

Principal Investigator: Jorge Crichigno

NETWORK

Book Version: 07-08-2022

Award 2118311
“Cybertraining on P4 Programmable Devices using an Online Scalable
Platform with Physical and Virtual Switches and Real Protocol Stacks”

MANAGEMENT

Network Management

Contents

Lab 1: Introduction to Mininet
Lab 2: Introduction to NetFlow
Lab 3: Introduction to IPFIX
Lab 4: Introduction to sFlow
Lab 5: Collecting and processing NetFlow, IPFIX, and sFlow data using Nfdump
Lab 6: Filtering and formatting data using Nfdump
Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana
Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

NETWORK MANAGEMENT

Lab 1: Introduction to Mininet

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 1: Introduction to Mininet

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction to Mininet .. 3

2 Invoke Mininet using the CLI .. 5

2.1 Invoke Mininet using the default topology .. 5

2.2 Test connectivity .. 9

3 Build and emulate a network in Mininet using the GUI ... 10

3.1 Build the network topology ... 11

3.2 Test connectivity .. 13

3.3 Automatic assignment of IP addresses .. 16

3.4 Save and load a Mininet topology ... 18

References .. 19

Lab 1: Introduction to Mininet

 Page 3

Overview

This lab provides an introduction to Mininet, a virtual testbed used for testing network
tools and protocols. It demonstrates how to invoke Mininet from the command-line
interface (CLI) utility and build and emulate topologies using a graphical user interface
(GUI) application. In this lab, you will use Containernet, a Mininet network emulator fork
that uses Docker containers as hosts in emulated network topologies. However, all the
concepts covered are bounded to Mininet.

Objectives

By the end of this lab, you should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.
5. Configure the interfaces of a router using the CLI.

Lab settings

The information in Table 1 provides the credentials of the machine containing Mininet.

Table 1. Credentials to access Client machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction to Mininet.
2. Section 2: Invoke Mininet using the CLI.
3. Section 3: Build and emulate a network in Mininet using the GUI.
4. Section 4: Configure router r1.

1 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools and
protocols. With a single command, Mininet can create a realistic virtual network on any
type of machine (Virtual Machine (VM), cloud-hosted, or native). Therefore, it provides

Lab 1: Introduction to Mininet

 Page 4

an inexpensive solution and streamlined development running in line with production
networks1. Mininet offers the following features:

• Fast prototyping for new networking protocols.

• Simplified testing for complex topologies without the need of buying expensive
hardware.

• Realistic execution as it runs real code on the Unix and Linux kernels.

• Open-source environment backed by a large community contributing extensive
documentation.

Figure 1. Hardware network vs. Mininet emulated network.

Mininet is useful for development, teaching, and research as it is easy to customize and
interact with it through the CLI or the GUI. Mininet was originally designed to experiment
with OpenFlow2 and Open Virtual Network (Open vSwitch)3. This lab, however, only
focuses on emulating a simple network environment without Open vSwitch devices.

Mininet’s logical nodes can be connected into networks. These nodes are sometimes
called containers, or more accurately, network namespaces. Containers consume
sufficiently fewer resources that networks of over a thousand nodes have created,
running on a single laptop. A Mininet container is a process (or group of processes) that
no longer has access to all the host system’s native network interfaces. Containers are
then assigned virtual Ethernet interfaces, which are connected to other containers
through a virtual switch4. Mininet connects a host and a switch using a virtual Ethernet
(veth) link. The veth link is analogous to a wire connecting two virtual interfaces, as
illustrated below.

Figure 2. Network namespaces and virtual Ethernet links.

h1 s1 h2s2

s3

Hardware NetworkMininet Emulated Network

Lab 1: Introduction to Mininet

 Page 5

Each container is an independent network namespace, a lightweight virtualization feature
that provides individual processes with separate network interfaces, routing tables, and
Address Resolution Protocol (ARP) tables.
Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e., nodes run the native network software
of the physical machine. On the other hand, in a simulated environment applications and
protocol implementations need to be ported to run within the simulator before they can
be used.

2 Invoke Mininet using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

2.1 Invoke Mininet using the default topology

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Step 2. Launch a Linux terminal by clicking on the icon located on the taskbar.

Figure 4. Shortcut to open a Linux terminal.

The Linux terminal is a program that opens a window and permits you to interact with a
command-line interface (CLI). A CLI is a program that takes commands from the keyboard
and sends them to the operating system for execution.

Step 3. To start a minimal topology, enter the command shown below. When prompted
for a password, type password and hit enter. Note that the password will not be visible
as you type it.

sudo mn

Lab 1: Introduction to Mininet

 Page 6

Figure 5. Starting Mininet using the CLI.

The above command starts Mininet with a minimal topology, which consists of a switch
connected to two hosts as shown below.

Figure 6. Mininet’s default minimal topology.

When issuing the sudo mn command, Mininet initializes the topology and launches its
command line interface which looks like this:

containernet>

Step 4. To display the list of Mininet CLI commands and examples on their usage, type the
following command:

help

Lab 1: Introduction to Mininet

 Page 7

Figure 7. Mininet’s help command.

Step 5. To display the available nodes, type the following command:

nodes

Figure 8. Mininet’s nodes command.

The output of this command shows that there is a controller, two hosts (host h1 and host
h2), and a switch (s1).

Step 6. It is useful sometimes to display the links between the devices in Mininet to
understand the topology. Issue the command shown below to see the available links.

net

Lab 1: Introduction to Mininet

 Page 8

Figure 9. Mininet’s net command.

The output of this command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on interface
s1-eth1.

2. Host h2 is connected using its network interface h2-eth0 to the switch on interface
s1-eth2.

3. Switch s1:
a. has a loopback interface lo.
b. connects to h1-eth0 through interface s1-eth1.
c. connects to h2-eth0 through interface s1-eth2.

4. Controller c0 is the brain of the network, where it has a global knowledge about
the network. A controller instructs the switches on how to forward/drop packets
in the network.

Mininet allows you to execute commands on a specific device. To issue a command for a
specific node, you must specify the device first, followed by the command.

Step 7. To proceed, issue the command:

h1 ifconfig

Lab 1: Introduction to Mininet

 Page 9

Figure 10. Output of h1 ifconfig command.

This command executes the ifconfig Linux command on host h1. The command shows
host h1’s interfaces. The display indicates that host h1 has an interface h1-eth0 configured
with IP address 10.0.0.1, and another interface lo configured with IP address 127.0.0.1
(loopback interface).

2.2 Test connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to host h1
and host h2, respectively. To test connectivity between them, you can use the command
ping. The ping command operates by sending Internet Control Message Protocol (ICMP)
Echo Request messages to the remote computer and waiting for a response. Information
available includes how many responses are returned and how long it takes for them to
return.

Step 1. On the CLI, type the command shown below. This command tests the connectivity
between host h1 and host h2. To stop the test, press Ctrl+c. The figure below shows a

successful connectivity test.

h1 ping 10.0.0.2

Lab 1: Introduction to Mininet

 Page 10

Figure 11. Connectivity test between host h1 and host h2.

Step 2. Stop the emulation by typing the following command:

exit

Figure 12. Stopping the emulation using exit.

The command sudo mn -c is often used on the Linux terminal (not on the Mininet CLI)
to clean a previous instance of Mininet (e.g., after a crash).

3 Build and emulate a network in Mininet using the GUI

In this section, you will use the application MiniEdit5 to deploy the topology illustrated
below. MiniEdit is a simple GUI network editor for Mininet.

Figure 13. Lab topology.

Lab 1: Introduction to Mininet

 Page 11

3.1 Build the network topology

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit by
clicking on MiniEdit’s shortcut. When prompted for a password, type password.

Figure 14. MiniEdit desktop shortcut.

MiniEdit will start, as illustrated below.

Figure 15. MiniEdit Graphical User Interface (GUI).

The main buttons in this lab are:

Lab 1: Introduction to Mininet

 Page 12

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button, click
anywhere in the blank canvas to insert a new host.

3. Legacy switch: allows addition of a new legacy switch to the topology. After
clicking this button, click anywhere in the blank canvas to insert the switch.

4. Link: connects devices in the topology (mainly switches and hosts). After clicking
this button, click on a device and drag to the second device to which the link is to
be established.

5. Run: starts the emulation. After designing and configuring the topology, click the
run button.

6. Stop: stops the emulation.

Step 2. To build the topology illustrated in Figure 13, two hosts and one switch must be
deployed. Deploy these devices in MiniEdit, as shown below.

Figure 16. MiniEdit’s topology.

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

Step 3. Configure the IP addresses of host h1 and host h2. Host h1’s IP address is
10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by holding the
right click and selecting properties on the device. For example, host h2 is assigned the IP
address 10.0.0.2/8 in the figure below.

Lab 1: Introduction to Mininet

 Page 13

Figure 17. Configuration of a host’s properties.

3.2 Test connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1. Click on the Run button to start the emulation. The emulation will start and the
buttons of the MiniEdit panel will gray out, indicating that they are currently disabled.

Figure 18. Starting the emulation.

Step 2. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal. This opens a terminal on host h1 and allows the execution of commands on the
host h1. Repeat the procedure on host h2.

Lab 1: Introduction to Mininet

 Page 14

Figure 19. Opening a terminal on host h1.

The network and terminals at host h1 and host h2 will be available for testing.

Figure 20. Terminals at host h1 and host h2.

Step 3. On host h1’s terminal, type the command shown below to display its assigned IP
addresses. The interface h1-eth0 at host h1 should be configured with the IP address
10.0.0.1 and subnet mask 255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 15

Figure 21. Output of ifconfig command on host h1.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP address
10.0.0.2 and subnet mask 255.0.0.0.

Step 4. On host h1’s terminal, type the command shown below. This command tests the
connectivity between host h1 and host h2. To stop the test, press Ctrl+c. The figure
below shows a successful connectivity test.

ping 10.0.0.2

Figure 22. Connectivity test using ping command.

Step 5. Stop the emulation by clicking on the Stop button.

Lab 1: Introduction to Mininet

 Page 16

Figure 23. Stopping the emulation.

3.3 Automatic assignment of IP addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2. An
alternative is to rely on Mininet for an automatic assignment of IP addresses (by default,
Mininet uses automatic assignment), which is described in this section.

Step 1. Remove the manually assigned IP address from host h1. Hold right-click on host
h1, Properties. Delete the IP address, leaving it unassigned, and press the OK button as
shown below. Repeat the procedure on host h2.

Figure 24. Host h1 properties.

Step 2. Click on Edit, Preferences button. The default IP base is 10.0.0.0/8. Modify this
value to 15.0.0.0/8, and then press the OK button.

Lab 1: Introduction to Mininet

 Page 17

Figure 25. Modification of the IP Base (network address and prefix length).

Step 3. Run the emulation again by clicking on the Run button. The emulation will start
and the buttons of the MiniEdit panel will be disabled.

Figure 26. Starting the emulation.

Step 4. Open a terminal on host h1 by holding the right click on host h1 and selecting
Terminal.

Figure 27. Opening a terminal on host h1.

Step 5. Type the command shown below to display the IP addresses assigned to host h1.
The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and subnet mask
255.0.0.0.

ifconfig

Lab 1: Introduction to Mininet

 Page 18

Figure 28. Output of ifconfig command on host h1.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and 5 on host
h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the IP address
15.0.0.2 and subnet mask 255.0.0.0.

Step 6. Stop the emulation by clicking on Stop button.

Figure 29. Stopping the emulation.

3.4 Save and load a Mininet topology

In this section you will save and load a Mininet topology. It is often useful to save the
network topology, particularly when its complexity increases. MiniEdit enables you to
save the topology to a file.

Step 1. Save the current topology by clicking on File then Save. A new window will emerge.
Provide a name for the topology and save it in the local folder. In this case, we used
myTopology as the topology name.

Lab 1: Introduction to Mininet

 Page 19

Figure 30. Saving the topology.

Step 2. Load the topology by clicking on File then Open. Open the directory lab 1 and
search for the topology file called lab1.mn. Then, click on Open. A new topology will be
loaded to MiniEdit.

Figure 31. Opening a topology.

This concludes Lab 1. Stop the emulation and then exit out of MiniEdit and Linux terminal.

References

1. Mininet walkthrough. [Online]. Available: http://Mininet.org.
2. N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM computer Communication
review, vol. 38, no. 2, p. 69, 2008.

3. Linux foundation, [Online]. Available: http://openvSwitch.org.
4. P. Dordal, “An iintroduction to computer networks,”. [Online]. Available:

https://intronetworks.cs.luc.edu/.

Lab 1: Introduction to Mininet

 Page 20

5. B. Lantz, G. Gee, “MiniEdit: a simple network editor for Mininet,” 2013. [Online].
Available: https://github.com/Mininet/Mininet/blob/master/examples.

