative decreases8. 
 
 
1.2 Use case: TCP pacing on a 100 Gbps network 

 
With the increase of big data transfers across networks, network professionals have 
recently explored the impact of pacing on large flows8. Figure 2(a) shows the results of 
data transfers over the Energy Science Network (ESnet). ESnet is a high-performance 
network that carries science traffic for the U.S. Department of Energy. As of 2018, this 
network is transporting more than 200 petabytes per month. The path capacity and 
round-trip time (RTT) between end devices, referred to as DTNs, are 100 Gbps and 92 
milliseconds respectively. Transfers use TCP Cubic congestion control algorithm9 without 
pacing and a maximum segment size (MSS) of 1,500 bytes. Four concurrent TCP 
connections are generated from a single source DTN to a single destination DTN. These 
four connections exhibit the typical sawtooth behavior10, which in part is attributed to 
the inability of switches to absorb traffic bursts. Figure 2(b) shows the behavior of TCP 
Cubic with FQ pacing. The pacing rate for the four TCP connections is approximately 20 
Gbps (curves are overlapped at nearly 20 Gbps). The throughput is slightly lower than 20 
Gbps per connection. However, notice how the sawtooth behavior is reduced and stable 
rates are obtained. 
 
In general, TCP FQ pacing is also effective when there are rate mismatches along the path 
between the sender and the receiver. This is the case, for example, when the ingress port 
of a router has a capacity of 100 Gbps and the egress port has a capacity of 10 Gbps. As 
TCP increases the congestion window during the additive increase phase, eventually the 
bottleneck link becomes full while the rest of the links become underutilized. The 
mismatches produce a continuous circle of additive increases and multiplicative 
decreases, thus generating the sawtooth behavior. 
 

 
Figure 2. Impact of TCP pacing on throughput. (a) Data transfers of four parallel TCP connections 
across a 100 Gbps, 92 milliseconds RTT path. (b) The same data transfer as in (a) but using TCP 
pacing. (c) Data transfers between two DTNs connected by a path with a bottleneck link of 1 Gbps. 
The curves show the performance when the DTNs use different Linux operating systems (violet: 

CentOS 6; green: CentOS 7, and blue: CentOS7 with pacing). The results are reproduced from8. 
 
Figure 2(c) shows the data transfer between two DTNs over ESnet. One DTN is in Amarillo, 
Texas, and the other DTN is in New York City. Although the WAN connecting the two sites 
has 100 Gbps capacity, one of the DTNs is attached to the network via a 1 Gbps network 
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interface card. Thus, the entirety of the path includes multiple 100 Gbps links and one 
bottleneck link of 1 Gbps. The figure shows three curves: the throughput when both DTNs 
are based on Linux CentOS6 Version 6 (violet), the throughput when DTNs are based on 
Linux CentOS Version 7 (green), and the throughput when DTNs are based on Linux 
CentOS Version 7 and packets are paced at 800 Mbps (blue). Note that pacing also leads 
to much more stable behaviors, almost removing the TCP sawtooth behavior. 
 
 
1.3 Fair queueing details 

 
In Linux-based systems, network traffic can be controlled by Queueing Disciplines (qdisc) 
used in conjunction with the Traffic Control (tc) tool. In this lab we focus on the most 
commonly used queueing discipline: FQ. In this queueing discipline, aggregate queues are 
used to associate token buckets in order to limit the transmission rate. 
 
FQ performs flow separation to achieve pacing; it is designed to follow the requirements 
set by the TCP stack5. Generally, a flow is considered all packets pertaining to a particular 
socket. FQ uses the red-black tree data structure to index and track the state of single 
flows as shown in Figure 3(a)11. A red-black tree is a binary search tree which ensures that 
no path in the tree is more than twice long as any other. This property ensures that tree 
operations have a logarithmic complexity. FQ achieves fairness through the Deficit Round 
Robin (DRR) algorithm12, illustrated in Figure 3(b). The DRR is an algorithm that allows 
each flow passing through a network device to have a nearly perfect fairness and requires 
only a constant number of operations per packet. FQ uses the leaky bucket queue where 
transmitting timestamps (indexed on the read-black tree) are derived from the pacing 
rate specified by the user and the packet size. FQ is a non-work conserving scheduler, 
therefore, it can have idle scheduled resources even if there are jobs ready to be 
scheduled. 
 

 
Figure 3. (a) FQ-pacing. (b) Deficit Round-Robin (DRR) algorithm. 
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2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 4. Lab topology. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 5. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 12.mn topology file and click on Open. 
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Figure 6. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of MiniEdit’s window 
to start the emulation.  
 

 
Figure 7. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1 and host h2 
 

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host 
h1 and allows the execution of commands on that host.  
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Figure 8. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 9. Connectivity test using ping command. 

  
 
2.2 Emulating 10 Gbps high-latency WAN 

 
This section emulates a high-latency WAN. We will first emulate 20ms delay between 
switch S1 and switch S2 and measure the throughput. Then, we will set the bandwidth 
between hosts 1 and 2 to 10 Gbps.  
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
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Figure 10. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit enter. This command introduces 20ms delay on switch S1’s s1-eth1 
interface. 
 
sudo tc qdisc add dev s1-eth1 root handle 1: netem delay 20ms 

 

 
Figure 11. Adding delay of 20ms to switch S1’s s1-eth1 interface. 

 

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 10Gbps 
on switch S1’s s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

 
Figure 12. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth1 interface. 

 
 
2.3 Testing connection 
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To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.2. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h2 (10.0.0.2), successfully receiving responses back.  
 

 
Figure 13. Output of ping 10.0.0.2 command. 

 

The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.102, 25.325, 40.956, and 9.024 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. To change the current receive-window size value(s), we calculate the Bandwidth-
Delay Product by performing the following calculation: 
 
BW = 10,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 10,000,000,000 · 0.02 =  200,000,000 bits 
          = 25,000,000 bytes ≈ 25 Mbytes  
 

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25 Mbytes 
value for the BDP instead of 25,000,000 bytes. 