NETWORK MANAGEMENT

Lab 2: Introduction to NetFlow

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 2: Introduction to NetFlow

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to NetFlow ... 4

1.2 NetFlow in Open vSwitch ... 4

1.3 NetFlow format output fields... 5

2 Lab topology.. 6

2.1 Lab settings... 7

2.2 Loading a topology ... 7

3 Launching NetFlow exporter... 10

4 Analyzing NetFlow records using Wireshark .. 12

4.1 Launching Wireshark .. 12

4.2 Performing a connectivity test ... 14

4.3 Visualizing NetFlow packets ... 15

References .. 19

Lab 2: Introduction to NetFlow

 Page 3

Overview

This lab introduces NetFlow which is a network protocol developed by Cisco for collecting
IP traffic information and monitoring network flow. NetFlow enabled switches or routers
are called NetFlow exporters, which examine each packet and create flows from these
packets. These collected flows are exported to an external device known as NetFlow
collector which then organizes the flow records into a format that allows the
administrator to further analyze the traffic2. The focus of this lab is to explore how
NetFlow exporter and collector work in Open Virtual Switch (Open vSwitch) and analyze
the collected flows using Wireshark packet analyzer.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of NetFlow.
2. Understand how NetFlow works in Open vSwitch.
3. Enable NetFlow in Open vSwitch.
4. Analyze NetFlow records using Wireshark.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching NetFlow exporter.
4. Section 4: Analyzing NetFlow records using Wireshark.

1 Introduction

Monitoring IP traffic flows facilitates more accurate capacity planning. It enables resource
alignment which ensures that resources are used appropriately in support of

Lab 2: Introduction to NetFlow

 Page 4

organizational goals. When the network behavior is understood, it improves the business
process, reduces vulnerability of the network, and allows efficient operation of the
network1. Among many of the network traffic monitoring tools, Cisco’s NetFlow is widely
used in organizations since it provides some additional features like attack detection,
lower cost of network security monitoring and enhance network visibility5.

1.1 Introduction to NetFlow

NetFlow provides a detailed view of application flows on the network. Initially, NetFlow
was created for billing and accounting of network traffic and to measure other IP traffic
characteristics such as bandwidth utilization and application performance. Nowadays,
NetFlow is also used for security analysis. NetFlow allows the administrator to see what
is happening across the network, identify DDoS attacks and monitor network usage6.

NetFlow is one-way traffic technology. When a request from a client to the server is sent,
NetFlow exporter looks into the packet header and creates a flow record. The flow record
contains information about the source address, destination addresses, ports, and all other
information. When the server responds to the client, another flow record is created. The
subsequent packets with the same attributes update the previously created flow records
(e.g.: number of bytes, duration of communication). When the communication is over,
flow records are sent to NetFlow collector7.

Among all the NetFlow versions, version 5 and version 9 are widely used. NetFlow v5 is
the most popular version and is still supported by many router brands. It offers a fixed
packet format, making NetFlow traffic monitoring and reporting easier since the contents
of each packet are quickly identifiable8. NetFlow v9 is template based where users can
freely choose which fields to have in the exported NetFlow packets. it is mostly used to
report flows such as IPv6, Multiprotocol Label Switching (MPLS) and Border Gateway
Protocol (BGP)6.

r1

NetFlow
Collector

NetFlow
packets

storage

LAN

LAN
Queries

Figure 1. NetFlow architecture.

Consider Figure 1. Router r1 is acting as NetFlow exporter which creates network traffic
records. Flows are stored in a local database called NetFlow cache. Once all the flows are
collected, the records are transmitted to the NetFlow collector.

1.2 NetFlow in Open vSwitch

Lab 2: Introduction to NetFlow

 Page 5

Open vSwitch NetFlow support is all about visibility into the virtual switch infrastructure.
It allows users to monitor both incoming and outgoing traffic of the Open vSwitch. It
significantly improves the ability to secure virtual environments, provides an analysis,
diagnosis, and problem-solving platform for the virtual network activities. A basic list of
information elements that are exported in NetFlow includes source IP address,
destination IP address, source port, destination port, protocol, packets, bytes, class of
service3.

Open vSwitch only supports NetFlow version 5. The ovs-vsctl command-line tool is used
to configure NetFlow. There are two steps involved in attaching a NetFlow monitor to a
switch: defining the monitor and linking a switch to it4.

1.3 NetFlow format output fields

This section focuses on detailed explanation of packet formats and fields. Consider Figure
2. The Packet header is the first part of an export packet and provides basic information
about the packet. Information included in the packet header is the NetFlow version,
number of flow records, flow sequence, timestamp, type of flow switching engine
(EngineType), slot number of flow switching engine (EngineId)6.

SysUptime

Timestamp

Flow sequence

Version Count

EngineType EngineId

Figure 2. NetFlow packet header format.

Consider Figure 3. The figure shows the format of a flow record which includes source
and destination IP address, next-hop IP address, in port and out port, total packets, total
bytes and other information6.

Lab 2: Introduction to NetFlow

 Page 6

Source IP address

Destination IP address

Next-hop IP address

Input ifIndex Output ifIndex

Packets

Bytes

Source port Destination port

Padding TCP flags IP protocol TOS

Source AS Destination AS

Source mask length Dest. mask length Padding

Figure 3. NetFlow flow record format.

2 Lab topology

Consider Figure 4. There are three switches, two end hosts and a docker container. Switch
s3 is acting as NetFlow exporter and the docker will collect the flows.

Lab 2: Introduction to NetFlow

 Page 7

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0
h2-eth0

10.0.0.1/8 10.0.0.2/8

d1-eth0

s3-eth1

d1

10.0.0.3/8

Figure 4. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

d1 d1-eth0 10.0.0.3 /8

2.2 Loading a topology

Step 1. Click on the Client tab to access the Client PC.

Figure 5. Accessing the Client PC.

Lab 2: Introduction to NetFlow

 Page 8

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 6. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab2 and select the file lab2.mn. Then, click on Open to open the
topology.

Figure 7. MiniEdit’s Open dialog.

Lab 2: Introduction to NetFlow

 Page 9

Figure 8. MiniEdit’s topology.

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 9. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 10. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Lab 2: Introduction to NetFlow

 Page 10

Figure 11. Displaying network interfaces.

In figure 11, the link displayed within the gray box indicates that interface eth1 of switch
s1 connects to interface eth0 of host h1 (i.e., s1-eth1<->h1-eth0).

3 Launching NetFlow exporter

Step 1. Open the Linux terminal.

Figure 12. Opening Linux terminal.

Step 2. Execute the following script in order to start NetFlow exporter. When prompted
for a password, type password.

sudo ./netflow.sh

Figure 13. Starting NetFlow exporter.

The following commands were executed in the script.

ovs-vsctl -- set Bridge s3 netflow=@nf -- --id=@nf create netflow
targets=\”10.0.0.3:9995\”

Lab 2: Introduction to NetFlow

 Page 11

The command creates a NetFlow ID and attaches it to switch s3. Switch s3 is acting as an
exporter and transmits data to the collector. Docker d1 is the collector IP and the port is
the default UDP port 9995.

Step 3. Type the following command to verify the NetFlow configuration.

sudo ovs-vsctl list bridge

Figure 14. Verifying switch configuration.

Consider the figure above. The figure listed all the existing Open vSwitches. You will notice
switch s3 has NetFlow enabled with the ID (83aa131a-f12c-42bf-95ee-475ac42314a8).

You might notice a different NetFlow ID since it is generated randomly each time you
enable an exporter.

Step 4. Type the following command to verify NetFlow configuration.

sudo ovs-vsctl list netflow

Lab 2: Introduction to NetFlow

 Page 12

Figure 15. Verifying NetFlow configuration.

Consider the figure above. One exporter is running, target collector IP is 10.0.0.3 and the
port is 9995.

Step 5. Type the following command to execute a script so that the exporter can send
flows to the collector.

sudo ./connect_collector.sh

Figure 16. Connecting collector to the exporter.

The following command was executed in the script.

ip route add 10.0.0.0/8 via 172.17.0.1

4 Analyzing NetFlow records using Wireshark

In this section, you will analyze NetFlow records in Wireshark.

4.1 Launching Wireshark

Step 1. In Linux terminal, start Wireshark packet analyzer by issuing the following
command. A new window will emerge.

sudo wireshark

Lab 2: Introduction to NetFlow

 Page 13

Figure 17. Starting Wireshark packet analyzer.

Step 2. Click on the icon located on the upper left-hand side to start capturing packets on
docker0 interface.

Figure 18. Starting packet capture.

Step 3.  In the filter box located on the upper left-hand side, type udp to filter UDP packets.
Then, press Enter to apply the filter.

Figure 19. Filtering UDP packets.

Lab 2: Introduction to NetFlow

 Page 14

4.2 Performing a connectivity test

Step 1. Go back to MiniEdit and hold right-click on host h2 and select Terminal. This opens
the terminal of host h2 and allows the execution of commands on that host.

Figure 20. Opening a terminal on host h2.

Step 2. In host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Figure 21. Running host h2 in server mode.

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 3. In host h1 terminal, type the following command to run the host in client
mode and run an iperf3 test between host h1 and h2.

iperf3 -c 10.0.0.2

Lab 2: Introduction to NetFlow

 Page 15

Figure 22. Running host h1 in client mode.

Consider the figure above. The test runs for ten seconds with interval of one second.

4.3 Visualizing NetFlow packets

Step 1. By default, NetFlow records are exported using User Datagram Protocol (UDP).

Figure 23. Verifying packet capture.

Consider the figure above. You will notice a UDP packet.

https://en.wikipedia.org/wiki/User_Datagram_Protocol

Lab 2: Introduction to NetFlow

 Page 16

Step 2. Wireshark provides a very powerful feature of decoding the captured packets into
user specified formats. Right-click on UDP packet and select decode as.

Figure 24. Decoding UDP packet.

Step 3. From the drop-down options, click on none and select CFLOW for the current field.
Then, click OK.

Figure 25. Decoding as CFLOW.

Lab 2: Introduction to NetFlow

 Page 17

The decode functionality of Wireshark temporarily diverts the specific protocol
dissections. CFLOW shows all the NetFlow information.

Step 4. You will notice a new field called Cisco NetFlow/IPFIX which includes all the
information regarding NetFlow.

Figure 26. Verifying NetFlow information.

Step 5. Click on the arrow located on the leftmost side of the field called Cisco
NetFlow/IPFIX. A list will be displayed.

Figure 27. Verifying NetFlow information.

Lab 2: Introduction to NetFlow

 Page 18

Consider the figure above. The figure shows the NetFlow version (version 5), total flow
count (13), Timestamp and other information of the packet header. You will also notice
all the flows listed there.

You might get different number of flows.

Step 6. Click on flow 1 (pdu 1/13).

Figure 28. Verifying flow record.

Consider the figure above. The figure shows the list of NetFlow information for a single
flow which includes source and destination IP addresses, in port, out port, total packets,
total bytes (octets), duration, source and destination ports and all other information. For
the flow, source address is 10.0.0.2, destination address is 10.0.0.1, in_port=3 and
out_port=2. Switch s3 is the exporter. When traffic is coming from host h2, in_port is s3-
eth3 and forwarding towards host h1 using out_port s3-eth2.

Step 7. Verify flow 13 (pdu 13/13).

Lab 2: Introduction to NetFlow

 Page 19

Figure 29. Verifying flow record.

Consider the figure above. For the flow, source address is 10.0.0.1, destination address is
10.0.0.2, in_port=2 and out_port=3.

If you get different number of flows then check out any two flows and verify two records
(from 10.0.0.1 to 10.0.0.2 and 10.0.0.2 to 10.0.0.1).

This concludes Lab 2. Close Wireshark window, stop the emulation and then exit out of
MiniEdit and the Linux terminal.

References

1. Cisco, “Introduction to Cisco IOS NetFlow – A technical overview”, [Online].
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html

2. B. Claise, “RFC 3954: Cisco systems NetFlow services export version 9”, (2004).
https://tools.ietf.org/html/rfc3954

3. Plixer, “Open vSwitch NetFlow”, [Online].
https://www.plixer.com/ blog/open-vswitch-netflow/

4. FlowTraq, “NetFlow export configuration”, [Online].
http://support.flowtraq.com/Documentation/Q3_16/webhelp/content/device_co
nfiguration.html

5. Vivek Ratan, Kin Fun Li, “NetFlow: Network monitoring and intelligence gathering”,
International conference on P2P, parallel, grid, cloud and Internet computing,
(2016).

6. Omar Santos, “Network security with NetFlow and IPFIX”, (2016).
7. Flowmon, “NetFlow / IPFIX monitoring”, [Online].

Lab 2: Introduction to NetFlow

 Page 20

https://www.flowmon.com/en/solutions/network-and-cloud-operations/netflow-
ipfix

8. ManageEngine NetFlow Analyzer, “What is NetFlow?”, [Online].
https://www.manageengine.com/products/netflow/what-is-netflow.html

NETWORK MANAGEMENT

Lab 3: Introduction to IPFIX

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 3: Introduction to IPFIX

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to IPFIX .. 4

1.2 IPFIX architecture ... 5

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 6

3 Launching IPFIX exporter .. 9

4 Analyzing IPFIX records using Wireshark .. 11

4.1 Launching Wireshark .. 11

4.2 Performing a connectivity test ... 13

4.3 Visualizing IPFIX packets... 14

References .. 21

Lab 3: Introduction to IPFIX

 Page 3

Overview

This lab introduces IP Flow Information Export (IPFIX) which is a network protocol used to
collect IP flow statistics and generate relevant data records. IPFIX enabled switches or
routers are called IPFIX exporters, which examine each packet and create flows from
these packets. These collected flows are exported to an external device known as IPFIX
collector which then organizes the flow records into a format that allows the
administrator to further analyze the traffic2. The focus of this lab is to explore how IPFIX
exporter and collector work in Open Virtual Switch (Open vSwitch) and analyze the
collected flows using Wireshark packet analyzer.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of IPFIX.
2. Understand how IPFIX works in Open vSwitch.
3. Enable IPFIX in Open vSwitch.
4. Analyze IPFIX records using Wireshark.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching IPFIX exporter.
4. Section 4: Analyzing IPFIX records using Wireshark.

1 Introduction

IPFIX was introduced for the desire of vendors to push away from the Cisco-driven
standards and to provide a much more open and flexible flow gathering datagram and

Lab 3: Introduction to IPFIX

 Page 4

environment. It is an enhanced version of NetFlow v9, considered as NetFlow v10. IPFIX
introduces several extensions such as integrating more information into its exporting
process. This means customers don’t need to invest in an additional device to handle
more complicated aspects of data collection and can run more efficient tests on their
networks. IPFIX has a wide range of applications: Information from the program can help
network administrators monitor bandwidth, keep track of threats to network security,
and figure out usage amounts for various users. NetFlow v9 defines 127 field types but
IPFIX defines 238. It can use variable-length fields which allows IPFIX to collect data like
URLs and messages1.

1.1 Introduction to IPFIX

IPFIX protocol provides network administrators with access to IP flow information. It is a
network flow standard defined by Internet Engineering Task Force (IETF). It was initiated
to create a common, universal standard of export for flow information which defines how
flow information should be laid out and transferred from an exporter to a collector. IPFIX
supports Stream Control Transmission Protocol (SCTP), Transmission Control Protocol
(TCP), and User Datagram Protocol (UDP)1.

IPFIX uses templates to provide access to observations of IP packet flows in a flexible and
extensible manner. Since the template mechanism is flexible, it allows the export of only
the required fields from the flows to the collector. This helps to reduce the exported flow
data volume and provides possible memory savings for the exporter and the collector3.
IPFIX-enabled devices can send IPFIX messages to the collector. Each IPFIX message
contains a message header and one or more template or data sets. A template provides
the description of the fields that will be present in the future data sets. Templates are
composed of Information Element (IE) and length pairs. IE provides field type information
for each template. The sets can be any of these three possible types:

Template Sets: It contains one or more templates used to describe the layout of flow
records which includes all flow collection use cases such as the traditional five-tuple
(source Ip address, destination IP address, source port, destination port, IP protocol),
various counters (packet delta counts, total connection counts, top talkers), flow meta
data information such as ingress, egress interfaces and flow direction1.

Options Template sets: The Options Template record gives the exporter the ability to
provide additional information to the collector that would not be possible with flow
records alone such as information about the collection infrastructure, flow keys used by
the exporter and so on2.

Data sets: Data records are sent in data sets.

IPFIX exporter sends templates to the collector periodically which provides a flexible
design to the record format. The collector receives flows with packets and uses templates
to decode the information in the packets.

Lab 3: Introduction to IPFIX

 Page 5

1.2 IPFIX architecture

An Observation Point is a location in the network where packets can be observed. A Flow
is defined as a set of packets or frames passing an observation point in the network during
a certain time interval. All packets belonging to a particular flow have a set of common
properties. These common properties may include packet header fields, such as source
and destination IP addresses, port numbers, packet properties, and information derived
by IP packet forwarding. Every observation point is associated with an observation
domain. Each IPFIX device has an observation domain ID. By default, the domain ID is 02.
IPFIX uses the following architecture terminology:

Metering Process (MP): Consists of a set of functions that includes packet header
capturing, timestamping, sampling, classifying, and maintaining flow records at an
observation point. It also passes complete flow records to an Exporting Process (EP)2.

EP: Sends IPFIX messages to one or more Collecting Processes (CPs). The flow records in
the messages are generated by one or more MPs.

CP: receives IPFIX Messages from one or more EPs.

Metering Process

Observation point

Exporting Process Collecting Process

Flow record
storage

Flow export

(IPFIX messages)

packets

Exporter Collector

Figure 1. IPFIX architecture.

Figure 1 shows the architecture of IPFIX. The Exporter observes packets, turns packets
into flow records and sends them to the collector as IPFIX messages. The collector
receives the IPFIX messages, identifies, decodes, and stores them for analysis.

2 Lab topology

Consider Figure 2. There are three switches, two end hosts and a docker container. Switch
s3 is acting as IPFIX exporter and the docker d1 will collect the flows.

Lab 3: Introduction to IPFIX

 Page 6

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0
h2-eth0

10.0.0.1/8 10.0.0.2/8

d1-eth0

s3-eth1

d1

10.0.0.3/8

Figure 2. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

d1 d1-eth0 10.0.0.3 /8

2.2 Loading a topology

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Lab 3: Introduction to IPFIX

 Page 7

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 4. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab3 and select the file lab3.mn. Then, click on Open to open the
topology.

Figure 5. MiniEdit’s Open dialog.

Lab 3: Introduction to IPFIX

 Page 8

Figure 6. MiniEdit’s topology.

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Lab 3: Introduction to IPFIX

 Page 9

Figure 9. Displaying network interfaces.

In figure 9, the link displayed within the gray box indicates that interface eth1 of switch
s1 connects to interface eth0 of host h1 (i.e., s1-eth1<->h1-eth0).

3 Launching IPFIX exporter

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Execute the following script in order to start IPFIX exporter. When prompted for
a password, type password.

sudo ./ipfix.sh

Figure 11. Starting IPFIX exporter.

The following commands were executed in the script.

ovs-vsctl -- set bridge s3 ipfix=@if -- --id=@if create IPFIX targets=\”10.0.0.3:9995\”

Lab 3: Introduction to IPFIX

 Page 10

The command creates an IPFIX ID and attaches it to switch s3. Switch s3 is acting as an
exporter and transmits data to the collector. Docker d1 is the collector IP and the port is
the UDP port 9995.

Step 3. Type the following command to show switch configuration.

sudo ovs-vsctl list bridge

Figure 12. Verifying switch configuration.

Consider the figure above. The figure listed all the existing Open vSwitches. You will notice
switch s3 has IPFIX enabled with an ID (3d6e65e-01af-4cbe-801d-429f63cf752b).

You might notice a different IPFIX ID since it is generated randomly each time you enable
an exporter.

Step 4. Type the following command to verify IPFIX configuration.

sudo ovs-vsctl list ipfix

Lab 3: Introduction to IPFIX

 Page 11

Figure 13. Verifying IPFIX configuration.

Consider the figure above. One exporter is running, target collector IP is 10.0.0.3 and the
port is 9995.

Step 5. Type the following command to execute a script so that the exporter can send
flows to the collector.

sudo ./connect_collector.sh

Figure 14. Connecting collector to the exporter.

The following command was executed in the script.

ip route add 10.0.0.0/8 via 172.17.0.1

4 Analyzing IPFIX records using Wireshark

In this section, you will analyze IPFIX records in Wireshark.

4.1 Launching Wireshark

Step 1. In Linux terminal, start Wireshark packet analyzer by issuing the following
command. A new window will emerge.

sudo wireshark

Lab 3: Introduction to IPFIX

 Page 12

Figure 15. Starting Wireshark packet analyzer.

Step 2. Click on the icon located on the upper left-hand side to start capturing packets on
docker0.

Figure 16. Starting packet capture.

Step 3.  In the filter box located on the upper left-hand side, type udp to filter UDP packets.
Then, press Enter to apply the filter.

Figure 17. Filtering UDP packets.

Lab 3: Introduction to IPFIX

 Page 13

4.2 Performing a connectivity test

Step 1. Go back to MiniEdit and hold right-click on host h2 and select Terminal. This opens
the terminal of host h2 and allows the execution of commands on that host.

Figure 18. Opening a terminal on host h2.

Step 2. In host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Figure 19. Running host h2 in server mode.

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 3. Follow step 1 to open a terminal in host h1. Type the following command to run
the host in client mode and run an iperf test between hosts h1 and h2.

iperf3 -c 10.0.0.2 -t 30

Lab 3: Introduction to IPFIX

 Page 14

Figure 20. Running host h1 in client mode.

Consider the figure above. The test runs for 30 seconds with interval of one second.

4.3 Visualizing IPFIX packets

Step 1. Verify packet capturing in Wireshark. You will notice that IPFIX records are
exported using User Datagram Protocol (UDP).

Figure 21. Verifying packet capture.

https://en.wikipedia.org/wiki/User_Datagram_Protocol

Lab 3: Introduction to IPFIX

 Page 15

Step 2. Wireshark provides a very powerful feature of decoding the captured packets into
user specified formats. Right-click on first UDP packet (length 1250) and select decode as.

Figure 22. Decoding UDP packet.

Step 3. Select the last entry and click on none. From the drop-down options select CFLOW
for the current field and click OK.

Figure 23. Decoding as CFLOW.

Lab 3: Introduction to IPFIX

 Page 16

The decode functionality of Wireshark temporarily diverts the specific protocol
dissections. CFLOW shows all the NetFlow/IPFIX information.

It may take some moments to decode all the packets.

Step 4. You will notice a new field called Cisco NetFlow/IPFIX which includes all the
information regarding IPFIX.

Figure 24. Verifying IPFIX information.

Consider the figure above. The figure shows the NetFlow version (version 10), length of
the packet, timestamp, and other information of the packet header. You will also notice
all the data template listed here.

Step 5. Click on the arrow located on the leftmost side of the field called Set 1. A list will
be displayed.

Lab 3: Introduction to IPFIX

 Page 17

Figure 25. Verifying IPFIX templates.

Consider the figure above. The figure shows IPFIX templates.

Step 6. Click on the arrow located on the leftmost side of the field called Template (Id=256,
Count=26). A list will be displayed.

Lab 3: Introduction to IPFIX

 Page 18

Figure 26. Verifying IPFIX template.

Consider the figure above. The figure shows the template for IPFIX information which
includes observation point ID, source and destination MAC address, source and
destination IP address, interface name and other information.

Step 7. Click on the CFLOW packet that has a length of 358 bytes.

Figure 27. Verifying flow record.

Lab 3: Introduction to IPFIX

 Page 19

Consider the figure above. The figure shows a flow has been detected. Data ID is 280
which means the template ID is 280.

Step 8. Click on the arrow located on the leftmost side of the field called Flow 1. A list will
be displayed.

Figure 28. Verifying flow information.

Consider the figure above. The figure shows the list of IPFIX information for a single flow.
For the flow, source address is 10.0.0.1, destination address is 10.0.0.2, ingress port is s3-
eth2, IP version is 4, Protocol is TCP. You can scroll down to see the whole list of the flow
information.

Step 9. Double click on the template frame to verify that the template fields match with
the flow list.

Lab 3: Introduction to IPFIX

 Page 20

Figure 29. Navigating to the actual template frame.

Step 10. You will see the last template frame. The template ID will be the same as data ID
(280).

Figure 30. Verifying template ID and fields.

Consider the figure above. The fields are the same as the flow list.

Lab 3: Introduction to IPFIX

 Page 21

This concludes Lab 3. Close the Wireshark window, stop the emulation and then exit out
of MiniEdit and the Linux terminal.

References

1. Omar Santos, “Network security with NetFlow and IPFIX”, 2016.
2. B. Claise, Cisco Systems, B. Trammell, “Specification of the IP Flow Information

Export (IPFIX) protocol for the exchange of flow information”, Sep 2013.
3. B. Claise, Cisco Systems, “Cisco Systems NetFlow services export Version 9”, Oct

2004.
4. IBM, “IPFIX Information Elements”, [Online]. Available:

https://www.ibm.com/docs/en/npi/1.3.1?topic=versions-ipfix-information-
elements

5. IBM, “IPFIX”, [Online]. Available:
https://www.ibm.com/docs/en/qradar-on-cloud?topic=sources-ipfix

6. Flowmon, “NetFlow / IPFIX monitoring”, [Online]. Available:
https://www.flowmon.com/en/solutions/network-and-cloud-operations/netflow-
ipfix

NETWORK MANAGEMENT

Lab 4: Introduction to sFlow

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 4: Introduction to sFlow

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to sFlow ... 4

1.2 Advantages of sFlow .. 5

2 Lab topology.. 5

2.1 Lab settings... 6

2.2 Loading a topology ... 6

3 Launching sFlow agent .. 9

4 Analyzing sFlow sampling records using Wireshark ... 11

4.1 Launching Wireshark .. 11

4.2 Performing a connectivity test ... 12

4.3 Visualizing sFlow packets ... 14

References .. 20

Lab 4: Introduction to sFlow

 Page 3

Overview

This lab introduces Sampled Flow (sFlow), the leading, multi-vendor, standard for
monitoring high-speed switched and routed networks. The technology is built into
network equipment and gives complete visibility into network activity, enabling effective
management and control of network resources1. The focus of this lab is to explore how
sFlow works in Open Virtual Switch (Open vSwitch) and analyze the collected flows using
Wireshark packet analyzer.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of sFlow.
2. Enable sFlow in Open vSwitch.
3. Analyze sFlow sampling records using Wireshark.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching sFlow agent.
4. Section 4: Analyzing sFlow sampling records using Wireshark.

1 Introduction

Flow-based monitoring provides significant advantages over other network monitoring
methods. NetFlow and IPFIX protocols are used for flow analysis. NetFlow collects and
aggregates information about network traffic flowing through an exporter. Since sFlow
stands for Sampled Flow, actual packets are being sampled here instead of flows. Netflow
is restricted to IP traffic only – this is where sFlow has the greater advantage in terms of

Lab 4: Introduction to sFlow

 Page 4

analyzation, as it can collect, monitor, and analyze traffic from OSI Layers 2, 3, 4, 5, 6 and
72. NetFlow exports datagrams that contain multiple flow records. This stateful session
tracking requires memory resources. sFlow has less resource impact on devices since it
only performs packet sampling and does not have to identify and keep track of sessions
as is the case with NetFlow.