 
1 Mbyte =  10242 bytes 
 
BDP =  25 Mbytes = 25 · 10242 bytes =  26,214,400 bytes 

 
TCP buffer size = 2 ·  BDP =  2 · 26,214,400 bytes = 52,428,800 bytes  
 
Now, we have calculated the maximum value of the TCP sending and receiving buffer size. 
In order to apply the new values, on host h1’s terminal type the command showed down 
below. The values set are: 10,240 (minimum), 87,380 (default), and 52,428,800 
(maximum, calculated by doubling the BDP).  
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 
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Figure 14. Receive window change in sysctl. 

 
Step 3. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 15. Send window change in sysctl. 

 
Next, the same commands must be configured on host h2. 
 
Step 4. To change the current receive-window size value(s), use the following command 
on host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 16. Receive window change in sysctl. 

 
Step 5. To change the current send-window size value(s), use the following command on 
host h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum, calculated by doubling the BDP). 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 17. Send window change in sysctl. 

 
Step 6. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 
host h2’s terminal: 
 
iperf3 -s          
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Figure 18. Host h2 running iPerf3 as server. 

 
Step 7. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 in host h1’s terminal: 
 
iperf3 -c 10.0.0.2      

  

 
Figure 19. iPerf3 throughput test. 

 
Note the measured throughput is approximately 10 Gbps, which is close to the value 
assigned in our tbf rule (10 Gbps).  
 
Step 8. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
3 Enabling TCP pacing with tc and fq 
 
The user enables fair queuing using a command line utility called tc. The basic tc syntax 
used with fq is as follows: 
 
sudo tc qdisc [add|del|replace|change|show] dev dev_id root fq opts     

 

sudo: enables the execution of the command with higher security privileges. 
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tc: invokes Linux’s traffic control. 
qdisc: a queue discipline (qdisc) is a set of rules that determine the order in which 

packets arriving from the IP protocol output are served. The queue discipline is applied to 
a packet queue to decide when to send each packet.  
[add | del | replace | change | show]: this is the operation on qdisc. For example, 
to add delay on a specific interface, the operation will be add. To change or remove delay 
on the specific interface, the operation will be change or del. 
dev_id: this parameter indicates the interface to be subject to emulation. 
fq: this parameter enables fair queuing qdisc. 
opts: this parameter indicates the amount of delay, packet loss, duplication, corruption, 
and others.  
 
Step 1. In host h1, type the following command:  
 
sudo tc qdisc add dev h1-eth0 root fq maxrate 5gbit 

 
This command can be summarized as follows: 
 

sudo: enable the execution of the command with higher security privileges. 
tc: invoke Linux’s traffic control. 
qdisc: modify the queuing discipline of the network scheduler. 
add: create a new rule. 
dev h1-eth0: specify the interface on which the rule will be applied. 
fq: use the fair queueing qdics. 
maxrate 5gbit: Maximum sending rate of a flow (default is unlimited). Enables 

pacing on a maximum rate of 5 Gbps. 
 

 
Figure 20. Enabling fair queuing pacing with a maximum rate of 5 Gbps to the interface h1-eth0 
on host h1. 

 
Step 2. The user can now verify pacing configuration by using the iperf3 tool to measure 
throughput. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s 
terminal: 
 
iperf3 -s          

 

 
Figure 21. Host h2 running iPerf3 as server. 
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Step 3. Now to launch iPerf3 in client mode again by running the command iperf3 -c 
10.0.0.2 -O 5 in host h1’s terminal. The -O option is used to specify the number of 

seconds to omit in the resulting report. 
 
iperf3 -c 10.0.0.2 -O 5 

  

 
Figure 22. iPerf3 throughput test. 

 
The figure above shows the iPerf3 test output report. The average achieved throughput 
is 4.78 Gbps (sender) and 4.78 Gbps (receiver), which is close to the assigned pacing value 
(5 Gbps).  
 
Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too.  
 
 
4 Enabling TCP pacing from application 
 
An application can specify a maximum pacing rate using the SO_MAX_PACING_RATE 
setsockopt call. This packet scheduler adds delay between packets to respect rate 
limitation set on each socket. Application specific setting via SO_MAX_PACING_RATE is 
ignored only if it is larger than the maxrate value assigned with fq (if any). 
 
In iPerf3, the option --fq-rate sets a rate to be used with fair-queueing based socket-
level pacing, in bits per second.  
 
Step 1. Remove previous qdiscs on host h1’s h1-eth0 interface. 
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sudo tc qdisc del dev h1-eth0 root        

 

 
Figure 23. Removing qdiscs on host h1’s h1-eth0 interface. 

 
Step 2. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s 
terminal: 
 
iperf3 -s          

 

 
Figure 24. Host h2 running iPerf3 as server. 

 
Step 3. Now launch iPerf3 in client mode by running the command iperf3 -c 10.0.0.2 
-O 5 --fq-rate 5gbit in host h1’s terminal. The -O option is used to specify the number 
of seconds to omit in the resulting report (5 seconds), and the --fq-rate is used to 
enable pacing through the SO_MAX_PACING_RATE setsockopt call. 
 
iperf3 -c 10.0.0.2 -O 5 --fq-rate 5gbit 

 

 
Figure 25. iPerf3 throughput test with pacing enabled by iPerf3 application. 
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5 Concurrent transmission without pacing 
 
In the previous section, we applied pacing on a single host (host h1) and we measured the 
average throughput. In this section we run a test where four clients (host h1, host h3, 
host h5, and host h7) are transmitting simultaneously to four servers (host h2, host h4, 
host h6, and host h8), while sharing the same bottleneck link (link connecting switch S1 
to switch S2). 
 
Since it is difficult to start the four clients at the same time, Client1’s machine provides a 
script that automates this process.  
 
Step 1. Close the terminals of host h1 and host h2.  
 
Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started.  
 

 
Figure 26. Opening Mininet’s terminal. 

 

 
Figure 27. Mininet’s terminal. 

 
Step 3. Issue the following command on Mininet’s terminal as shown in the figure below.  
 
source concurrent_no_pacing         
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Figure 28. Running the tests simultaneously for 20 seconds without applying pacing. 

 

 
Figure 29. Throughput of host h1, host h3, host h5 and host h7. 