1.1 Introduction to sFlow

The sFlow monitoring system consists of an sFlow Agent (embedded in a switch or router)
and a central sFlow Collector. The sFlow agent uses sampling technology to capture traffic
statistics from the device it is monitoring. It captures packet headers and partial packet
payload data into sFlow datagrams that are then exported to collectors for analysis3.
Based on a defined sampling rate, an average of 1 out of N packets is randomly sampled.
Since sFlow captures the entire packet headers, it is able to provide full layer 2–7 visibility
into all types of traffic flowing across the network including MAC addresses, VLANs, and
MPLS labels4.

The techniques used in the sFlow monitoring system were designed for providing
continuous site-wide (and enterprise-wide) traffic monitoring of high speed switched and
routed networks. It is capable of monitoring networks at 10Gbps, 100Gbps and beyond.
Thousands of devices can be monitored by a single sFlow Collector. The sFlow agent is
simple to implement and adds negligible cost to a switch or router4.

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0
h2-eth0

10.0.0.1/8 10.0.0.2/8

h3-eth0

s3-eth1 (agent)

h3

10.0.0.3/8

Collector

Figure 1. sFlow sample capturing.

Lab 4: Introduction to sFlow

 Page 5

Consider the figure above. The figure shows an sFlow agent running in switch s3, whereas
host h3 is acting as an sFlow collector. The sFlow agent obtains traffic statistics from
interface s3-eth1 using sampling and sends the sFlow packets to the collector. The
collector analyzes these sFlow packets and displays traffic statistics in a report.

1.2 Advantages of sFlow

Troubleshooting network problems: Traffic problems are seen in abnormal traffic
patterns. sFlow makes these patterns to be seen with sufficient details for quick
identification, diagnosis, and correction.

Traffic jam control: Since sFlow monitors all the flows continuously on all ports, it can be
used to instantly highlight the congested links, identifying the source of this traffic. It also
provides the information needed to establish effective controls.

Security analysis: Assuming that security attacks and threats originate from unknown
sources, an effective monitoring requires complete network surveillance with alerts for
any suspicious activity. sFlow provides a comprehensive audit trail for the whole network.
The constant monitoring throughout the network and route records provided by sFlow
allow that threats and attacks from internal or external sources to be quickly tracked and
controlled.

Accounting and billing for use: The detailed network usage is required to collect accurate
values for network services and to recover costs from value-added service. The sFlow data
may be used to account and charge for the use of network by clients. They can also be
used to present to the client a breakdown of their total traffic, highlighting the users and
applications that most consumed. This information gives the customer confidence in the
accuracy of the rates and provides better cost control4.

2 Lab topology

Consider Figure 2. There are three switches, two end hosts and a docker container. Switch
s3 is acting as sFlow exporter and the docker will collect sample flows.

Lab 4: Introduction to sFlow

 Page 6

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0
h2-eth0

10.0.0.1/8 10.0.0.2/8

d1-eth0

s3-eth1

d1

10.0.0.3/8

Figure 2. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

d1 d1-eth0 10.0.0.3 /8

2.2 Loading a topology

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Lab 4: Introduction to sFlow

 Page 7

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 4. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab4 and select the file lab2.mn. Then, click on Open to open the
topology.

Figure 5. MiniEdit’s Open dialog.

Lab 4: Introduction to sFlow

 Page 8

Figure 6. MiniEdit’s topology.

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Lab 4: Introduction to sFlow

 Page 9

Figure 9. Displaying network interfaces.

In figure 9, the link displayed within the gray box indicates that interface eth1 of switch
s1 connects to interface eth0 of host h1 (i.e., s1-eth1<->h1-eth0).

3 Launching sFlow agent

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Execute the following command to start sFlow exporter. When prompted for a
password, type password.

sudo ovs-vsctl -- --id=@s create sFlow agent=s3-eth1 target=\”10.0.0.3:9995\”

sampling=64 polling=10 –- set Bridge s3 sflow=@s

Figure 11. Enabling sFlow exporter.

Consider the figure above. The figure shows that sFlow collector in switch s3 is enabled
where the target collector is docker d1 (10.0.0.3). Interface s3-eth1 is responsible for
sending sFlow messages to the collector. Sampling rate is 64 which means 1 in 64 packets
will be sampled. Polling interval is set to 10 which means sFlow records will be sent to the
collector every 10 seconds.

Step 3. Type the following command to verify sFlow configuration.

Lab 4: Introduction to sFlow

 Page 10

sudo ovs-vsctl list bridge

Figure 12. Verifying switch configuration.

Consider the figure above. The figure listed all the existing Open vSwitches. You will notice
switch s3 has sFlow enabled with the ID (49e4eebe-5b2c-4873-9297-4d7888519911).

You might notice a different sFlow ID since it is generated randomly each time you enable
sFlow agent.

Step 4. Type the following command to verify sFlow configuration.

sudo ovs-vsctl list sflow

Figure 13. Verifying sFlow configuration.

Consider the figure above. One sFlow agent is running, target collector IP is 10.0.0.3 and
the port is 9995.

Step 5. Type the following command to execute a script so that the exporter can send
flows to the collector.

Lab 4: Introduction to sFlow

 Page 11

sudo ./connect_collector.sh

Figure 14. Connecting collector to the exporter.

The following command was executed in the script.

ip route add 10.0.0.0/8 via 172.17.0.1

4 Analyzing sFlow sampling records using Wireshark

In this section, you will analyze sFlow sampling records in Wireshark.

4.1 Launching Wireshark

Step 1. In Linux terminal, start Wireshark packet analyzer by issuing the following
command. A new window will emerge.

sudo wireshark

Figure 15. Starting Wireshark packet analyzer.

Step 2. Click on the icon located on the upper left-hand side to start capturing packets on
docker0 interface.

Lab 4: Introduction to sFlow

 Page 12

Figure 16. Starting packet capture.

Step 3.  In the filter box located on the upper left-hand side, type udp to filter UDP packets.
Press Enter to apply the filter.

Figure 17. Filtering UDP packets.

4.2 Performing a connectivity test

Step 1. Go back to MiniEdit. Hold right-click on host h2 and select Terminal. This opens
the terminal of host h2 and allows the execution of commands on that host.

Lab 4: Introduction to sFlow

 Page 13

Figure 18. Opening a terminal on host h2.

Step 2. In host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Figure 19. Running host h2 in server mode.

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 3. Follow step 1 and open a terminal in host h1. Type the following command to run
an iperf3 test between hosts h1 and h2, host h1 is running in client mode.

iperf3 -c 10.0.0.2

Lab 4: Introduction to sFlow

 Page 14

Figure 20. Running host h1 in client mode.

Consider the figure above. The test runs for ten seconds with interval of one second.

4.3 Visualizing sFlow packets

Step 1. Stop the packet capturing by clicking the red stop button.

Figure 21. Stopping packet capture.

Step 2. sFlow records are exported using User Datagram Protocol (UDP). Wireshark
provides a very powerful feature of decoding the captured packets into user specified
formats. Right-click on any UDP packet and select decode as.

https://en.wikipedia.org/wiki/User_Datagram_Protocol

Lab 4: Introduction to sFlow

 Page 15

Figure 22. Decoding UDP packet.

Step 3. From the drop-down options, select sflow for the current field and click ok.

Figure 23. Decoding as sflow.

Lab 4: Introduction to sFlow

 Page 16

The decode functionality of Wireshark temporarily diverts the specific protocol
dissections. sflow shows all the sFlow information.

Step 4. You will notice a new field called InMon sFlow which includes all the information
regarding sFlow.

Figure 24. Verifying sFlow information.

Step 5. Click on the arrow located on the leftmost side of the field called InMon sFlow. A
list will be displayed.

Figure 25. Verifying sFlow header information.

Lab 4: Introduction to sFlow

 Page 17

Consider the figure above. You will notice the information about sFlow header which
includes sFlow version (Datagram version 5), Agent address 172.17.0.1 which is the switch
interface responsible for sending sFlow records to the collector. sFlow v5 supports the
switch/router running multiple separate sFlow agent processes. They collect, assemble,
and export their sFlow information separately. If the device is running multiple agent
processes, each process is given a unique ID. Sub-agent ID is set to 0 here since only a
single agent is running at this time. NumSamples refers to the number of sFlow samples
contained in the current packet (6). The flow samples are also listed.

Step 6. Click on the arrow located on the leftmost side of the field called Flow sample. A
list will be displayed.

Figure 26. Verifying flow sample record.

Consider the figure above. The Enterprise types allow individual enterprises to define
their sample types. This is 0 by default which refers to the standard sFlow type. The
sampling rate is 1 out of 64 which means 1 in 64 packets is sampled. Sample pool refers
to the total number of packets that could have been sampled.

Step 7. Click on the arrow located on the leftmost side of the field called Extended switch
data. A list will be displayed.

Lab 4: Introduction to sFlow

 Page 18

Figure 27. Verifying flow sample record.

Consider the figure above. It shows the extended switch information such as VLAN
information.

Step 8. Click on the arrow located on the leftmost side of the field called Raw packet
header. A list will be displayed.

Lab 4: Introduction to sFlow

 Page 19

Figure 28. Verifying flow sample record.

Consider the figure above. It shows the information about raw packet header. Header
protocol is ethernet, length of frame before sampling is 1518, Payload removed value is
4 which means 4 bytes has been removed by the sampling process. Original packet length
is 128 bytes.

Step 9. Click on the arrow located on the leftmost side of the field called Header of
sampled packet. A list will be displayed.

Lab 4: Introduction to sFlow

 Page 20

Figure 29. Verifying flow sample record.

Consider the figure above. It shows the source and destination MAC addresses, source IP
(10.0.0.1) and destination IP (10.0.0.2), TCP information such as source and destination
ports.

This concludes Lab 4. Close Wireshark window, stop the emulation and then exit out of
MiniEdit and the Linux terminal.

References

1. InMon, “sFlow”, [Online]. Available:
https://inmon.com/technology/

2. Thwack, “NetFlow vs. sFlow – Differences and Applications!”, [Online]. Available:
https://thwack.solarwinds.com/resources/b/geek-speak/posts/netflow-vs-sflow-
differences-and-applications

3. P. Phaal, S. Panchen, N. Mckee, InMon Corp, “InMon Corporation's sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks”, [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3176

4. sFlow, “Traffic monitoring using sFlow”, [Online]. Available:
https://sflow.org/sFlowOverview.pdf

NETWORK MANAGEMENT

Lab 5: Collecting and Processing NetFlow, IPFIX
and sFlow data using Nfdump

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to Nfdump ... 4

1.2 Processing data using Nfdump ... 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading a topology ... 6

3 Launching NetFlow collector and exporter .. 8

4 Analyzing NetFlow data using Nfdump ... 10

4.1 Performing a connectivity test ... 11

4.2 Visualizing NetFlow data stored by nfcapd .. 12

5 Analyzing IPFIX data using Nfdump .. 14

5.1 Launching IPFIX collector and exporter ... 15

5.2 Visualizing IPFIX data stored by nfcapd ... 17

6 Analyzing sFlow data using Nfdump ... 19

6.1 Launching sFlow collector and agent ... 19

6.2 Visualizing sFlow data stored by sfcapd ... 21

References .. 23

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 3

Overview

This lab introduces Nfdump, a set of tools to collect and process NetFlow, IPFIX and sFlow
data. The focus of this lab is to enable NetFlow, IPFIX, sFlow exporters in Open Virtual
Switch (Open vSwitch) and analyze data using Nfdump.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of Nfdump.
2. Enable NetFlow, IPFIX and sFlow in Open vSwitch.
3. Analyze collected data using Nfdump.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching NetFlow collector and exporter.
4. Section 4: Analyzing NetFlow data using Nfdump.
5. Section 5: Analyzing IPFIX data using Nfdump.
6. Section 6: Analyzing sFlow data using Nfdump.

1 Introduction

NetFlow and IPFIX are designed for the collection of IP traffic information and the
monitoring of network traffic. They provide a detailed view of application flows and a
popular way of gaining both a broad and detailed picture of what is happening inside the
network. With the help of these tools, it is possible to visualize where network traffic ends
up, the source of the traffic, and how much traffic is being generated. You can gain

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 4

increased visibility into bandwidth allocation, identify, and prevent any further abuse
potentially impacting the performance of the network1.

sFlow uses sampling technology to capture traffic statistics from the device it is
monitoring. It captures packet headers and partial packet payload data into sFlow
datagrams that are then exported to collectors for analysis2. Based on a defined sampling
rate, an average of 1 out of N packets is randomly sampled.

1.1 Introduction to Nfdump

Nfdump is a very popular command-line toolset for collecting, storing, and processing
NetFlow/SFlow/IPFIX data. This utility can process data very fast. Nfcapd is the NetFlow
and IPFIX capture daemon that reads the data from the network and stores the data into
files. Sfcapd is the sFlow capture daemon. Nfdump reads the data from the files stored by
the daemons. All the data is stored as nfcapd file. Every five minutes, nfcapd rotates and
renames the output file with the time stamp nfcapd.YYMMddhhmm of the interval (e.g.,
nfcapd.202103221140 contains data from March 22nd, 2021, time 11:40 onward). It can
save 288 files per day based on five minutes time interval. Nfdump also offers a graphical
web-based front-end tool called nfsen-ng which allows processing the NetFlow data
within the specified time span, easily navigate through the collected data, set alerts,
based on various conditions. It can process a file stored by nfcapd every five minutes3.

NetFlow Exporter
nfdumpstorage

nfcapd

sFlow Agent

sfcapd

Output
text

Collecting data Processing data

Figure 1. Nfdump architecture.

Consider Figure 1. NetFlow and sFlow daemons are capturing and saving data from
routers. Nfdump reads the stored data from the files and delivers as text based on the
queries.

1.2 Processing data using Nfdump

Flows can be read either from a single file or from a sequence of files. Nfdump has several
output formats (line, long, extended). The output format line is the default output format
when no format is specified. It limits the information to the connection details as well as
number of packets, bytes, and flows. The output format long is identical to the format
line and includes additional information such as TCP flags and Type of Service (ToS). The
output format extended is identical to the format long and includes additional computed

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 5

information such as packet per second (pps), bytes per second (bps) and bits per packet
(bpp)4.

Nfdump has a powerful and fast filter engine. All flows are filtered before they are further
processed. If no filter is given, any flow will be processed. The filter is either given on the
command line as last argument enclosed in ', or in a file3.

2 Lab topology

Consider Figure 2. There are three switches, two end hosts, and a docker container.
Switch s3 is acting as an exporter and the docker d1 is the collector.

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0
h2-eth0

10.0.0.1/8 10.0.0.2/8

d1-eth0

s3-eth1

d1

10.0.0.3/8

Figure 2. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

d1 d1-eth0 10.0.0.3 /8

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 6

2.2 Loading a topology

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 4. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab5 and select the file lab5.mn. Then, click on Open to open the
topology.

Figure 5. MiniEdit’s Open dialog.

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 7

Figure 6. MiniEdit’s topology.

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 8

Figure 9. Displaying network interfaces.

In figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., s1-eth1<->h1-eth0).

3 Launching NetFlow collector and exporter

Step 1. Go back to MiniEdit. Hold right-click on docker d1 and select Terminal. This opens
the terminal of the docker and allows the execution of commands.

Figure 10. Opening a terminal on docker d1.

Step 2. Navigate into /nfdump directory by issuing the following command.

cd nfdump/

Figure 11. Entering into nfdump directory.

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 9

Step 3. Type the following command to start the nfcapd daemon. The daemon will start
collecting data and stores in file netflow_files.

nfcapd -b 10.0.0.3 -p 9995 -l /nfdump/netflow_files/

Figure 12. Starting nfcapd daemon.

Consider the figure above. -b specifies the host address 10.0.0.3 to bind for listening. -p
specifies the port number 9995. -l is referring to the directory where the file will be saved.
The figure shows that the host was bound to the daemon.

Step 4. Open the Linux terminal.

Figure 13. Opening Linux terminal.

Step 5. Execute the following script to start the NetFlow exporter. If prompted for
password, type password.

sudo ovs-vsctl –- set bridge s3 netflow=@nf -- --id=@nf create netflow

targets=\”10.0.0.3:9995\”

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 10

Figure 14. Starting NetFlow exporter.

Consider the figure above. The command creates a NetFlow ID and is attached to switch
s3. Switch s3 is acting as an exporter and transmits data to the collector. 10.0.0.3 is
the collector IP and the port is the default UDP port 9995.

Step 6. Type the following command to verify NetFlow configuration.

sudo ovs-vsctl list netflow

Figure 15. Verifying NetFlow configuration.

Consider the figure above. Exporter s3 is running with a Universally unique identifier
(UUID) which is also known as NetFlow ID, target IP address is 10.0.0.3 and the port is
9995.

Step 7. Type the following command to execute a script so that the exporter can send
flows to the collector. If prompted for password, type password.

sudo ./connect_collector.sh

Figure 16. Connecting collector to the exporter.

4 Analyzing NetFlow data using Nfdump

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 11

In this section, you will analyze NetFlow data.

4.1 Performing a connectivity test

Step 1. Hold right-click on host h2 and select Terminal. This opens the terminal of host h2
and allows the execution of commands on that host.

Figure 17. Opening a terminal on host h2.

Step 2. In host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Figure 18. Running host h2 in server mode.

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 3. Open host h1 terminal and type the following command to run the host in client
mode.

iperf3 -c 10.0.0.2

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 12

Figure 19. Running host h1 in client mode.

Consider the figure above. The test runs for ten seconds with an interval of one second.

4.2 Visualizing NetFlow data stored by nfcapd

Step 1. Go to docker d1 terminal to verify that the exporter was detected to examine the
packets. Press Ctrl+c to stop the nfcapd daemon.

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 13

Figure 20. Verifying the exporter connectivity.

Consider the figure above. It shows that the new exporter was detected and includes
information about the exporter such as total flows (16), number of packets (2267125) and
bytes (51329316845).

If total flow number is 0, run the collector and perform the test again. You might get
different number of flows and bytes.

Step 2. Type the following command to verify the nfcapd file stored into netflow_files.

ls /nfdump/netflow_files | tail -1 > tmp ; cat tmp

Figure 21. Verifying nfcapd files.

Consider the output in the figure above. It shows a new file added named
nfcapd.202207062205 (Year 2022, Month 07, Date 06, Time 22:05).

You will see a file that is named based on the time you are running the test.

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 14

Nfcapd stores file for every 5 minutes (e.g., one file from 15:45 to 15:50). You might get
2 files if the exporter is running for more than 5 minutes (e.g., 5:45 to 15:52).

Step 3. Type the following command to read the file that was currently stored. Note the
symbols enclosing the command cat tmp are backticks ` ` note single quotations.

nfdump -r /nfdump/netflow_files/`cat tmp`

Figure 22. Reading the recorded file.

Consider the figure above. The output includes the date, time, duration, protocol, source
and destination IP addresses, ports, packets, bytes, and flows. It also provides a summary
of the test.

You can read any file if you get more than 1 file stored in the folder.

5 Analyzing IPFIX data using Nfdump

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 15

In this section, you will enable IPFIX agent and collector. You will also perform a
connectivity test between hosts. Finally, you will verify the stored file using nfdump.

5.1 Launching IPFIX collector and exporter

Step 1. Type the following command to start the nfcapd daemon. The daemon will start
reading data from the exporter and stores in a file.

nfcapd -b 10.0.0.3 -p 9995 -l /nfdump/ipfix_files/

Figure 23. Starting nfcapd daemon.

Consider the figure above. -b specifies the host address 10.0.0.3 to bind for listening. -p
specifies the port number 9995. -l is referring to the directory where the file will be saved.
The figure shows that the host was bound to the daemon.

Step 2. Go back to the Linux terminal and execute the following script to start the IPFIX
exporter. If prompted for password, type password.

sudo ovs-vsctl –- set bridge s3 ipfix=@if -- --id=@if create IPFIX

targets=\”10.0.0.3:9995\”

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 16

Figure 24. Starting IPFIX exporter.

Consider the figure above. The command creates an IPFIX ID and is attached to switch
s3. Switch s3 is acting as an exporter and transmits data to the collector. 10.0.0.3 is
the collector IP and the port is the default UDP port 9995.

Step 3. Type the following command to verify IPFIX configuration.

sudo ovs-vsctl list ipfix

Figure 25. Verifying IPFIX configuration.

Consider the figure above. Exporter s3 is running, target IP address is 10.0.0.3 and the
port is 9995.

Step 4. Open host h1 terminal and type the following command to perform a test.

iperf3 -c 10.0.0.2

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 17

Figure 26. Performing iperf3 test.

Consider the figure above. The test runs for ten seconds with an interval of one second.

5.2 Visualizing IPFIX data stored by nfcapd

Step 1. Go to docker d1 terminal to verify the exporter was detected to examine the
packets. Press Ctrl+c to stop the nfcapd daemon.

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 18

Figure 27. Verifying the exporter connectivity.

Consider the figure above. It shows that the new exporter was detected and includes
information about the exporter such as total flows, number of packets and bytes.

If total flow number is 0, run the collector and perform the test again.

Step 2. Type the following command to verify the nfcapd file stored into ipfix_files.

ls /nfdump/ipfix_files | tail -1 > tmp ; cat tmp

Figure 28. Verifying nfcapd files.

Consider the figure above. It shows a new file added named nfcapd.202207062220 (Year
2022, Month 07, Date 06, Time 22:20).

You will see a file that is named based on the time you are running the test.

Step 3. Type the following command to read the file that was currently stored. Since the
total flow number is 161869, it will take time to load all the flows. For simplicity, you will

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 19

use -c 15 to show top 15 flows from the list. Note the symbols enclosing the command
cat tmp are backticks ` ` note single quotations.

nfdump -r /nfdump/ipfix_files/`cat tmp` -c 15

Figure 29. Reading the recorded file.

Consider the figure above. The output includes the date, time, duration, protocol, source
and destination IP addresses, ports, packets, bytes, and flows. It also provides a summary
of the test. Since nfdump uses a fixed output format, the result is similar to netflow data.

6 Analyzing sFlow data using Nfdump

In this section, you will enable sFlow agent and collector. You will also perform a
connectivity test between hosts. Finally, you will verify the stored file using nfdump.

6.1 Launching sFlow collector and agent

Step 1. Type the following command to start the sfcapd daemon. The daemon will start
reading data from the agent and stores in a file.

sfcapd -b 10.0.0.3 -p 9995 -l /nfdump/sflow_files/

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 20

Figure 30. Starting sfcapd daemon.

Consider the figure above. -b specifies the host address 10.0.0.3 to bind for listening. -p
specifies the port number 9995. -l is referring to the directory where the file will be saved.
The figure shows that the host was bound to the daemon.

Step 2. Go back to the Linux terminal and execute the following script to enable a sFlow
agent. If prompted for password, type password.

sudo ovs-vsctl –- --id=@s create sflow agent=s3-eth1 target=\”10.0.0.3:9995\”

sampling=64 polling=10 –- set bridge s3 sflow=@s

Figure 31. Enabling sFlow agent.

Consider the figure above. The command creates a sFlow ID and is attached to switch
s3. Switch s3 is acting as an agent and transmits data to the collector. 10.0.0.3 is
the collector IP and the port is the default UDP port 9995.

Step 3. Type the following command to verify sFlow configuration.

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 21

sudo ovs-vsctl list sflow

Figure 32. Verifying sFlow configuration.

Consider the figure above. s3 agent is running, target IP address is 10.0.0.3 and the port
is 9995.

Step 4. Open host h1 terminal and type the following command to perform iperf3 test.

iperf3 -c 10.0.0.2

Figure 33. Performing iperf3 test.

Consider the figure above. The test runs for ten seconds with an interval of one second.

6.2 Visualizing sFlow data stored by sfcapd

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 22

Step 1. Go to docker d1 terminal to verify that the exporter was detected to examine the
packets. Press Ctrl+c to stop the sfcapd daemon.

Figure 34. Verifying the exporter connectivity.

Consider the figure above. It shows that the new exporter was detected and includes
information about the exporter such as total flows, number of packets and bytes.

If total flow number is 0, run the collector and perform the test again.

Step 2. Type the following command to verify the nfcapd file stored into sflow_files.

ls /nfdump/sflow_files | tail -1 > tmp ; cat tmp

Figure 35. Verifying nfcapd files.

Nfdump stores sFlow files as nfcapd file though the daemon for sFlow is sfcapd. Consider
the figure above. It shows a new file added named nfcapd.202207062227 (Year 2022,
Month 07, Date 06, Time 22:27).

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 23

You will see a file that is named based on the time you are running the test.

Step 3. Type the following command to read the file that was currently stored. Since the
total flow number is 438382, it will take time to load all the flows. For simplicity, you will
use -c 15 to show top 15 flows from the list.

nfdump -r /nfdump/sflow_files/`cat tmp` -c 15

Figure 36. Reading the recorded file.

Consider the figure above. The output includes the date, time, duration, protocol, source
and destination IP addresses, ports, packets, bytes, and flows. It also provides a summary
of the test.

This concludes Lab 5. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. DNSstuff, “Best NetFlow Analyzer and Collectors”, [Online].
https://www.dnsstuff.com/netflow-analyzer-software#best-netflow-analyzers-
and-collectors-list

2. P. Phaal, S. Panchen, N. Mckee, InMon Corp, “InMon Corporation’s sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks”, [Online].
https://datatracker.ietf.org/doc/html/rfc3176

3. Sourceforge, “Nfdump”, [Online]. http://nfdump.sourceforge.net/
4. Omar Santos, “Network security with NetFlow and IPFIX”, (2016).
5. sFlow, “Traffic monitoring using sFlow”, [Online].

https://sflow.org/sFlowOverview.pdf
6. IBM, “IPFIX”, [Online].

https://www.ibm.com/docs/en/qradar-on-cloud?topic=sources-ipfix
7. Cisco, “Introduction to Cisco IOS NetFlow – A technical overview”, [Online].