 
The above graph shows that the throughput of host h1, host h3, host h5 and host h7. It is 
clear from the figure that there are variations in the flows. Moreover, the bottleneck 
bandwidth was not evenly shared among the hosts, which decreases the fairness index 
from 100%. 
 
Step 4. Close the graph window and go back to Mininet’s terminal. The fairness index is 
displayed at the end as shown in the figure below. 
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Figure 30. Calculated fairness index. 

 
The above figure shows a fairness index of .83588. This value indicates that the bottleneck 
bandwidth was approximately 83% evenly shared among host h1, host h3, host h5, and 
host h7. 
 
 
6 Concurrent transmission with pacing 
 
In the previous section, we ran a test where four clients (host h1, host h3, host h5, and 
host h7) are transmitting simultaneously to four servers (host h2, host h4, host h6, and 
host h8), while sharing the same bottleneck link (link connecting switch S1 to switch S2) 
without applying pacing. In this section we repeat the same test, but with pacing enabled 
on host h1, host h3, host h5 and host h7. 
 
Since it is difficult to start the four clients at the same time, Client1’s machine provides a 
script that automates this process.  
 
Step 1. Using same Mininet’s terminal, issue the following command on Mininet’s 
terminal as shown in the figure below.  
 
source concurrent_pacing         
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Figure 31. Running the tests simultaneously for 20 seconds while applying pacing. 

 

 
Figure 32. Throughput of host h1, host h3, host h5 and host h7 after applying pacing. 

 
The above graph shows that the throughput of host h1, host h3, host h5 and host h7 with 
pacing enabled. It is clear from the figure that there are less variations in the flows 
compared to the non-paced flows. Moreover, the bottleneck bandwidth is now better 
shared among the hosts. 
 
Step 2. Close the graph window and go back to Mininet’s terminal. The fairness index is 
displayed at the end as shown in the figure below. 
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Figure 33. Calculated fairness index. 

 
The above figure shows a fairness index of .99999. The fairness index here is better than 
the previous test .83588. Therefore, pacing generally improves fairness among 
transmitting hosts. 
 
 
7 Parallel streams and without pacing 
 
In the previous tests, four clients (host h1, host h3, host h5, and host h7) were 
transmitting simultaneously to four servers (host h2, host h4, host h6, and host h8), while 
sharing the same bottleneck link (link connecting switch S1 to switch S2). In this section 
only one client (host h1) is transmitting to one server (host h2) while using five parallel 
streams. 
 
Step 1. In MiniEdit, hold the right-click on host h1 and select Terminal. This opens the 
terminal of host h1 and allows the execution of commands on that host.  
 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s 
terminal: 
 
iperf3 -s          
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Figure 34. Host h2 running iPerf3 as server. 

 
Step 4. Create and enter to a new directory parallel_streams: 
 
mkdir parallel_streams && cd parallel_streams      

 

 
Figure 35. Creating and entering a new directory parallel_streams. 

 
Step 5. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to 
produce a JSON output and the redirection operator > to send the standard output to a 
file. 
 
iperf3 -c 10.0.0.2 -t 30 -P 5 -J > parallel_streams.json      

 

 
Figure 36. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds, and redirecting 
the output to parallel_streams.json. 
 
Step 6. Once the test is finished, in order to generate the output plots for iPerf3’s JSON 
file run the following command: 
 
plot_iperf.sh parallel_streams.json             

 

 
Figure 37. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput 
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf). 
These files are stored in a directory results created in the same directory where the script 
was executed.  
 
Step 7. Navigate to the results folder using the cd command. 
 
cd results/             

 

 
Figure 38. Entering the results directory using the cd command. 
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Step 8. Open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 39. Opening the throughput.pdf file using xdg-open. 

 

 
Figure 40. Throughput of 5 parallel streams initiated by host h1 without pacing. 

 
Step 9. Close throughput.pdf file and stop the server by pressing Ctrl+c in host h2’s 
terminal. The user can see the throughput results in the server side too.  
 
Step 10. Exit the parallel_streams/results directory by using the following command on 
host h1’s terminal: 
 
cd ../.. 

 

 
Figure 41. Exiting the reno/results directory. 

 
 
8 Parallel streams and with pacing 
 
Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s 
terminal: 
 
iperf3 -s          
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Figure 42. Host h2 running iPerf3 as server. 

 
Step 2. Create and enter to a new directory parallel_streams_pacing: 
 
mkdir parallel_streams_pacing && cd parallel_streams_pacing      

 

 
Figure 43. Creating and entering a new directory parallel_streams_pacing. 

 
Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used to 
produce a JSON output and the redirection operator > to send the standard output to a 
file. The -P is used to specify the number of parallel streams, and the --fq-rate is used 
to enable pacing through the SO_MAX_PACING_RATE setsockopt call. In this test, pacing 
is applied to a maximum rate of 1.9 Gbps per stream, and 5 * 1.9 Gbps (9.5 Gbps) total 
for all streams. Note that assigning a pacing rate slightly less than the maximum 
bandwidth (10 Gbps in our case) reduces packet lost and the variations of flows. 
 
iperf3 -c 10.0.0.2 -t 30 -P 5 -J --fq-rate 1.9gbit > parallel_streams_pace.json   

 

 
Figure 44. Running iPerf3 client on host h1 with 5 parallel streams for 30 seconds with pacing 
enabled, and redirecting the output to parallel_streams_pace.json. 

 
Step 4. Once the test is finished, type the command, to generate the output plots for 
iPerf3’s JSON file run the following command: 
 
plot_iperf.sh parallel_streams_pace.json            

 

 
Figure 45. plot_iperf.sh script generating output results. 

 
This plotting script generates PDF files for the following fields: congestion window 
(cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf), throughput 
(throughput.pdf), maximum transmission unit (MTU.pdf), bytes transferred (bytes.pdf). 
These files are stored in a directory results created in the same directory where the script 
was executed.  
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Step 5. Navigate to the results folder using the cd command. 
 
cd results/             

 

 
Figure 46. Entering the results directory using the cd command. 

 
Step 6. Open the throughput.pdf file, use the following command: 
 
xdg-open throughput.pdf 

 

 
Figure 47. Opening the throughput.pdf file using xdg-open. 

 

 
Figure 48. Throughput of 5 parallel streams initiated by host h1 with pacing applied to a maximum 
rate of 1.9 Gbps per stream. 

 
The graph above shows how the advantages of applying pacing when using parallel 
streams. Compared to figure 40, the flows have less variations and the fairness among 
these flows is improved. 
 
This concludes Lab 12. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab introduces Maximum Transmission Unit (MTU), Maximum Segment Size (MSS), 
and their effect on network throughput in a high-bandwidth Wide Area Networks (WAN) 
with packet losses. Throughput measurements are conducted in this lab to compare the 
observed throughput while using a higher MSS against a normal MSS value. 
 
 
Objectives 

By the end of this lab, students should be able to:  

1. Understand Maximum Transmission Unit (MTU). 
2. Define Maximum Segment Size (MSS). 
3. Identify interfaces’ default MTU value. 
4. Modify the MTU of an interface. 
5. Understand the benefit of using a high MSS value in a WAN that incurs packet 

losses. 
6. Emulate WAN properties in Mininet and achieve full throughput with high MSS. 

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 

 
This lab is organized as follows:  
 

1. Section 1: Introduction to MSS. 
2. Section 2: Lab topology. 
3. Section 3: Modifying maximum transmission Unit (MTU) and analyzing 

results. 
 
 
1 Introduction to MSS 
 
 
1.1 Maximum transmission unit (MTU) 
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The Maximum Transmission Unit (MTU) specifies the largest packet size (in bytes), 
including headers and data payload, that can be transmitted by the link-layer technology1. 
Even though data rates have dramatically increased since Ethernet standardization, the 
MTU remains at 1500 bytes. A frame carrying more than 1500 bytes is referred to as a 
jumbo frame and can allow up to 9000 bytes.  
 

 

Figure 1. Standard Ethernet Frame’s MTU  

 
Figure 1 illustrates the standard Ethernet frame which has 1500 bytes MTU. Although 
most gigabit networks run with no impact while using the standard MTU, large numbers 
of frames increase CPU loads and overheads. In such cases jumbo frames can be used to 
mitigate excess overhead, as demonstrated in figure 2. 
 

 
Figure 2. Jumbo Ethernet Frame’s MTU  

 
As shown in figure 2, jumbo frames impose lower overheads than normal frames (1500 
MTU) by reducing the overall number of individual frames sent from source to destination. 
Not only does this reduce the number of headers needed to move the data, CPU load is 
also lessened due to a decrease in packet processing by routers and end devices. 
 
 
1.2 Maximum segment size (MSS) 

 
The Maximum Segment Size (MSS) is a parameter of the options field of the TCP header 
that specifies the largest amount of data, specified in bytes, that a computer or 
communications device can receive in a single TCP segment3. This value is specified in the 
TCP SYN packet during TCP’s three-way handshake and is set permanently for the current 
session. 
 
The MSS must be set to a value equal to the largest IP datagram (minus IP and TCP 
headers) that the host can handle in order to avoid fragmentation. Note that lowering the 
MSS will remove fragmentation, however it will impose larger overhead. 
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With highspeed networks, using half a dozen or so small probes to see how the network 
responds wastes a huge amount of bandwidth. Similarly, when packet loss is detected, 
the rate is decreased by a factor of two. TCP can only recover slowly from this rate 
reduction. The speed at which the recovery occurs is proportional to the MTU. Thus, it is 
recommended to use large frames. 
 
In this lab, we show and compare the effect of jumbo frames versus standard frames in a 
WAN that incurs packet losses. 
 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using Miniedit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 3. Lab topology. 

 
Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit by 
clicking on Miniedit’s shortcut. When prompted for a password, type password. 
 

 

Figure 4. Miniedit shortcut. 

 
Step 2. On Miniedit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 13.mn topology file and click on Open. 
 

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2
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Figure 5. Miniedit’s Open dialog. 

 
Step 3. Before starting the measurements between host h1 and host h2, the network 
must be started. Click on the Run button located at the bottom left of Miniedit’s window 
to start the emulation.  
 

 
Figure 6. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting hosts h1 and h2 
 

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal of 
host h1 and allows the execution of commands on that host.  
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Figure 7. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and open its Terminal.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.2. This command tests the connectivity between host 
h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 8. Connectivity test using ping command. 

 
 
2.2 Emulating 10 Gbps WAN with packet loss 

 
This section emulates a WAN with packet loss. We will first set the bandwidth between 
host 1 and host h2 to 10 Gbps. Then, we will emulate a 1% packet loss and measure the 
throughput. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
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Figure 9. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 1% packet loss on switch S1’s s1-eth2 
interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1% 

 

 
Figure 10. Adding 1% packet loss to switch S1’s s1-eth2 interface. 

 
Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2: on the 
same terminal, type the command below. This command sets the bandwidth to 10 Gbps 
on switch S1’s s1-eth2 interface.  The tbf parameters are the following: 
 

• rate: 10gbit 

• burst: 5,000,000 

• limit: 15,000,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 10gbit burst 5000000 

limit 15000000 

 

 
Figure 11. Limiting the bandwidth to 10 Gbps on switch S1’s s1-eth2 interface. 
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Step 4. The user can now verify the rate limit configuration by using the iperf3 tool to 
measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s in 

host h2’s terminal: 
 
iperf3 -s          

 

 
Figure 12. Host h2 running iPerf3 as server. 

 
Step 5. Now to launch iPerf3 in client mode again by running the command iperf3 -c 

10.0.0.2 in host h1’s terminal:  
 
iperf3 -c 10.0.0.2  ` 

 

 
Figure 13. iPerf3 throughput test. 

 
Note the measured throughput now is approximately 7.99 Gbps, which is different than 
the value assigned in the tbf rule (10 Gbps). In the next section, the test is repeated but 
using a higher MSS. 
 
Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too. The summarized data on the server is similar 
to that of the client side’s and must be interpreted in the same way.  
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3 Modifying maximum transmission unit (MTU) 
 
As explained previously, jumbo frames offer throughput improvements in networks 
incurring packet losses. In this section, the user will change the MTU of a network 
interface in Linux. 
 