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html

Lab 5: Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump

 Page 24

8. B. Claise, “RFC 3954: Cisco systems NetFlow services export version 9”, (2004).
https://tools.ietf.org/html/rfc3954

NETWORK MANAGEMENT

Lab 6: Filtering and Formatting Data using
Nfdump

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to Nfdump ... 4

1.2 Processing data using Nfdump ... 4

2 Lab topology.. 5

2.1 Lab settings... 5

2.2 Loading a topology ... 5

3 Exploring Nfdump features ... 8

3.1 Nfdump formatting features .. 9

3.2 Nfdump filtering features... 12

References .. 16

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 3

Overview

This lab introduces Nfdump, a set of tools to analyze NetFlow, sFlow and IPFIX data as
well as to track traffic patterns continuously. The focus of this lab is to show formatting
and filtering features of Nfdump.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of Nfdump.
2. Analyze NetFlow data using Nfdump.
3. Explore Nfdump formatting and filtering features.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching NetFlow collector and exporter.
4. Section 4: Analyzing NetFlow data using Nfdump.

1 Introduction

NetFlow is designed for the collection of IP traffic information and the monitoring of
network traffic. It provides a detailed view of application flows and a popular way of
gaining both a broad and detailed picture of what is happening inside the network. With
the help of NetFlow collector and NetFlow analyzer tools, it is possible to visualize where
network traffic ends up, the source of the traffic, and how much traffic is being generated.
You can gain increased visibility into bandwidth allocation, identify, and prevent any
further abuse potentially impacting the performance of the network3.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 4

1.1 Introduction to Nfdump

Nfdump is a very popular command-line toolset for collecting, storing, and processing
NetFlow/SFlow/IPFIX data. This utility can process data very fast. Nfcapd is the NetFlow
and IPFIX capture daemon that reads the data from the network and stores the data into
files. Sfcapd is the sFlow capture daemon. Nfdump reads the data from the files stored by
the daemons. All the data is stored as nfcapd file. Every five minutes, nfcapd rotates and
renames the output file with the time stamp nfcapd.YYMMddhhmm of the interval (e.g.,
nfcapd.202103221140 contains data from March 22nd, 2021, time 11:40 onward). It can
save 288 files per day based on five minutes time interval. Nfdump also offers a graphical
web-based front-end tool called nfsen-ng which allows processing the NetFlow data
within the specified time span, easily navigate through the collected data, set alerts,
based on various conditions. It can process a file stored by nfcapd every five minutes3.

NetFlow Exporter
nfdumpstorage

nfcapd

sFlow Agent

sfcapd

Output
text

Collecting data Processing data

Figure 1. Nfdump architecture.

Consider Figure 1. NetFlow and sFlow daemons are capturing and saving data from
routers. Nfdump reads the stored data from the files and delivers as text based on the
queries.

1.2 Processing data using Nfdump

Flows can be read either from single file or from a sequence of files. Nfdump has several
output formats (line, long, extended). The output format line is the default output format
when no format is specified. It limits the information to the connection details as well as
number of packets, bytes, and flows. The output format long is identical to the format
line and includes additional information such as TCP flags and Type of Service (Tos). The
output format extended is identical to the format long and includes additional computed
information such as packet per second (pps), bytes per second (bps) and bits per packet
(bpp)4.

Nfdump has a powerful and fast filter engine. All flows are filtered before they are further
processed. If no filter is given, any flow will be processed. The filter is either given on the
command line as last argument enclosed in ', or in a file3.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 5

2 Lab topology

Consider Figure 2. There are three switches, four end hosts, and a docker container.
Switch s3 is acting as a NetFlow exporter and the docker d1 is the collector.

10.0.0.1/24 10.0.0.2/24 10.0.0.3/24 10.0.0.4/24

s1 s2

s3

d1-eth0

s3-eth1

d1

10.0.0.5/8

Figure 2. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

h3 h3-eth0 10.0.0.3 /8

h4 h4-eth0 10.0.0.4 /8

d1 d1-eth0 10.0.0.5 /8

2.2 Loading a topology

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 6

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 4. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab6 and select the file lab6.mn. Then, click on Open to open the
topology.

Figure 5. MiniEdit’s Open dialog.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 7

Figure 6. MiniEdit’s topology.

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 8

Figure 9. Displaying network interfaces.

In figure 9, the link displayed within the gray box indicates that interface eth0 of host h1
connects to interface eth1 of switch s1 (i.e., h1-eth0<->s1-eth1).

3 Exploring Nfdump features

Step 1. Go back to MiniEdit. Hold right-click on docker d1 and select Terminal. This opens
the terminal of the docker and allows the execution of commands.

Figure 10. Opening a terminal on docker d1.

Step 2. Navigate into /nfdump/nfcapd_files/ directory by issuing the following command.

cd nfdump/nfcapd_files/

Figure 11. Entering into nfdump directory.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 9

Step 3. Type the following command to show the list of files that are stored already for
exploring nfdump features.

ls

Figure 12. Verifying the recorded file.

Consider the figure above. It shows two files (e.g., nfcapd.202104262145 which refers to
Year 2021, Month 04, Date 26, Time 21:45).

Step 4. Type the following command to read file nfcapd.202104262145.

nfdump -r nfcapd.202104262145

Figure 13. Reading the recorded file.

Consider the figure above. The output includes the date, time, duration, protocol, source
and destination IP addresses, ports, packets, bytes, and flows. It also provides a summary
of the test.

3.1 Nfdump formatting features

Step 1. Type the following command to see the long format output.

nfdump -r nfcapd.202104262145 -o long

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 10

Figure 14. Reading a file in long format.

Consider the figure above. You will notice two new fields, flags, and Type of service (Tos)
are added in the output.

Step 2. Type the following command to see the extended format output.

nfdump -r nfcapd.202104262145 -o extended

Figure 15. Reading a file in extended format.

Consider the figure above. You will notice three more fields, packet per second (pps),
bytes per second (bps) and Bits per packet (Bpp) are added in the output.

Step 3. You can customize the output based on your requirement. Type the following
command to execute a script.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 11

./nfdump_format.sh

Figure 16. Reading a file in customized format.

The following command was executed in the script.

nfdump -r /nfcapd.202104262145 -o “fmt:%ts %te %sap -> %dap %pkt %byt”

You will see all the available options in the nfdump manual (Reference 4). Followings are
the ones used in the script.

• %ts: Start time – First seen

• %te: End time – last seen

• %sap: Source address:port

• %dap: Destination address:port

• %pkt: Packets

• %byt: Bytes

Step 4. Type the following command to aggregate the data.

nfdump -r nfcapd.202104262145 -a

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 12

Figure 17. Aggregating data from a file.

Consider the first entry of the figure above. Total 3 flows are detected where source and
destination IP addresses are 10.0.0.3 and 10.0.0.1, respectively. Total number of packets
are 541612, total bytes 35.7 M.

3.2 Nfdump filtering features

Step 1. Type the following command to show top five flows from the selected file.

nfdump -r nfcapd.202104262145 -c 5

Figure 18. Filtering top five flows from a file.

Consider the figure above. The figure shows top five flows from the file.

Step 2. Type the following command to filter output based on the protocol.

nfdump -r nfcapd.202104262145 ‘proto tcp’

Figure 19. Filtering NetFlow data based on TCP protocol.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 13

Consider the figure above. The figure shows the output for TCP protocol.

Step 3. Type the following command to filter output ordered by bytes.

nfdump -r nfcapd.202104262145 -O bytes

Figure 20. Filtering NetFlow data ordered by bytes.

Consider the figure above. -O is referring to order and the figure shows that the bytes
field is sorted by ascending order.

Step 4. Type the following command to filter output by source IP address.

nfdump -r nfcapd.202104262145 ‘src ip 10.0.0.1’

Figure 21. Filtering NetFlow data based on IP address.

Consider the figure above. The figure shows all the flows containing source IP address
10.0.0.1.

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 14

Step 5. Type the following command to filter output by network address.

nfdump -r nfcapd.202104262145 ‘net 10.0.0.0/8’

Figure 22. Filtering NetFlow data based on network address.

Consider the figure above. The figure shows all the flows belong to the network 10.0.0.0/8.

Step 6. Nfdump provides a number of statistics. Type the following command to show the
source IP statistics.

nfdump -r nfcapd.202104262145 -s srcip

Figure 23. Displaying top source IP address statistics.

Consider the figure above. The figure shows top source IP addresses ordered by flows. It
includes the percentage for flows, packets and bytes used by the source IP addresses.

Step 7. You can also use multiple nfdump filters at the same time. Type the following
command to filter output by multiple expressions.

nfdump -r nfcapd.202104262145 -o long ‘net 10.0.0.0/8 and not host 10.0.0.1 and

packets > 70000’

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 15

Figure 24. Filtering NetFlow data based on multiple features.

Consider the figure above. The figure shows an extended output where it shows all the
flows belong to the network 10.0.0.0/8 except the host 10.0.0.1 and the number of
packets > 70000.

Step 8. Type the following command to show output from multiple files.

nfdump -R nfcapd.202104262130:nfcapd.202104262145

Figure 25. Showing output from multiple files.

Consider the figure above. The figure shows the output from two files stored in the
directory (figure 12).

You can explore more about nfdump filtering following the link:
http://nfdump.sourceforge.net/

Lab 6: Collecting and Processing NetFlow data using Nfdump

 Page 16

This concludes Lab 6. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. Cisco, “Introduction to Cisco IOS NetFlow – A technical overview”, [Online].
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html

2. B. Claise, “RFC 3954: Cisco systems NetFlow services export version 9”, (2004).
https://tools.ietf.org/html/rfc3954

3. DNSstuff, “Best NetFlow Analyzer and Collectors”, [Online].
https://www.dnsstuff.com/netflow-analyzer-software#best-netflow-analyzers-
and-collectors-list

4. Sourceforge, “Nfdump”, [Online]. http://nfdump.sourceforge.net/
5. Omar Santos, “Network security with NetFlow and IPFIX”, (2016).
6. Plixer, “Open vSwitch NetFlow”, [Online].

https://www.plixer.com/ blog/open-vswitch-netflow/

NETWORK MANAGEMENT

Lab 7: Collecting and Visualizing sFlow data
using GoFlow and Grafana

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to GoFlow and Grafana ... 4

2 Lab topology.. 4

2.1 Lab settings... 5

2.2 Loading a topology ... 5

3 Launching sFlow collector and agent .. 7

4 Analyzing sFlow sampling records using Grafana ... 11

4.1 Launching Grafana ... 11

4.2 Creating dashboard in Grafana .. 13

4.3 Performing a connectivity test ... 17

4.4 Exploring Grafana dashboard ... 19

4.5 Creating an alert in Grafana ... 29

References .. 32

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 3

Overview

This lab introduces Grafana which is a multi-platform open-source analytics and
interactive visualization web application. The focus of this lab is to enable sFlow agent in
Open Virtual Switch (Open vSwitch) and analyze the collected flows using Grafana
dashboard.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of GoFlow and Grafana.
2. Enable sFlow in Open vSwitch.
3. Analyze sFlow sampling records using Grafana.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching sFlow collector and agent.
4. Section 4: Analyzing sFlow sampling records using Grafana.

1 Introduction

Data visualization transforms abstract data into a visual context, such as a charts, plots,
or graph, to make data easier for the human brain to understand. We can visualize large
volumes of data in an understandable and coherent way, which in turn helps us
comprehend the information and draw conclusions and insights1.

Before Graphical User Interface (GUI) systems became popular, command line interface
(CLI) systems were the norm. On these systems, users had to input commands using lines

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 4

of coded text. The commands ranged from simple instructions for accessing files or
directories to far more complicated commands that required many lines of code.
Apparently, GUI systems have made computers far more user-friendly than CLI systems2.

1.1 Introduction to GoFlow and Grafana

Grafana is an open and composable observability and data visualization platform. The
purpose of Grafana dashboards is to bring data together in a way that is both efficient
and organized. It allows users to better understand the metrics of their data through
queries, informative visualizations and alerts3. Users can also share the dashboards you
create with other team members, allowing you to explore the data together.

A Grafana dashboard is a powerful open source analytical and visualization tool that
consists of multiple individual panels arranged in a grid. The panels interact with
configured data sources, including Microsoft SQL server, Prometheus, MySQL, InfluxDB,
PostgreSQL and many others. Each panel is connected to a data source. Since the Grafana
dashboards support multiple panels in a single grid, users can visualize results from
multiple data sources simultaneously.

GoFlow is an application by Cloudflare to collect Netflow/IPFIX/sFlow data. Flow-pipeline
is a repository which contains GoFlow collector, kafka (provides a framework for storing,
reading, and analyzing streaming data), a database and an inserter (to insert the flows in
a database)4.

GoFlow Kafka PostgreSQL
sFlow
agent

Grafana

sFlow
data inserter Output

Figure 1. GoFlow and Grafana integration.

Consider Figure 1. GoFlow collector will collect sFlow data from the sFlow agent. The data
is sent to Kafka. Apache Kafka is a distributed data store optimized for ingesting and
processing streaming data in real-time. Streaming data is the data that is continuously
generated by thousands of data sources, which typically send the data records
simultaneously. A streaming platform needs to handle this constant influx of data and
process the data sequentially and incrementally5. An inserter is responsible for inserting
the flows in the PostgreSQL database from kafka. Grafana is connected to the database
to visualize the data based on the user requirements4.