 
3.1 Identifying interface’s current MTU 

 
Step 1. To identify the MTU of a network interface of a device, the ifconfig is used. On 
host h1’s terminal, type in the following command: 
 
ifconfig      

 

 
Figure 14. Identifying interface’s MTU. 

 
As shown in Figure 14, the interface h1-eth0 has an MTU of 1500 bytes. The same steps 
can be performed on host h2’s interface. 
 
Step 2. In order to identify the MTU on the switches’ interfaces, launch the Client’s 
terminal located on the Desktop, and type in the following command: 
 
ifconfig      
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Figure 15. Identifying switches’ interfaces’ MTU. 

 
Each switch in the topology has two interfaces: switch S1 has s1-eth1 and s1-eth2, switch 
S2 interfaces are s2-eth1 and s2-eth2. The MTU value on all interfaces are 1500 bytes. 
 
 
3.2 Modifying MTU values on all interfaces 

 
To modify the MTU of a network interface use the following command:  
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ifconfig <iface> mtu <bytes> 

 
Step 1. To change the MTU to 9000 bytes, on host h1’s terminal, type in the following 
command: 
 
ifconfig h1-eth0 mtu 9000     

 

 
Figure 17. Changing host h1’s interface MTU. 

 
Step 2. To change the MTU to 9000 bytes, on host h2’s terminal, type in the following 
command: 
 
ifconfig h2-eth0 mtu 9000     

 

 
Figure 18. Changing host h2’s interface MTU. 

 
Step 3. Similarly, the MTU values of switch S1 and switch S2’s interfaces must be changed 
to 9000 bytes. In order to modify the MTU values, type the following command on the 
Client’s terminal. When prompted for a password, type password and hit Enter. 
 
sudo ifconfig s1-eth1 mtu 9000     

 
sudo ifconfig s1-eth2 mtu 9000     

 
sudo ifconfig s2-eth1 mtu 9000     

 
sudo ifconfig s2-eth2 mtu 9000     

 

 
Figure 19. Changing MTU values on the switches. 
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Step 4. The user can now verify the effect of modifying the MTU values on the switches 
and the effect of MSS by using the iperf3 tool to measure throughput. To launch iPerf3 
in server mode, run the command iperf3 -s in host h2’s terminal: 
 
iperf3 -s          

 

 
Figure 20. Host h2 running iPerf3 as server. 

 
Step 5. To launch iPerf3 in client mode type the command below. The -M option is used 
to specify the MSS to be sent in the TCP handshake. 
 
iperf3 -c 10.0.0.2 -M 9000      

   

 
Figure 21. iPerf3 throughput test with a 9000 MSS value. 

 
Notice the measured throughput now is approximately 10 Gbps, which is similar to the 
value assigned in the tbf rule (10 Gbps).  
 
Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user can see 
the throughput results in the server side too. The summarized data on the server is similar 
to that of the client side’s and must be interpreted in the same way.  
 
This concludes Lab 13. Stop the emulation and then exit out of MiniEdit. 
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Overview 
 
This lab discusses bufferbloat, a condition that occurs when a router or network device 
buffers too much data, leading to excessive delays. The lab describes the steps to conduct 
throughput tests on switched networks with different buffer sizes. Note that as the 
buffering process is similar in routers and switches, both terms are used interchangeably 
in this lab.  
 
 
Objectives 
 
By the end of this lab, students should be able to: 
 

1. Identify and describe the components of end-to-end delay. 
2. Understand the buffering process in a router. 
3. Explain the concept of bufferbloat. 
4. Visualize queue occupancy in a router. 
5. Analyze end-to-end delay and describe how queueing delay affects end-to-end 

delay on networks with large routers’ buffer size. 
6. Modify routers’ buffer size to solve the bufferbloat problem.  

 
 
Lab settings 
 
The information in Table 1 provides the credentials of the machine containing Mininet.  
 

Table 1. Credentials to access Client1 machine. 
 

Device 

 

 

Account 

 

 

Password 

 

Client1 admin password 

 
 
Lab roadmap 
 
This lab is organized as follows:  
 

1. Section 1: Introduction to bufferbloat. 
2. Section 2: Lab topology. 
3. Section 3: Testing throughput on a network with a small buffer-size switch. 
4. Section 4: Testing throughput on a network with a 1⋅BDP buffer-size switch. 
5. Section 5: Testing throughput on a network with a large buffer-size switch. 

 
 
1 Introduction to bufferbloat 
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1.1 Packet delays 

 
As a packet travels from a sender to a receiver, it experiences several types of delays at 
each node (router / switch) along the path. The most important of these delays are the 
processing delay, queuing delay, transmission delay, and propagation delay (see Figure 
1)1. 
 

Sender Receiver

Bottleneck bandwidth link (btlbw) Buffer
Router

PropagationTransmission

Queueing (waiting for 

transmission)

Processing

 
Figure 1. Delay components: processing, queueing, transmission, and propagation delays. 

 

• Processing delay: The time required to examine the packet’s header and 
determine where to direct the packet. For high-speed routers, this delay is on the 
order of microseconds or less. 
 

• Transmission delay: The time required to put the bits on the wire. It is given by the 
packet size (in bits) divided by the bandwidth of the link (in bps). For example, for 
a 10 Gbps and 1,500-byte packet (12,000 bits), the transmission time is T = 12,000 
/ 10x109 = 0.0012 milliseconds or 1.2 microseconds.  
 

• Queueing delay: The time a packet waits for transmission onto the link. The length 
of the queuing delay of a packet depends on the number of earlier-arriving packets 
that are queued and waiting for transmission onto the link. Queuing delays can be 
on the order of microseconds to milliseconds. 
 

• Propagation delay: Once a bit is placed into the link, it needs to propagate to the 
other end of the link. The time required to propagate across the link is the 
propagation delay. In local area networks (LANs) and datacenter environments, 
this delay is small (microseconds to few milliseconds); however, in Wide Area 
Networks (WANs) / long-distance connections, the propagation delay can be on 
the order of hundreds of milliseconds.  

 
 
1.2 Bufferbloat 

 
In modern networks composed of high-speed routers and switches, the processing and 
transmission delays may be negligible. The propagation delay can be considered as a 
constant (i.e., it has a fixed value). Finally, the dynamics of the queues in routers results 
in varying queueing delays. Ideally, this delay should be minimized.  
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An important consideration that affects the queuing delay is the router’s buffer size. 
While there is no consensus on how large the buffer should be, the rule of thumb has 
been that the amount of buffering (in bits) in a router’s port should equal the average 
Round-Trip Time (RTT) (in seconds) multiplied by the capacity C (in bits per seconds) of 
the port2, 3: 
 

Router′s buffer size =  C ⋅ RTT [bits] 

 
A large-enough router’s buffer size is essential for networks transporting big flows, as it 
absorbs transitory packet bursts and prevents losses. However, if a buffer size is 
excessively large, queues can be formed and substantial queueing delay be observed. This 
high latency produced by excess buffering of packets is referred to as bufferbloat.  
 
The bufferbloat problem is caused by routers with large buffer size and end devices 
running TCP congestion control algorithms that constantly probe for additional 
bandwidth4. Consider Figure 2, where RTprop refers to the end-to-end propagation delay 
from sender to receiver and then back (round-trip), and BDP refers to the bandwidth-
delay product given by the product of the capacity of the bottleneck link along the path 
and RTprop. RTprop is a constant that depends on the physical distance between end devices. 
In the application limited region, the throughput increases as the amount of data 
generated by the application layer increases, while the RTT remains constant. The 
pipeline between sender and receiver becomes full when the inflight number of bits is 
equal to BDP, at the edge of the bandwidth limited region. Note that traditional TCP 
congestion control (e.g., Reno, Cubic, HTCP) will continue to increase the sending rate 
(inflight data) beyond the optimal operating point, as they probe for more bandwidth. 
This process is known as TCP additive increase rule. Since no packet loss is noted in the 
bandwidth limited region despite the increasing TCP rate (which is absorbed by the 
router’s buffer), TCP keeps increasing the sending rate / inflight data, until eventually the 
router’s buffer is full and a packet is drop (the amount of bits in the network is equal to 
BDP plus the buffer size of the router). Beyond the application limited region, the increase 
in queueing delay causes the bufferbloat problem.  
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Figure 2. Throughput and RTT as a function of inflight data5. 

 
In this lab, the reader will conduct experiments and measure the throughput and RTT 
under different network conditions. By modifying a router’s buffer size, the bufferbloat 
problem will be observed.  
 
 
2 Lab topology 
 

Let’s get started with creating a simple Mininet topology using MiniEdit. The topology 
uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 

 
Figure 3. Lab topology. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
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Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit by 
clicking on MiniEdit’s shortcut. When prompted for a password, type password. 
 

 

Figure 4. MiniEdit shortcut. 

 
Step 2. On MiniEdit’s menu bar, click on File then Open to load the lab’s topology. Locate 
the Lab 14.mn topology file and click on Open. 
 

 
Figure 5. MiniEdit’s Open dialog. 

 
Step 3. Before starting the measurements between end hosts, the network must be 
started. Click on the Run button located at the bottom left of MiniEdit’s window to start 
the emulation. 
 

 
Figure 6. Running the emulation. 

 
The above topology uses 10.0.0.0/8 which is the default network assigned by Mininet.  
 
 
2.1 Starting host h1, host h2, and host h3 
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Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of host 
h1 and allows the execution of commands on that host.  
 

 
Figure 7. Opening a terminal on host h1. 

 
Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.  
 
Step 3. Test connectivity between the end-hosts using the ping command. On host h1, 
type the command ping 10.0.0.3. This command tests the connectivity between host 
h1 and host h3. To stop the test, press Ctrl+c. The figure below shows a successful 
connectivity test. 
 

 
Figure 8. Connectivity test using ping command. 

  
 
2.2 Emulating high-latency WAN 

 
This section emulates a high-latency WAN. We will emulate 20ms delay on switch S1’s s1-
eth2 interface. 
 
Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking on the 
Linux terminal icon.  
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Figure 9. Shortcut to open a Linux terminal.  

 
The Linux terminal is a program that opens a window and permits you to interact with a 
command-line interface (CLI). A CLI is a program that takes commands from the keyboard 
and sends them to the operating system to perform.  
 
Step 2. In the terminal, type the command below. When prompted for a password, type 
password and hit Enter. This command introduces 10ms delay to switch S1’s s1-eth2 

interface. 
 
sudo tc qdisc add dev s1-eth2 root handle 1: netem delay 20ms 

 

 
Figure 10. Adding delay of 10ms to switch S1’s s1-eth2 interface. 

 
 
2.4 Testing connection 

 
To test connectivity, you can use the command ping.  
  
Step 1. On the terminal of host h1, type ping 10.0.0.3. To stop the test, press Ctrl+c. 
The figure below shows a successful connectivity test. Host h1 (10.0.0.1) sent four packets 
to host h3 (10.0.0.3), successfully receiving responses back.  
 

 
Figure 11. Output of ping 10.0.0.3 command. 
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The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.080, 25.390, 41.266, and 9.166 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
Step 2. On the terminal of host h2, type ping 10.0.0.3. The ping output in this test 
should be relatively similar to the results of the test initiated by host h1 in Step 1. To stop 
the test, press Ctrl+c. 
 

 
Figure 12. Output of ping 10.0.0.3 command. 

 
The result above indicates that all four packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 20.090, 25.257, 40.745, and 8.943 milliseconds, respectively. The output 
above verifies that delay was injected successfully, as the RTT is approximately 20ms. 
 
 
3 Testing throughput on a network with a small buffer-size switch 
 
In this section, you are going to change the switch S1’s buffer size to 100 ⋅MTU and 
emulate a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then, 
you will test the throughput between host h1 and host h3. In this section, the MTU is 1600 
bytes, thus the tbf limit value will be set to 100 ⋅ MTU = 160,000 bytes. 
 
 
3.1 Setting switch S1’s buffer size to 100⋅MTU 

 
Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 

hit Enter. 
 