2 Lab topology

Consider Figure 2. There are three switches and two end hosts. Switch s3 is acting as a
sFlow agent. Localhost 127.0.0.1 (loopback address of the Virtual Machine) is the collector.
The collector is not visible in Mininet topology since it is a part of the operating system.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 5

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0 h2-eth0

10.0.0.1/8 10.0.0.2/8

Collector

Localhost:
127.0.0.1

Figure 2. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

2.2 Loading a topology

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 6

Figure 4. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab7 and select the file lab7.mn. Then, click on Open to open the
topology.

Figure 5. MiniEdit’s Open dialog.

Figure 6. MiniEdit’s topology.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 7

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Figure 9. Displaying network interfaces.

In figure 9, the link displayed within the gray box indicates that interface eth1 of host s1
connects to interface eth0 of switch h1 (i.e., s1-eth1<-> h1-eth0).

3 Launching sFlow collector and agent

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 8

Step 2. Type the following command to assign a valid IP address to all interfaces. If
prompted for password, type password.

sudo dhclient

Figure 11. Assigning valid IP addresses to all interfaces.

Step 3. Navigate into flow-pipeline/compose directory by issuing the following command.
The folder contains a startup file that includes GoFlow, Kafka, PostgreSQL, and an inserter.

cd flow-pipeline/compose/

Figure 12. Navigating into flow-pipeline/compose directory.

Step 4. Type the following command to run the startup file.

sudo docker-compose -f docker-compose-postgres-collect.yml up

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 9

Figure 13. Enabling the collector.

Consider the figure above. It may take some time to start the collector. The highlighted
part shows that the collector GoFlow is starting. UDP port 6343 is for sFlow, 2056 is for
Netflow and port 2055 is for IPFIX. Once the collector is running, you will see the number
of records processed by the inserter.

Once you run a test between hosts h1 and h2, you will notice number of records
increasing.

Step 5. Click on the File option and select + New Tab or press Ctrl+Shift+T.

Figure 14. Opening a new terminal tab.

Step 6. Type the following command to enable a sFlow agent. If prompted for password,
type password.

sudo ovs-vsctl -- --id=@s create sflow agent=s3-eth1 target=\”127.0.0.1:6343\”

sampling=64 -- set bridge s3 sflow=@s

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 10

Figure 15. Enabling sFlow agent.

Consider the figure above. The command creates a sFlow ID and is attached to switch
s3. Switch s3 is acting as an agent and transmits data to the collector. 127.0.0.1 is
the collector IP and the port is 6343. Sampling rate is 64 which means 1 in 64 packets will
be sampled.

Step 7. Type the following command to verify sFlow configuration.

sudo ovs-vsctl list sflow

Figure 16. Verifying sFlow configuration.

Consider the figure above. One sFlow agent is running, target collector IP is 127.0.0.1 and
the port is 6343.

Step 8. Follow step 5 to open another terminal.

Step 9. Navigate into flow-pipeline/compose/postgres directory by issuing the following
command.

cd flow-pipeline/compose/postgres/

Figure 17. Navigating into flow-pipeline/compose/postgres directory.

Step 10. Type the following command to show the content of the script create.sh located
inside the directory.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 11

Figure 18. Displaying a file located inside the directory.

Consider the figure above. If any data is stored in the postgres database, a table flows will
be created. The table has different columns such as src_ip, dst_ip, bytes and packets.
You will explore more about the database when you analyze records in Grafana
dashboard.

4 Analyzing sFlow sampling records using Grafana

In this section, you will analyze sFlow data. You will use graphical interface of Grafana to
view the results. You will create a folder and a dashboard which can be saved and used
later.

4.1 Launching Grafana

Step 1. Open the browser.

Figure 19. Opening a browser.

Step 2. In the search engine, type localhost:3000/login. The username is admin and the
password is admin. The, click on Login.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 12

Figure 20. Login to Grafana.

Step 3. There is an option to change the password. You can also click on skip if you do not
want to change the password.

Figure 21. Login to Grafana.

Step 4. Once you login, you will be directed to the homepage of Grafana.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 13

Figure 22. Visualizing Grafana homepage.

4.2 Creating dashboard in Grafana

In this section, you will create a Grafana dashboard.

Step 1. In this step, you will create a folder for sFlow. You will be able to add dashboards
in that particular folder. Click on the + sign located on the left side. Select Create -> Folder.

Figure 23. Creating a folder.

Step 2. Name the folder as sFlow and select Create.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 14

Figure 24. Creating a folder.

Step 3. Once you create a folder, you will see an option to create dashboard. Click on
Create Dashboard. It will create a panel. You can create multiple panels to make a
dashboard.

Figure 25. Creating a dashboard.

Step 4. Select Add an empty panel.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 15

Figure 26. Adding an empty panel into Grafana dashboard.

Step 5. By default, it shows a demo graph. Select the source, PostgreSQL from the
dropdown box showed in the following figure.

Figure 27. Customizing a panel.

Step 6. Grafana uses queries to communicate with data sources to get data for the
visualization. A query is a question written in the query language used by the data
source. Data sources have different query languages and syntaxes to ask for the data.
Grafana provides a query editor which helps you to write queries. Depending on your data
source, the query editor might provide auto-completion, metric names, or variable

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 16

suggestion. In this lab, you will write queries manually. Select Edit SQL so that you can
write queries.

Figure 28. Customizing a panel.

Step 7. Type the query as shown in the following figure to create a graph. The query will
extract data from the database, and you will visualize a graph for time vs flows in real-
time.

Figure 29. Customizing a panel.

Step 8. Select Panel located on the top right of the panel. From the dropdown box of Axes,
select Left Y-> Unit -> Data rate -> bytes/sec(SI).

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 17

Figure 30. Customizing a panel.

Consider the figure above. This will change the unit for Y-axis.

4.3 Performing a connectivity test

Step 1. Hold right-click on host h2 and select Terminal. This opens the terminal of host h2
and allows the execution of commands on that host.

Figure 31. Opening a terminal on host h2.

Step 2. In host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 18

Figure 32. Running host h2 in server mode.

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 3. Open host h1 terminal and type the following command to run the host in client
mode.

iperf3 -c 10.0.0.2 -t 200

Figure 33. Running host h1 in client mode.

Consider the figure above. The test runs for 200 seconds.

Step 4. Go to the flow-pipeline terminal. You will notice number of records increasing.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 19

Figure 34. Verifying sFlow records collected by the inserter.

4.4 Exploring Grafana dashboard

Step 1. From the dropdown box showed in the following figure, you can choose time
range to view data. Select 5 minutes to see the real-time traffic.

Figure 35. Customizing a panel.

Step 2. From the dropdown box showed in the figure, you can choose time to refresh the
dashboard. Select 5s (5 seconds) to see the real-time traffic.

Figure 36. Customizing a panel.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 20

The figure above shows the traffic for the test running between hosts h1 and h2.

Step 3. In this step, you will save the panel. Go to the panel option, select settings, and
change the panel title to sFlow traffic. Click on apply to save the panel in the dashboard.

Figure 37. Saving a panel.

Step 4. The dashboard will look like the following figure. Click on the save option located
on the top right side.

Figure 38. Saving a dashboard.

The time range of the data is set to 15 minutes. You can also change it to any time range
(30 minutes, 1 hour) as required. You might get a different graph depending on the
flows.

Step 5. Change the dashboard name to sFlow Dashboard and click on save.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 21

Figure 39. Saving a dashboard.

Step 6. Click on the add panel option located on the top right (showed in the following
figure).

Figure 40. Adding a panel.

Step 7. Select Add an empty panel.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 22

Figure 41. Adding a panel.

Step 8. Change the panel title to sFlow sampling rate from the panel setting.

Figure 42. Changing panel title.

Step 9. From panel visualization option, select Stat.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 23

Figure 43. Customizing a panel.

Step 10. Select PostgreSQL as the data source, select the format as Table, and click on Edit
SQL to insert a custom query. All the steps are highlighted in the following figure.

Figure 44. Enabling an SQL custom query.

Step 11. Insert the SQL query as shown in the following figure.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 24

Figure 45. Customizing a panel.

Step 12. You will notice the sampling rate will change from No Data to 64 in the panel.
Click on Apply to save the panel.

Figure 46. Saving a panel.

Step 13. The sFlow dashboard will look like the following figure.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 25

Figure 47. Visualizing the dashboard.

Step 14. Repeat steps 6 and 7 to create a new panel. Change the panel title to sFlow table.

Figure 48. Changing panel title.

Step 15. From panel visualization option, select Table.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 26

Figure 49. Customizing a panel.

Step 16. Select PostgreSQL as the data source, select the format as Table, and click on Edit
SQL to insert a custom query. All the steps are highlighted in the following figure.

Figure 50. Enabling an SQL custom query.

Step 17. Select PostgreSQL as the data source, write the queries and select the format as
Table. All the steps are highlighted in the following figure.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 27

Figure 51. Customizing a panel.

Step 18. The panel will look like the following figure. The table shows source and
destination IP addresses and number of packets sent from the source to the destination.
Click on Apply to save the panel.

Figure 52. Saving a panel.

Step 19. The dashboard will look like the following figure.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 28

Figure 53. Visualizing the dashboard.

Change the time range to 30 minutes to get a better result.

Step 20. You can drag and drop each panel to rearrange the dashboard. From the right
corner of the panel, you can drag to set the size as well (highlighted in the following figure).

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 29

Figure 54. Customizing a dashboard.

Step 21. After rearranging, the final dashboard will look like the following figure.

Figure 55. Visualizing a dashboard.

4.5 Creating an alert in Grafana

Step 1. In this step, you will create an alert. Place your cursor on top of the sFlow traffic
panel. A dropdown option will appear.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 30

Figure 56. Selecting a panel.

Step 2. Select Edit to edit the panel.

Figure 57. Editing a panel.

Step 3. Select Alert -> Create Alert.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 31

Figure 58. Creating an alert.

Step 4. Set the threshold value of the alert to 7,000,000,000. If the traffic flow is more
than 7GB, it will be under red zone. Select Apply to make changes.

Figure 59. Creating an alert.

Step 5. At this point, the final dashboard will look like the following figure. Save the
dashboard.

Lab 7: Collecting and Visualizing sFlow data using GoFlow and Grafana

 Page 32

Figure 60. Visualizing a dashboard.

This concludes Lab 7. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. IBM, “Data Visualization”, [Online].
https://www.ibm.com/cloud/learn/data-visualization

2. ThoughtCo., “Benefits of the Graphical User Interface”, [Online].
https://www.thoughtco.com/benefits-of-graphical-user-interface-1206357

3. Grafana Labs, “Introduction to Grafana”, [Online].
https://grafana.com/docs/grafana/latest/introduction/

4. GitHub, “Flow-pipeline”, [Online].
https://github.com/cloudflare/flow-pipeline

5. AWS, “What is Apache Kafka?”, [Online].
https://aws.amazon.com/msk/what-is-kafka/

NETWORK MANAGEMENT

Lab 8: Collecting and Visualizing NetFlow data
using GoFlow and Grafana

Document Version: 07-08-2022

Award 1829698
“CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput

Networks for Big Science Data Transfers”

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 2

Contents

Overview ... 3

Objectives.. 3

Lab settings ... 3

Lab roadmap ... 3

1 Introduction .. 3

1.1 Introduction to GoFlow and Grafana ... 4

2 Lab topology.. 4

2.1 Lab settings... 5

2.2 Loading a topology ... 5

3 Launching NetFlow collector and exporter .. 8

4 Analyzing NetFlow records using Grafana .. 11

4.1 Launching Grafana ... 11

4.2 Creating dashboard in Grafana .. 13

4.3 Performing a connectivity test ... 18

4.4 Exploring Grafana dashboard ... 20

References .. 30

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 3

Overview

This lab introduces Grafana which is a multi-platform open-source analytics and
interactive visualization web application. The focus of this lab is to enable NetFlow
exporter in Open Virtual Switch (Open vSwitch) and analyze the collected flows using
Grafana dashboard.

Objectives

By the end of this lab, you should be able to:

1. Understand the concept of GoFlow and Grafana.
2. Enable NetFlow in Open vSwitch.
3. Analyze NetFlow records using Grafana.

Lab settings

The information in Table 1 provides the credentials to access the Client’s virtual machine.

Table 1. Credentials to access Client’s virtual machine.

Device

Account

Password

Client admin password

Lab roadmap

This lab is organized as follows:

1. Section 1: Introduction.
2. Section 2: Lab topology.
3. Section 3: Launching NetFlow collector and exporter.
4. Section 4: Analyzing NetFlow records using Grafana.

1 Introduction

Data visualization transforms abstract data into a visual context, such as a charts, plots,
or graph, to make data easier for the human brain to understand. We can visualize large
volumes of data in an understandable and coherent way, which in turn helps us
comprehend the information and draw conclusions and insights1.

Before Graphical User Interface (GUI) systems became popular, command line interface
(CLI) systems were the norm. On these systems, users had to input commands using lines

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 4

of coded text. The commands ranged from simple instructions for accessing files or
directories to far more complicated commands that required many lines of code.
Apparently, GUI systems have made computers far more user-friendly than CLI systems2.

1.1 Introduction to GoFlow and Grafana

Grafana is an open and composable observability and data visualization platform. The
purpose of Grafana dashboards is to bring data together in a way that is both efficient
and organized. It allows users to better understand the metrics of their data through
queries, informative visualizations and alerts3. Users can also share the dashboards with
other team members within an organization, allowing all to explore the data together.