• rate: 1gbit  

• burst: 500,000  

• limit: 160,000 
 
sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000 

limit 160000 
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Figure 13. Limiting rate to 1 Gbps and setting the buffer size to 100⋅MTU on switch S1’s interface. 

 
 
3.2 Bandwidth-delay product (BDP) and hosts’ buffer size 

 
In the upcoming tests, the bandwidth is limited to 1 Gbps, and the RTT (delay or latency) 
is 20ms.  
 
BW = 1,000,000,000 bits/second 
 
RTT = 0.02 seconds 
 
BDP = 1,000,000,000 · 0.02 =  20,000,000 bits 
          = 2,500,000 bytes ≈ 2.5 Mbytes  
 
1 Mbyte =  10242 bytes 
 
BDP =  2.5 Mbytes = 2.5 · 10242 bytes =  2,621,440 bytes 
 
The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the maximum 
buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes, then no need to 
tune the buffer sizes on end-hosts. However, in upcoming tests, we configure the buffer 
size on the switch to 10·BDP. To ensure that the bottleneck is not the hosts’ buffers, we 
configure the buffers to 10·BDP (26,214,400).  
 
Step 1. Now, we have calculated the maximum value of the TCP sending and receiving 
buffer size. In order to change the receiving buffer size, on host h1’s terminal type the 
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). The maximum value is doubled (2·10·BDP) as Linux only allocates 
half of the assigned value. 
 
sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’ 

 

 
Figure 14. Receive window change in sysctl. 

 
The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
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applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be 
allocated for a TCP socket. 
 
Step 2. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the 
assigned value. 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 15. Send window change in sysctl. 

 
Step 3. Now, we have calculated the maximum value of the TCP sending and receiving 
buffer size. In order to change the receiving buffer size, on host h3’s terminal type the 
command shown below. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the 
assigned value. 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 16. Receive window change in sysctl. 

 

Step 4. To change the current send-window size value(s), use the following command on 
host h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default), and 
52,428,800 (maximum). The maximum value is doubled as Linux allocates only half of the 
assigned value. 
 
sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’ 

 

 
Figure 17. Send window change in sysctl. 

 

The returned values are measured in bytes. 10,240 represents the minimum buffer size 
that is used by each TCP socket. 87,380 is the default buffer which is allocated when 
applications create a TCP socket. 52,428,800 is the maximum receive buffer that can be 
allocated for a TCP socket. 
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3.3 Throughput test 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 18. Starting iPerf3 server on host h3. 

 
Step 2. Type the following iPerf3 command in host h1’s terminal. 
 
iperf3 -c 10.0.0.3      

 

 
Figure 19. Running iPerf3 client on host h1. 

 
The figure above shows the iPerf3 test output report. The average achieved throughput 
is 74.1 Mbps (sender) and 72.2 Mbps (receiver), and the number of retransmissions is 582. 
Note that the maximum throughput (1 Gbps) was not achieved. This is due to having a 
small buffer on the switch (100 · MTU).  
 
 
4 Testing throughput on a network with a 1⋅BDP buffer-size switch 
 
In this section, you are going to change the switch S1’s buffer size to 1⋅BDP and emulate 
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then, you will 
test the throughput between host h1 and host h3. The BDP is 2,621,440 bytes, thus the 
tbf limit value will be set to 2,621,440. 
 
 
4.1 Setting switch S1’s buffer size to 1⋅BDP 
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Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 
hit Enter. 
 

• rate: 1gbit  

• burst: 500,000  

• limit: 2,621,440 
 
sudo tc qdisc change dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 500000 

limit 2621440 

 

 
Figure 20. Limiting rate to 1 Gbps and setting the buffer size to 1⋅BDP on switch S1’s interface. 

 
 
4.2 Throughput and latency tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 21. Starting iPerf3 server on host h3. 

 
Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s1-eth2 

 

 
Figure 22. Plotting the queue occupancy on switch S1’s s1-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s1-eth2 interface on switch S1, the queue 
occupancy is constantly 0. 



    
Lab 14: Router’s Bufferbloat 

 
  Page 15  

 
Figure 23. Queue occupancy on switch S1’s s1-eth2 interface. 

 
Step 3. In host h1, create a directory called 1BDP and navigate into it using the following 
command: 
 
mkdir 1BDP && cd 1BDP     

 

 
Figure 24. Creating and navigating into directory 1BDP. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 90 -J > out.json 

 

 
Figure 25. Running iPerf3 client on host h1. 

 
Step 5. Type the following ping command in host h2’s terminal without executing it. 
 
ping 10.0.0.3 -c 90    

 

 
Figure 26. Typing ping command on host h2. 
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Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2 
terminal. Then, go back to the queue plotting window and observe the queue occupancy. 
 

 
Figure 27. Queue occupancy on switch S1’s s1-eth2 interface. 

 
The graph above shows that the queue occupancy peaked at 2.5  · 106, which is the 
maximum buffer size we configure on the switch. 
 
Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting 
the queue. 
 
Step 8. After the iPerf3 test finishes on host h1, enter the following command. 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 28. Generate plotting files and entering the results directory. 

 

Step 9. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 29. Opening the throughput.pdf file. 
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Figure 30. Measured throughput. 

 

The figure above shows the iPerf3 test output report for the last 90 seconds. The average 
achieved throughput is approximately 900 Mbps. We can see now that the maximum 
throughput was almost achieved (1 Gbps) when we set the switch’s buffer size to 1BDP.  
 
Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 31. Opening the RTT.pdf file. 

 

 
Figure 32. Measured round-trip time. 
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The graph above shows that the RTT was between 25000 microseconds (25ms) and 40000 
microseconds (40ms). The output shows that there is no bufferbloat problem as the 
average latency is slightly greater than the configured delay (20ms). 
 
Step 11. Close the RTT.pdf window then open the congestion window (cwnd) file using 
the command below. 
 
xdg-open cwnd.pdf 

 

 
Figure 33. Opening the cwnd.pdf file. 

 

 
Figure 34. Congestion window evolution. 

 
The graph above shows the evolution of the congestion window which peaked at 4.5 
Mbytes. In the next test, we see how buffer size on the switch affect the congestion 
window evolution. 

 
Step 12. Close the cwnd.pdf window then go back to h2’s terminal to see the ping output. 
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Figure 35. ping test result. 

 
The result above indicates that all 90 packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 25.630, 32.669, 64.126, and 4.359 milliseconds, respectively. The output 
also verifies that there is no bufferbloat problem as the average latency (32.669) is slightly 
greater than the configured delay (20ms). 
 
Step 13. To stop iperf3 server in host h3 press Ctrl+c. 
 
 
5 Testing throughput on a network with a large buffer-size switch 
 
In this section, you are going to change the switch S1’s buffer size to 10⋅BDP and emulate 
a 1 Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf). Then, you will 
test the throughput between host h1 and host h3. The BDP is 2,621,440 bytes, thus the 
tbf limit value will be set to 26,214,400. 
 
 
5.1 Setting switch S1’s buffer size to 10⋅BDP 

 
Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s 
terminal, type the command below. When prompted for a password, type password and 
hit Enter. 
 

• rate: 1gbit 

• burst: 500,000  

• limit: 26,214,400 
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sudo tc qdisc change dev s1-eth2 parent 1: handle 2: tbf rate 1gbit burst 

500000 limit 26214400 

 

 
Figure 36. Limiting rate to 1 Gbps and setting the buffer size to 10⋅BDP on switch S1’s interface. 

 
 
5.2 Throughput and latency tests 

 
Step 1. Launch iPerf3 in server mode on host h3’s terminal. 
 
iperf3 -s            

  

 
Figure 37. Starting iPerf3 server on host h3. 

 
Step 2. In the Client’s terminal, type the command below to plot the switch’s queue in 
real-time. When prompted for a password, type password and hit Enter. 
 
sudo plot_q.sh s1-eth2 

 

 
Figure 38. Plotting the queue occupancy on switch S1’s s1-eth2 interface. 

 
A new window opens that plots the queue occupancy as shown in the figure below. Since 
there are no active flows passing through s1-eth2 interface on switch S1, the queue 
occupancy is constantly 0. 
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Figure 39. Queue occupancy on switch S1’s s1-eth2 interface. 

 
 
Step 3.  Exit from 1BDP/results directory, then create a directory 10BDP and navigate into 
it using the following command. 
 
cd ../../ && mkdir 10BDP && cd 10BDP     

 

 
Figure 40. Creating and navigating into directory 1BDP. 

 
Step 4. Type the following iPerf3 command in host h1’s terminal without executing it. The 
-J option is used to display the output in JSON format. The redirection operator > is used 
to store the JSON output into a file. 
 
iperf3 -c 10.0.0.3 -t 90 -J > out.json 

 

 
Figure 41. Running iPerf3 client on host h1. 

 
Step 5. Type the following ping command in host h2’s terminal without executing it. 
 
ping 10.0.0.3 -c 90    

 

 
Figure 42. Typing ping command on host h2. 
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Step 6. Press Enter to execute the commands, first in host h1 terminal then, in host h2 
terminal. Then, go back to the queue plotting window and observe the queue occupancy. 
 

 
Figure 43. Queue occupancy on switch S1’s s1-eth2 interface. 

 
The graph above shows that the queue occupancy peaked at 2.5 ⋅107, which is the 
maximum buffer size we configure on the switch. Note that the buffer is almost always 
fully occupied, which will lead to an increase in the latency as demonstrated next.  
 
Step 7. In the queue plotting window, press the s key on your keyboard to stop plotting 
the queue. 
 
Step 8. After the iPerf3 test finishes on host h1, enter the following command: 
 
plot_iperf.sh out.json && cd results 

 

 
Figure 44. Generate plotting files and entering the results directory. 

 

Step 9. Open the throughput file using the command below on host h1. 
 
xdg-open throughput.pdf 

 

 
Figure 45. Opening the throughput.pdf file. 
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Figure 46. Measured throughput. 

 
The figure above shows the iPerf3 test output report for the last 90 seconds. The average 
achieved throughput is 900 Mbps. We can see now that the maximum throughput is also 
achieved (1 Gbps) when we set the switch’s buffer size to 10⋅BDP.  
 
Step 10. Close the throughput.pdf window then open the Round-Trip Time (RTT) file using 
the command below. 
 
xdg-open RTT.pdf 

 

 
Figure 47. Opening the RTT.pdf file. 

 

 
Figure 48. Measured Round-Trip Time. 

 



    
Lab 14: Router’s Bufferbloat 

 
  Page 24  

The graph above shows that the RTT increased from approximately 50000 microseconds 
(50ms) to 230000 microseconds (230ms). The output above shows that there is a 
bufferbloat problem as the average latency is significantly greater than the configured 
delay (20ms). Since the buffer on the switch is accommodating a large congestion window, 
latency is increased as new incoming packets have to wait in the highly occupied queue. 
 
Step 11. Close the RTT.pdf window then open the congestion window (cwnd) file using 
the command below. 
 
xdg-open cwnd.pdf 

 

 
Figure 49. Opening the cwnd.pdf file. 

 

 
Figure 50. Congestion window evolution. 

 
The graph above shows the evolution of the congestion window. Note how the 
congestion window peaked at 25.2 Mbytes compared to the previous test where it 
peaked at approximately 4.5 Mbytes. Since the queue size was configured with a large 
value, TCP continued to increase the congestion window as no packet losses were inferred. 

 
Step 12. Close the cwnd.pdf window then go back to h2’s terminal to see the ping output. 
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Figure 51. ping test result. 

 
The result above indicates that all 90 packets were received successfully (0% packet loss) 
and that the minimum, average, maximum, and standard deviation of the Round-Trip 
Time (RTT) were 34.239, 167.046, 219.647, and 73.715 milliseconds, respectively. The 
output also verifies that there is a bufferbloat problem as the average latency (167.046) 
is significantly greater than the configured delay (20ms). 
 
Step 13. To stop iperf3 server in host h3 press Ctrl+c. 
 
This concludes Lab 14. Stop the emulation and then exit out of MiniEdit. 
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