A Grafana dashboard is a powerful open source analytical and visualization tool that
consists of multiple individual panels arranged in a grid. The panels interact with
configured data sources, including Microsoft SQL server, Prometheus, MySQL, InfluxDB,
PostgreSQL and many others. Each panel is connected to a data source. Since the Grafana
dashboards support multiple panels in a single grid, users can visualize results from
multiple data sources simultaneously.

GoFlow is an application by Cloudflare to collect Netflow/IPFIX/sFlow data. Flow-pipeline
is a repository which contains GoFlow collector, kafka (provides a framework for storing,
reading, and analyzing streaming data), a database and an inserter (to insert the flows in
a database)4.

GoFlow Kafka PostgreSQL
NetFlow
exporter

Grafana

NetFlow
data inserter Output

Figure 1. GoFlow and Grafana integration.

Consider Figure 1. GoFlow collector will collect NetFlow data from the NetFlow exporter.
The data is sent to kafka. Apache Kafka is a distributed data store optimized for ingesting
and processing streaming data in real-time. Streaming data is the data that is continuously
generated by thousands of data sources, which typically send the data records
simultaneously. A streaming platform needs to handle this constant influx of data and
process the data sequentially and incrementally5. An inserter is responsible for inserting
the flows in the PostgreSQL database from kafka. Grafana is connected to the database
to visualize the data based on the user requirements4.

2 Lab topology

Consider Figure 2. There are three switches and two end hosts. Switch s3 is acting as a
NetFlow exporter. Localhost 127.0.0.1 (loopback address of the Virtual Machine) is the
collector. The collector is not visible in Mininet topology since it is a part of the operating
system.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 5

s1 s2

s3

h1
h2

s1-eth1 s2-eth1

h1-eth0 h2-eth0

10.0.0.1/8 10.0.0.2/8

Collector

Localhost:
127.0.0.1

Figure 2. Lab topology.

2.1 Lab settings

The devices should be configured according to Table 2.

Table 2. Topology information.

Device Interface IIP Address Subnet

h1 h1-eth0 10.0.0.1 /8

h2 h2-eth0 10.0.0.2 /8

2.2 Loading a topology

Step 1. Click on the Client tab to access the Client PC.

Figure 3. Accessing the Client PC.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 6

Step 2. Start by launching MiniEdit by clicking on desktop’s shortcut. When prompted for
a password, type password.

Figure 4. MiniEdit shortcut.

Step 3. On MiniEdit’s menu bar, click on File then open to load the lab’s topology. Open
the directory called lab8 and select the file lab8.mn. Then, click on Open to open the
topology.

Figure 5. MiniEdit’s Open dialog.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 7

Figure 6. MiniEdit’s topology.

Step 4. To proceed with the emulation, click on the Run button located on the lower left-
hand side.

Figure 7. Starting the emulation.

Step 5. Click on Mininet’s terminal, i.e., the one launched when MiniEdit was started.

Figure 8. Opening Mininet’s terminal.

Step 6. Issue the following command to display the interface names and connections.

links

Figure 9. Displaying network interfaces.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 8

In figure 9, the link displayed within the gray box indicates that interface eth1 of host s1
connects to interface eth0 of switch h1 (i.e., s1-eth1<-> h1-eth0).

3 Launching NetFlow collector and exporter

Step 1. Open the Linux terminal.

Figure 10. Opening Linux terminal.

Step 2. Type the following command to assign a valid IP address to all interfaces. If
prompted for password, type password.

sudo dhclient

Figure 11. Assigning valid IP addresses to all interfaces.

Step 3. Navigate into flow-pipeline/compose directory by issuing the following command.
The folder contains a startup file that includes GoFlow, Kafka, PostgreSQL, and an inserter.

cd flow-pipeline/compose/

Figure 12. Navigating into flow-pipeline/compose directory.

Step 4. Type the following command to run the startup file.

sudo docker-compose -f docker-compose-postgres-collect.yml up

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 9

Figure 13. Enabling the collector.

Consider the figure above. It may take some time to start the collector. The highlighted
part shows that the collector GoFlow is starting. UDP port 6343 is for sFlow, 2056 is for
Netflow and port 2055 is for IPFIX. Once the collector is running, you will see the number
of records processed by the inserter.

Once you run a test between hosts h1 and h2, you will notice number of records
increasing.

Step 5. Click on the File option and select + New Tab or press Ctrl+Shift+T.

Figure 14. Opening a new terminal tab.

Step 6. Type the following command to enable a NetFlow exporter. If prompted for
password, type password.

sudo ovs-vsctl –- set Bridge s3 netflow=@nf -- --id=@nf create netflow

targets=\”127.0.0.1:2056\” active_timeout=30

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 10

Figure 15. Enabling Netflow exporter.

Consider the figure above. The command creates a NetFlow ID and attaches it to switch
s3. Switch s3 is acting as an exporter and transmits data to the collector. 127.0.0.1 is
the collector IP and the port is 2056. Active_timeout is the frequency of active flow
records that are exported from the database to the collector.

Step 7. Type the following command to verify NetFlow configuration.

sudo ovs-vsctl list netflow

Figure 16. Verifying NetFlow configuration.

Consider the figure above. One NetFlow exporter is running, target collector IP is
127.0.0.1 and the port is 2056.

Step 8. Click on the File option and select + New Tab or press Ctrl+Shift+T.

Figure 17. Opening a new terminal tab.

Step 9. Navigate into flow-pipeline/compose/postgres directory by issuing the following
command.

cd flow-pipeline/compose/postgres/

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 11

Figure 18. Navigating into flow-pipeline/compose/postgres directory.

Step 10. Type the following command to show file create.sh located inside the directory.

Figure 19. Displaying a file located inside the directory.

Consider the figure above. If any data is stored in the postgres database, a table flows will
be created. The table has different columns such as src_ip, dst_ip, bytes and packets. You
will explore more about the database when you analyze records in Grafana dashboard.

4 Analyzing NetFlow records using Grafana

In this section, you will analyze NetFlow data. You will use graphical interface of Grafana
to view the results. You will create a folder and a dashboard which can be saved and used
later.

4.1 Launching Grafana

Step 1. Open the browser.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 12

Figure 20. Opening a browser.

Step 2. In the search engine, type localhost:3000/login. The username is admin and the
password is admin. The, click on Login.

Figure 21. Login to Grafana.

Step 3. There is an option to change the password. You can also click on skip if you do not
want to change the password.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 13

Figure 22. Login to Grafana.

Step 4. Once you login, you will be directed to the homepage of Grafana.

Figure 23. Visualizing Grafana homepage.

4.2 Creating dashboard in Grafana

In this section, you will create a Grafana dashboard.

Step 1. In this step, you will create a folder for NetFlow. You will be able to add dashboards
in that particular folder. Click on the + sign located on the left side. Select Create -> Folder.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 14

Figure 24. Creating a folder.

Step 2. Name the folder as NetFlow and select Create.

Figure 25. Creating a folder.

Step 3. Once you create a folder, you will see an option to create dashboard. Click on
Create Dashboard. You can create multiple panels to make a dashboard.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 15

Figure 26. Creating a dashboard.

Step 4. Select Add an empty panel.

Figure 27. Adding an empty panel into Grafana dashboard.

Step 5. By default, it shows a demo graph. Select the source, PostgreSQL from the
dropdown box showed in the following figure.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 16

Figure 28. Customizing a panel.

Step 6. Grafana uses queries to communicate with data sources to get data for the
visualization. A query is a question written in the query language used by the data
source. Data sources have different query languages and syntaxes to ask for the data.
Grafana provides a query editor which helps you to write queries. Depending on your data
source, the query editor might provide auto-completion, metric names, or variable
suggestion. In this lab, you will write queries manually. Select Edit SQL so that you can
write queries.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 17

Figure 29. Customizing a panel.

Step 7. Type the query as shown in the following figure to create a graph. The query will
extract data from the database, and you will visualize a graph for time vs flows in real-
time.

Figure 30. Customizing a panel.

Step 8. Select Panel located on the top right of the panel. From the dropdown box of Axes,
select Left Y-> Unit -> Data rate -> bytes/sec.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 18

Figure 31. Customizing a panel.

Consider the figure above. This will change the unit for Y-axis.

4.3 Performing a connectivity test

Step 1. Go back to MiniEdit. Hold right-click on host h2 and select Terminal. This opens
the terminal of host h2 and allows the execution of commands on that host.

Figure 32. Opening a terminal on host h2.

Step 2. In host h2 terminal, type the following command to run the host in server mode.

iperf3 -s

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 19

Figure 33. Running host h2 in server mode.

Consider the figure above. The figure shows that host h2 is acting as a server and listening
to port 5201.

Step 3. Open host h1 terminal and type the following command to run the host in client
mode.

iperf3 -c 10.0.0.2 -t 100

Figure 34. Running host h1 in client mode.

Consider the figure above. The test runs for 100 seconds. You will notice total transfer is
387 Gbytes.

You might get a different result.

Step 4. You will notice that host h2 is creating a connection with host h1 using port 38782.
Once the connection is established, port 5201 is connected to port 38784.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 20

Figure 35. Verifying result in host h2.

You might get different ports.

Step 5. Go to the flow-pipeline terminal. You will notice number of records increasing.

Figure 36. Verifying NetFlow records collected by the inserter.

4.4 Exploring Grafana dashboard

Step 1. From the dropdown box showed in the following figure, you can choose time
range to view data. Select 5 minutes to see the real-time traffic.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 21

Figure 37. Customizing a panel.

Step 2. From the dropdown box showed in the figure, you can choose time to refresh the
dashboard. Select 5s (5 seconds) to see the real-time traffic.

Figure 38. Customizing a panel.

The figure above shows the traffic for the test running between hosts h1 and h2.

Step 3. In this step, you will save the panel. Go to the panel option, select settings, and
change the panel title to NetFlow Traffic. Click on apply to save the panel in the dashboard.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 22

Figure 39. Saving a panel.

Step 4. The dashboard will look like the following figure. Click on the save option located
on the top right side.

Figure 40. Saving a dashboard.

Consider the figure above. Notice that the total transfer is 387 Gbytes.

You might get a different result based on the connectivity test.

Step 5. Change the dashboard name to NetFlow Dashboard and click on save.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 23

Figure 41. Saving a dashboard.

Step 6. Click on the add panel option located on the top right (showed in the following
figure).

Figure 42. Adding a panel.

The time range of the data is set to 15 minutes. You can also change it to any time range
(30 minutes/1 hour) as required.

Step 7. Select Add an empty panel.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 24

Figure 43. Adding a panel.

Step 8. Change the panel title to NetFlow Table from the panel setting.

Figure 44. Changing panel title.

Step 9. From panel visualization option, select Table.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 25

Figure 45. Customizing a panel.

Step 10. Select PostgreSQL as the data source, write the queries and select the format as
Table. All the steps are highlighted in the following figure.

Figure 46. Customizing a panel.

Step 11. Go to the Field option, select Standard options, and type in the Unit entry box
bytes/sec(SI).

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 26

Figure 47. Customizing a panel.

Step 12. The panel will look like the following figure. The table shows source and
destination IP addresses and transferred data from the source to the destination. Click on
Apply to save the panel.

Figure 48. Saving a panel.

Step 13. The NetFlow dashboard will look like the following figure.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 27

Figure 49. Visualizing the dashboard.

Step 14. Repeat steps 6 and 7 to create a new panel. Change the panel title to NetFlow
Table 2.

Figure 50. Changing panel title.

Step 15. From panel visualization option, select Table.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 28

Figure 51. Customizing a panel.

Step 16. Select PostgreSQL as the data source, write the queries and select the format as
Table. All the steps are highlighted in the following figure.

Figure 52. Customizing a panel.

Step 17. The panel will look like the following figure. The table shows source and
destination ports and number of packets sent from the source to the destination. Click on
Apply to save the panel.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 29

Figure 53. Saving a panel.

Step 18. The dashboard will look like the following figure.

Figure 54. Visualizing the dashboard.

Step 19. You can drag and drop each panel to rearrange the dashboard. After rearranging,
the final dashboard will look like the following figure. Save the dashboard.

Lab 8: Collecting and Visualizing NetFlow data using GoFlow and Grafana

 Page 30

Figure 55. Visualizing a dashboard.

This concludes Lab 8. Stop the emulation and then exit out of MiniEdit and the Linux
terminal.

References

1. IBM, “Data Visualization”, [Online].
https://www.ibm.com/cloud/learn/data-visualization

2. ThoughtCo., “Benefits of the Graphical User Interface”, [Online].
https://www.thoughtco.com/benefits-of-graphical-user-interface-1206357

3. Grafana Labs, “Introduction to Grafana”, [Online].
https://grafana.com/docs/grafana/latest/introduction/

4. GitHub, “Flow-pipeline”, [Online].
https://github.com/cloudflare/flow-pipeline

5. AWS, “What is Apache Kafka?”, [Online].
https://aws.amazon.com/msk/what-is-kafka/

	Cover
	Contents
	Lab 1 - Introduction to Mininet
	Lab 2 - Introduction to NetFlow
	Lab 3 - Introduction to IPFIX
	Lab 4 - Introduction to sFlow
	Lab 5 - Collecting and Processing NetFlow, IPFIX and sFlow data using Nfdump
	Lab 6 - Filtering and formatting data using Nfdump
	Lab 7 - Collecting and Visualizing sFlow data using GoFlow and Grafana
	Lab 8 - Collecting and Visualizing NetFlow data using GoFlow and Grafana

